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Abstract  This article proposes a machine learning-based 
dynamic voltage restorer (DVR) control strategy for address-
ing the conventional design procedure of fuzzy logic that 
needs human expertise to decide membership functions. 
A randomized evolving Takagi–Sugeno (ReTSK) machine 
learning approach is proposed for the estimation of fun-
damental weight components from the polluted grid for 
enhanced DVR compensating capability. A recurrent proba-
bilistic fuzzy neural network (RPFNN) control is employed 
for encountering the manual parameters tuning approach 
of a proportional-integral controller that depends on the 
optimized coefficients during severe voltage disturbances. 
The outlined approaches demonstrate robust performance 
by improving the DC- and AC-link voltage regulation with 
parametric variations and disturbances. The recommended 
RPFNN control provides a better response during the tran-
sitory state in terms of performance indicators like rise 
time (0.15 s), settle time (0.08 s), overshoot (3.3%), under-
shoot (3.3%) and recovery time (0.42 s). Advanced meta-
algorithms like Seagull and Rat Swarm Optimization are 
employed for the self-tuning of the controller’s parameters 
and compared with competitive algorithms like Moth-Flame 
Optimization, Spotted Hyena Optimizer and Harris Hawks 
Optimization. The results of best-fitted forecasting mod-
els ReTSK are evaluated by using statistical performance 

indices (MSE, RMSE, ME, SD and R), while RPFNN are 
assessed by (MSE, RMSE MAE, MAPE, SI and R). The 
performance results confirm the validation of the developed 
control strategies which emphasize their relevance.

Keywords  Compensating voltages · DC-link · Kernel 
Fuzzy C-means · Unbalanced · Rat Swarm Optimizer · 
THD · Sag

Introduction

The emergence of power electronics-based equipment 
causes serious voltage perturbations in the power supply 
system which affects the reliability of power. This power 
quality (PQ) concern is a hotspot in the areas of research 
and attracted many researchers to maintain the quality of 
power [1]. To ensure the PQ disturbances many compensat-
ing devices have been addressed and used in the last two 
decades. The DVR is more reliable and suitable for com-
pensating voltage-sensible issues and provides a cost-effec-
tive solution [2]. The performance of the DVR is primarily 
depending upon how fast and accurately it estimates the fun-
damental reference signal under dynamic conditions. Sev-
eral control theories have been reported in the literature for 
the estimation of reference control signals and extraction of 
the fundamental component under distorted conditions [3]. 
Myriads of control techniques based on time and frequency 
are available in the existing literature for compensation such 
as p-q theory [4] and d-q theory [5] based on time-domain 
analysis, while the Kalman filter [6] and wavelet transform 
[7] are based on frequency for classifying the power qual-
ity disturbances (PQD). The drawbacks of above-said con-
trol algorithms have high computational complexity, more 

 *	 Sabha Raj Arya 
	 sabharaj79@gmail.com

	 Khyati D Mistry 
	 kkp@eed.svnit.ac.in

	 Prashant Kumar 
	 prashant2685@gmail.com

1	 Department of Electrical Engineering, S. V. National 
Institute of Technology, Surat, Gujarat 395007, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s40031-023-00973-1&domain=pdf
http://orcid.org/0000-0003-4745-2998


484	 J. Inst. Eng. India Ser. B (June 2024) 105(3):483–502

1 3

memory requirement and fails if more sudden critical dis-
turbances occur in the supply voltage.

Recently, authors have reported the advantages and draw-
backs of other adaptive filters such as MCCF-SOGI [8] and 
sliding mode control integrated with adaptive notch filters 
[9] for various voltage and current-related PQ perturbations. 
Some other adaptive controllers are Least Mean Square 
(LMS) [10], Variable Step-Size LMS (VSLMS) [11], Vari-
able Fractional Power LMS [12] and Zero Attracting-LMS 
[13]. The feature of parameter dependency is the main draw-
back of these adaptive-based controllers due to limited per-
formance. Despite a myriad of control strategies being actu-
alized in the literature based on nonlinearity and suffering 
from imperfection, it motivates the researchers to develop a 
prominent control strategy for voltage compensation [14]. 
In [15] authors have reported the negative influence of solar 
grid-tied systems on the power distribution network and 
investigated the performance monitoring of artificial intel-
ligence (AI). The optimized dynamic voltage restorer (DVR) 
is integrated with self-tuned fuzzy-proportional-integral 
control employed for alleviating the power quality concerns 
and regulating the load voltage [16]. The stability-related 
issue in the fuzzy system is reported in the literature [17]. 
This work focuses on the enhancement of voltage PQ using 
machine learning (ML)-based DVR, and it will be controlled 
by an optimized ReTSK and RPFNN control. The training 
speed and tracking features have made the proposed scheme 
advantageous in terms of improved dynamic response which 
makes the system suitable for implementation in real time.

Recently, a significant effort has been initiated to employ 
an intelligent theory-based control that handles uncertain-
ties and sudden disturbances efficiently. The proposed DVR 
compensator takes advantage of ML ability in terms of intel-
ligent performance and replaces the aforementioned conven-
tional control schemes. The proposed ReTSK-based DVR 
model efficiently evaluates the actual sensed supply voltage 
with minimum steady-state error. The simplified extraction 
of fundamental weight components from distorted supply 
voltage is the key advantage of implementing ReTSK and 
maintains the stability of the system. The new algorithm 
SOA is gradient-free and it proves its effectiveness during 
tuning the controller’s coefficient [18] [19]. This Seagull 
optimization scheme is employed in the controller design 
for the simultaneous online tuning of premise and conse-
quent membership functions (MFs) and the optimal selec-
tion of rules. The proposed approach was not used earlier 
in PQ applications for the fundamental d-q weight quantity 
estimation.

The DC- and AC-link voltage regulation of DVR plays 
the main role in stabilizing the dynamics and maintaining 
the constant three-phase load voltage under the scenarios of 
voltage disturbance in the grid. Several control techniques 
are presented in the literature for stabilizing the fluctuation 

in DC-link voltage like DC-PI, PSO-PI, GSA-PI and GWO-
PI, and their performances are assessed based on indicators 
like rise time, settle time, peak overshoot and undershoot 
[20]. The key issue of the classical PI controller is that it 
takes relatively more transitory time to restrain under an 
acceptable tolerance band of 2%. Due to this it fails to offer 
optimal solutions and is responsible for surges and over-
shoot. However, next-generation intelligent controllers are 
proposed such as fuzzy neural and adaptive neuro-fuzzy for 
online tuning mechanisms to improve the deficiencies of 
the classical PI tuning method. In [21] authors have pre-
sented capacitor-connected DVR in which PI coefficients 
are optimized by using PSO. In [22] authors have employed 
ant colony optimization (ACO) for the optimization of Kp 
and Ki value and improve the DVR control performance. In 
[23] authors have implemented real-coded GA-based DVR 
for the PI and fuzzy logic (FL) coefficients optimization for 
PQ improvement. Authors in Ref. [24] illustrate a unique 
solution for the management of batteries with intelligent 
controllers like artificial neural network (ANN) designed 
to regulate the Passive Cell Balancing (PCB). The authors 
have discussed the applications of cell balancing techniques 
which are considered the important feature required for man-
aging the battery [25] [26]. In [27] [28] soft computational 
methods like artificial neural network (ANN) and adaptive 
neuro-fuzzy inference system (ANFIS) controlling schemes 
are proposed for improving the performance of Electronic 
Load Controller (ELC) to deliver reliable power to custom-
ers. This intelligent approach reduces the response time 
and provides better dynamic performance compared with 
classical PI controllers under voltage disturbance. Lately, 
the recurrent probabilistic fuzzy neural network (RPFNN) 
has currently created by retaining the temporal properties of 
the input data set utilizing feedback connections [29]. The 
RPFNN is hence more effective than classical feedforward 
networks. The merit of the proposed RPFNN structure is 
to tackle dynamical inputs or outputs and effectively pro-
cess the complex spatiotemporal patterns due to its recur-
rent connections which gives the network memory to store 
more information [30]. Therefore, the RPFNN controller is 
proposed for the complex system inputs or outputs and inte-
grated with advanced Rat Swarm Optimization (RSO) to 
yield the optimum interconnected weight among the layers 
and provide faster convergence [31]. The optimal selection 
of neurons, weights and bias improves the transients under 
load-varying conditions using RSO optimization. The pro-
posed RPFNN-RSO model is a trained controller for the 
DVR which regulates the DC- and AC-link voltage and com-
pensates voltage THD.

The main contribution claims in this study are the suc-
cessful extraction of trained ReTSK and RPFNN models 
employed for the compensation scheme and the stabilization 
of DC-link voltage fluctuation of the DVR. A self-learning 
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ReTSK model was implemented for the online identifica-
tion of weights of the output layer which are more relevant 
than the weights of the hidden layer. Here, the structure 
and parameters identification are done simultaneously and 
reduce the mean weight oscillation under sudden grid volt-
age issues. The fuzzy rules are designed using optimization 
techniques and eliminate the standard approach for estimat-
ing the PI controller’s coefficient settings, which involves 
a manual tuning method like trial and error. However, 
depending on the individual’s level of skill, the manual tun-
ing approach can take a longer time than the usual timing 
for a complex system. Due to this reason, the authors have 
implemented the trained ReTSK-SOA and RPFNN-RSO 
controllers for the fast compensation scheme and developed 
the successful comparative study of DC-link voltage with 
the SRF-PI and ZA-LMS-PI conventional control methods. 
The proposed control method is tested on a scaled DVR 
model in the laboratory.

Proposed Ml‑Based Dvr System Description

A 3-phase, 415-VL-L, 50-Hz ML-based DVR system con-
figuration is demonstrated in Fig. 1. The reference load volt-
age is computed by employing ReTSK and RPFNN control. 
The proposed ReTSK and RPFNN-based control algorithm 
is actualized with a three-leg voltage source converter (VSC) 
which is connected at the Point of Interconnection (POI) 
through the interfacing inductors (Lf). The DC-link capacitor 

(Cdc) is used to minimize the DC side ripples and act as 
energy storage during transient conditions. The ripple filter 
is incorporated to block the unwanted harmonics generated 
by the switching of VSC [3]. The proposed RPFNN con-
troller replaces the two PIs which are employed for voltage 
regulation of DC- and AC-link and has a satisfactory per-
formance under any operating conditions.

Control Strategy

Before discussing the proposed control technique in detail, 
the major steps involved to obtain the required IGBT pulses 
like (i) fundamental weight components extraction for direct 
and quadrature axis, (ii) self-adjustment of weight using 
metaheuristic method, (iii) computation of Wd and Wq, (iv) 
the unit vectors estimation and (v) generation of the refer-
ence voltage and switching pulse.

Initially, direct and quadrature unit template (uda, u db and 
udc) and (uqa, uqb and uqc) vectors for the three phases are 
utilized for the fundamental extraction and reference load 
voltage evaluation [3]. The details of ReTSK and the learn-
ing mechanism are described in the later subsections.

Fundamental Estimation using ReTSK Control 
Algorithm [15, 16]

The architecture of the proposed ReTSK is depicted in Fig. 2. 
The proposed scheme is integrated with the kernel FCM 

Fig. 1   DVR system configura-
tion with intelligent control
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(K-FCM) technique for input space partitioning, and it 
increases the convergence capability to yield the global opti-
mal solutions. The ReTSK unit takes the inputs (VsaVsbVsc) 
and the neurodes of second layer works with associated activa-
tion functions which is evaluated by the MFs �i

j
(x) where 

x ∈ (VsaVsbVsc) in a randomized unit (ReTSK), weights and 
biases are randomly selected in a hidden layer. The meta-heu-
ristic optimization methods Seagull is employed for the auto-
tuning of ReTSK coefficients (rules, MFs numbers and shape 
of MFs) which enhances the accuracy of the proposed scheme 
of control in terms of reduced mean square error (MSE). The 
desired output [Wd(t),Wq(t)] for varying inputs (VsaVsbVsc) is 
decided by inference rule base system. The ReTSK produces 
an optimal set of inference fuzzy rules that adjust the assigned 
MFs until the error is reduced to the set value (0.0001) using 
Seagull optimization and the optimal FIS is obtained. The pre-
dicted results are validated with the statistical indices mean 
square error (MSE), root-mean-square error (RMSE), mean 
error (ME), standard deviation (SD) and correlation coefficient 
(R). The steps involved in the ReTSK unit for the fundamental 
weight component are derived as below.

The model output of ReTSK with Nh hidden nodes, N dis-
tinct samples [ xi�(Vsa,Vsb,Vsc,) , target ‘wi’] and activation func-
tion f(x) is calculated as per Eq. (1). The model outcome Zj of 
the linear layer is determined as,

where wi = [wi1,wi2, ...,win]
T  is the weight value link 

between the input nodes and the ith middle layer neurons 
�i = [�i1, �i2, ..., �im]

T  denote the output weighted link 
between middle nodes and linear output node, while 

(1)
n∑
i=1

�ici(xj) =

n∑
i=1

�ic(wixj + bj) = Zj for j = 1,… ., n

threshold of the jth intermediate node is denoted by bj . The 
predictive network approximation capability is high with 
zero error for the assigned problem. This implies the exist-
ence of �i parameters,wi and bi 

n∑
i=1

�ic(wixj + bj) = tj for 

j = 1,..., n, where ‘t’ indicates the targeted weight vector. The 
uncertainties in the proposed network are solved by the ran-
dom selection of weights ( wi ) and bias ( bj ) of the middle 
layer neurons. Then calculate the output matrix H of the 
middle layer. It is defined in Eq. (2).

and the output weight vector �i is determined by solving,

The term H−1 represents the Moore–Penrose gener-
alized inverse of H matrix. This provides the estimated 
least-square response of the afore-said linearized system, 
and the computed solution is observed as unique. The lin-
earized model matrix � is calculated by using (3). The 
randomness is controlled by using the explicit knowledge 
in the premise part of the fuzzy rules of ReTSK. Once the 
antecedent part is selected for the given input variables, 
then the H matrix in (4) can be easily evaluated.

The randomized (ReTSK) architecture and layer struc-
ture are described as follows.

Rule 1 IF Vsab = E1, Vsb = G1 and Vsc = H1, then f1 = m1
Vsa + n1Vsb + k1Vsc + r1.

Rule 2: IF Vsa = E2, Vsb = G2 and Vsc = H2, then f2 = m2
Vsa + n2Vsb + k2Vsc + r2.

where mi, ni, ki and ri indicate the consequent tunable 
parameters, while the premise parameters are indicated by 
Ei, Gi and Hi. Then f1 and f2 represent the function’s output 
of the defined rules.

The individual function output of each neurode is com-
puted as a linearized set of combinations between anteced-
ent variables and the antecedent variables of each rule as 
given in Eq. (5).

The individual outcome of every rule, defined in 
Eq. (6), is multiplied by the standardized activation levels 
of the rules to get the outcome of the model fk.

(2)H� = T

H =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

c(w1 ⋅ x1 + b1 ⋯ c(wN ⋅ x1 + bN )

⋮ ⋱

c(w1 ⋅ xN + b1) ⋮ c(wN ⋅ xN + bN )

⎤

⎥
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⎢
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⎢

⎢
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⎥

⎥

⎥
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⎢

⎢
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⎢
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where Wk is the normalized firing value combination of W1, 
W2 and W3.

Layer 1: Three inputs are assigned to this layer: denoted 
by Vsa, Vsb and Vsc. The output of the node is L1

i
 computed 

as follows.

where the term Ai, Bj, Ck represents the linguistic label and 
is properly characterized by MFs (µ) The crisp input to node 
i is given as (xi, yj, zk)�(Vsa,Vsb,Vsc) . Transforming the input 
variables into the fuzzy rule using selected MFs, i.e., Gauss-
ian function and defined in Eq. (7.b).

where Aij(xj) are antecedent fuzzy sets; mAij and �Aij represent 
the center and width of the jth membership function in the 
ith rule.

Layer 2: AND or product operation is executed in this 
layer for the defined input MFs. The subsequent node, which 
is defined by Eq. (7.c), utilizes the output of the product 
layer as its input weight function (7.c).

where �Ai(x)�Bi(y)�Ci(z) represents the MFs for input vec-
tors (Vsa, Vsb and Vsc).

Layer 3: This layer weights are normalizing the degree of 
the activation level of rules and are evaluated by Eq. (7.d).

where wap and waq denote the normalized outputs of this 
layer. The rule layer’s outputs employ the consequent vari-
ables (mi,ni, ki) and inputs signals 

[
x, y, z

]
∈ [vsa, vsb, vsc] 

from each adaptive neuron. The given rule normalizes the 
computed firing strength.

Layer 4: An output of ReTSK based on predetermined 
if–then fuzzy rules is given as [15],

(6)fk =

∑
Wkfk∑
Wk

, k = 1, 2, 3

(7.a)

L1
i
= �Ai(xi), i = 1, 2

L1
j
= �Bj(yj) j = 1, 2

L1
k
= �Ck(zk) k = 1, 2

⎫⎪⎬⎪⎭

(7.b)

�Aij
(xj) = e

{
−

(
xj − mAij

)2
2�2

Aij

}
(i = 1, 2, ..., n, j = 1, 2, ...,m)

(7.c)L2
i
= wi = �Ai(x)�Bi(y)�Ci(z), i = 1, 2

(7.d)
L3
i
= wd = wap =

wi

w1 + w2 + w3

i = 1, 2, 3

L3
j
= wq = waq =

wj

w1 + w2 + w3

j = 1, 2, 3

The fundamental weight quantity is computed by adding 
the weighted consequences of the relevant rules derived from 
the fourth layer in the total output of the ReTSK model.

The computation of the direct and quadrature weight quan-
tity is done by multiplication of layer outcome with the nor-
malization term. The last layer of the ReTSK implemented for 
extraction of the fundamental weights of direct and quadrature 
( w∗

ad
,w∗

db
,w∗

dc
 ) and ( w∗

aq
,w∗

bq
,w∗

e
 ). Then the averaging of derived 

weight for both the d and q-axis weights is computed as by 
Eq. (8) and (9) [10, 12].

The averaging computed weights from ReTSK control are 
employed to minimize the error rate between the sensed and 
estimated weight value for reference load voltage generation. 
The consequent layer computes the components of d- and 
q-axis by optimizing the cost function J over the selected train-
ing data sample as stated in Eq. (10). The SOA is employed for 
the optimization of the membership function factors (c and σ) 
for supplied input variables. The performance of this algorithm 
is described in Fig. 4 (a) illustrating the internal operation and 
control principle for ReTSK. The average weights obtained 
from the ReTSK controller are further used to generate refer-
ence voltage components.

Design of Proposed ReTSK Using Seagull

The parametric learning of the ReTSK model is based on a 
supervised learning scheme in which the MFs of the premise 
and consequent (nonlinear) parameters are considered as vari-
ables that are to be optimized by using the SOA algorithm. The 
optimal FIS is obtained by considering the mean-squared error 
(MSE) function as a fitness function. The objective of the SOA 
algorithm is to train and minimize the fitness function (MSE) 
at each iteration, and the optimal fuzzy rule is generated. This 
avoids overfitting issues and training errors. The mathematical 
expressions involved in the antecedent and consequent param-
eters tuning based on migrating and attacking behavior of SOA 
are as follows [17–19].

The antecedent and consequent parameters employ the 
learning algorithm error function ( � ) as a fitness function 
defined in Eq. (10).

(7.e)

L41 = wdfi =
wi

w1 + w2 + w3

(

m1Vsa + n1Vsb + k1Vsc + r1
)

L42 = wqfj =
wj

w1 + w2 + w3

(

m2Vsa + n2Vsb + k2Vsc + r2
)

⎫

⎪

⎬

⎪

⎭

(i, j) = 1, 2

(8)Wd = Wpm,avg =
w∗

ad
+ w∗

db
+ w∗

dc

3

(9)Wq = Wqm,avg =
w∗
aq
+ w∗

bq
+ w∗

cq

3
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where N = sample data, z(k) is the expected output and 
ẑ(k) = L4 is the actual response of the model.

Voltage Regulation Based on Integration 
of RPFNN and RSO

This section elucidates the voltage regulation control tech-
nique. In this control, the input to the RPFNN is the errors 
between the actual and sensed DC-link voltage. This error 
(E) signal is processed through the RPFNN proposed con-
troller. The input to the RPFNN is reduced by employing the 
RSO algorithm which updates the weight vector and obtains 
the targeted response of the predictive controller (Wap,Wrq).

The detailed control structure for the voltage regulation 
based on RPFNN is depicted in Fig. 4 (b). The key objective 
of RSO is to minimize the steady-state error and all the per-
formance indices such as overshoot, settle time and steady-
state error for smooth the DC-link voltage regulation. The 
detailed structure, convergence analysis and online learning 
mechanism of the recommended RPFNN-RSO are explained 
in the subsequent sub-sections.

RPFNN Model Description and Weight Updating Using 
RSO

The design of an RPFNN control involves the error minimi-
zation by weight updating between the connected links in the 
RPFNN architecture and performed training over a selected 
sample data. The cost function is defined as,

(1) Input Layer: This layer nodes are illustrated as,

where N stands for the Nth iteration, xa is the ath input to 
the layer input, E1(N) denotes the error of DC-link voltage 
(E), E2(N) indicates the derivative of Ė which is error of 
DC-link voltage.

(10)�(k) =
1

N

N∑
i=1

(z(k) − ẑ(k))2 =
1

N

N∑
i=1

(z(k) − L4(k))
2

(11.a)Ed(k) = VDC,ref − VDC,act

(11.b)Eq(k) = Vt,ref − Vt,act

(12)

MSE =
1

R

R∑
N=1

(
w

ap,actual
− wap,estimated

)2

; R is the sample data length.

(13.a)neta (N) = Ea

(13.b)xa(N) = fa(neta(N) = neta(N) a = 1, 2

(2) Membership Layer: The asymmetrical Gaussian func-
tion is employed in layer 2 for the implementation of the 
fuzzification operation and optimized rules. The relations 
of each node are expressed as,

where netd and �d(N) indicate the layer 2 input and the 
output, �ld and �rd are the left- and right-side standard devia-
tions (SD) in the dth term for the ath input variable of Gauss-
ian asymmetric function; md denotes the mean value of the 
dth term of the ath input variable.

(3) Probabilistic Layer: Here a generalized form of Gauss-
ian function is implemented and is expressed as,

where mg represents the mean; �g denotes the normalized 
deviation and the output of layer 3 is Pg(N).

(4) Rule Layer: In this layer AND operation is performed 
according to Eq. (16.a), to obtain the Mamdani inference. 
The Bayes’ theorem is employed for probabilistic informa-
tion by considering the group of fuzzy grades as independent 
variables are illustrated in Eq. (16.b). The recurrent fuzzy 
characteristic is the internal feedback path. Therefore, the 
current values of each node are influenced by its later node 
value as depicted in (19.c), and the feedback structure stores 
the previous values. The expressions of a node are defined 
as follows [15]. Equation 17.a and 17.b is shown the value 
of net

L
(N) and �O

L
(N) respectively.

where �H
L

 and PH
L

 represent the inputs of 4th layer,wRL is 
a recurrent feature; wKL is the weighted connection link 

(14)netd(N) =

⎧
⎪⎪⎨⎪⎪⎩

netld(N) = −
(xa − md)

2

(𝜎ld)
2

,−∞ < xa ≤ md

netrd(N) = −
(xa − md)

2

(𝜎rd)
2

,md < xa ≤ ∞

�d(N) = fa(netd(N)) = exp(netd(N)) d = 1, 2..., 6

(15)netg = −

(
�d − mg

)2
(
�g
)2

Pg(N) = fg(netg(N) = exp(netg(n)) g = 1, 2, ..., 18

(16.a)�H
L
(N) =

∏
J

wJL�J

(16.b)PH
L
(H) =

∏
K

wKL�J

(17.a)netL(N) = �H
L
PH
L
wRL�

O
L
(N − 1)

(17.b)�O
L
(N) = fL(netL(N)) = netL(N), L = 1, 2, 3.., 9
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between the 3rd and 4th layer,wJL is the link weighted value 
between the 2nd and 4th layer,�O

L
(N) is rule layer output.

(5) Output Layer: This input and output of the node in this 
layer are expressed as follows:

where wL is the connection weight link between the 4th and 
5th layer;�o

L
 is the input feed to this layer.�o(N) is RPFNN-

RSO output for voltage regulation. The model is completely 
trained to estimate the reference signal. Controller output 
Wap and Wrq along with unit vector are implemented to esti-
mate the reference load voltage, and this helps in gating 
pulse evaluation.

Overview of Rat Swarm Optimization

The new member of optimization is proposed, namely, Rat 
Swarm Optimizer (RSO), which is inspired by swarm intelli-
gence. It follows the concept of chasing and hunting behaviors 
of rats [30]. The best-fitted RPFNN is achieved by optimiz-
ing the weights and bias vector at each trial by updating the 
search candidate position, and it leads to cost minimization. 
The description of RSO optimizer and steps for optimizing 
the input neurons, weight and bias vector is described in Ref. 
[31] to achieve the objective function (MSE). The parameters 
employed in RSO for optimal setting are search agents 50, 
number of generations 1500, control parameter (R) = [1, 5] and 
constant parameter C = [0, 2]. The goodness of each obtained 
solution is examined by using MSE criteria.

Stability and Convergence Analysis

The performance of the proposed method is examined by 
convergence analysis and stability. The outcome of the 
DC-link voltage is assessed by the fast convergence capa-
bility, stability and reference tracking ability. The gradient 
descent technique is widely employed for identification 
applications, but it has some drawbacks such as a very 
slow convergence rate; therefore, advanced algorithm RSO 
is proposed which has fast computation and convergence 
to zero (MSE). This avoids local entrapment and reduces 
the voltage deviation. The stability of the developed 

(18.a)neto(N) =

T∑
L=1

wL�
o

L
; T represents the rule number

(18.b)�o(N) = fo(neto(N)) = neto(N), o = 1

algorithm is confirmed by Lyapunov’s theory. The error 
Ed(k) between Vdc and V∗

dc
 is fed to the RPFN controller 

[17, 18].

The model output error Z(k) is represented expressed as

where �k =
(
1 +

�2(k−1)

�2(k)

)
 and � presents the error estimator. 

The Lyapunov stability conditions criteria are defined as 
follows,

ΔZ(k) is computed as,

where Wap,estimated = WTX(k) . Moreover,X(k) is the input 
quantity and WT stands for the weight vector.

According to Eq. (21.f), the tracking error can converge 
to zero; hence, the stability condition is satisfied.

Evaluation Criteria for Model Performance

The model validation of the proposed forecasted model 
meets the requirements in terms of mean square error 
(MSE), root-mean-square error (RMSE), scatter index 
(SI), mean absolute error (MAE), mean absolute percent-
age error (MAPE), and correlation (R). The correspond-
ing fitness indices are represented in Table 1. The error 
indices like MSE, RMSE, SI, MAE and MAPE value are 
closer to ‘0’ which exhibits a greater accuracy of the pre-
dictive model. R close to ‘1’ also shows a better learning 
accuracy to achieve the desired model output [18]. The 
ReTSK-SOA-based fuzzy and RPFNN-RSO optimization 
technique stops its learning when the minimal error ter-
mination criteria are attained.

(19.a)Ed(k) = VDC,ref − VDC,act

(19.b)Z(k) = �2
out
(k) + �2

out
(k − 1)

(19.c)Z(k) = �k�2(k)

(20.a)
{

Z(k) > 0

Z(k) − Z(k − 1) = ΔZ(k) < 0

(20.b)ΔZ(k) = �k[Wap,actualWap,estimated]
2 − �k�

2(k − 1)

(21)ΔZ(k) = −𝜆k𝜉
2(k − 1) < 0

Table 1   Accuracy evaluation 
of proposed randomized 
evolving TSK using SOA

Data pairs Proposed ReTSK model MSE RMSE ME SD R

Train ReTSK-SOA 3.6885 1.9206 1.2426 1.4644 0.99992
Test 3.5902 1.8948 1.2214 1.4887 0.99993
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Compensation Strategy of DVR Based on Proposed 
Hybrid ReTSK and RPFNN Controllers

The fundamental weight extraction along with the unit 

weight vector generates the reference quantity of load 
voltage. The ReTSK and RPFNN are implemented for 
tracking the unit vector templates that reduces the error 
of the system voltage using SOA and RSO. The actual 
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implementation of complete control strategy is shown in 
Fig. 3 (a-b) and Fig. 4.

The reference active and reactive weight component used 
for estimation of load reference voltage are calculated as 
below formulations.

The active power reference weight quantity is evaluated 
by subtracting output of DC bus (Wap) from the average reac-
tive power weight value 

(
W

pm
avg

)
 as,

The computation of reactive power weight reference com-
ponent is expressed as, W ref

q
= Wrq +W

qm
avg (22.b).

The input vector of in phase is given to the first layer 
of the ReTSK unit, and the weighted sum ‘w’ of supply 
voltage and input [Vsa,Vsb,Vsc] is processed over the Gauss-
ian MFs to obtain the consequent layer outcome. A similar 
mechanism is incorporated for the layer output of quadrature 
axis. A similar mathematical computation is applied for all 
phases a, b and c. The load reference voltage is computed 
by Eq. (23).

where V∗
pa

= W
ref
p × udabc and V∗

qa
= W

ref
q × uqabc . The utility 

voltage profile difference between set value and sensed load 
voltage is maintained to the required three-phase reference 
voltage magnitude. Thus, the estimation of three-phase refer-
ence load voltage computation is illustrated by the developed 
ReTSK controller shown in Eq. (23) along with Eq. 22 (a-b). 
The respective sensed signals of phase voltages are com-
pared with a reference value and evaluate the error signal 
which is processed through the PWM to generate the gating 
pulses for VSC.

Simulation Results and Discussion

The performance behavior of the three-phase DVR and con-
troller performance is verified by using MATLAB platform. 
The effectiveness and validity of the proposed adaptive con-
trollers based on ReTSK and RPFNN are evaluated at dif-
ferent operating points. The DVR simulation performance 
includes the estimation of fundamental and reference signal 
generation. The whole system is simulated for a sample time 
(ts) equal to 20 µs, and the system calls the fuzzy neural and 
NN routine whenever necessary in the operation of DVR. 
The system parameters required for the design of DVR are 
mentioned in Appendix A.

Performance Evaluation of Developed Predictive Model 
based on ReTSK‑SOA

The prediction of the recommended control is gauged by 
employing evaluation criteria illustrated in Table 1. The 

(22.a)W ref
p

= Wap −Wpm
avg

(23)V∗

Labc
= V∗

pabc
+ V∗

qabc

model validation is done with observed data and confirms 
that the proposed ReTSK unit enhances the voltage response 
of the DVR. The convergence performance of system output 
is demonstrated in Fig. 5. At 100th generation the model best 
validation of training performance is observed with a MSE 
value of 3.6885 and RMSE 1.9206 and testing value MSE 
is 3.5902 which ensures the greater accuracy as illustrated 
in Fig. 6 (a) and (b).

The best predictive ReTSK unit is achieved at 
R = 0.99992 for training phase and 0.99993 at the test-
ing state by adaptively adjusting the weight adopting the 
error values that converge to zero with smaller variations in 
behavior throughout train and test state. So, the intelligent 
compensating scheme has reached the reference response in 
a less run time and this confirms the stable response of the 
developed system.

Response of RPFNN using RSO for Voltage Regulation

The RPFFN-RSO is employed for the approximation of volt-
age deviation from the set value and regulates the overall 
DC-link voltage (VDC ) and terminal voltage ( Vt ) to achieve 
the closer reference value using required neurons, interlinked 
weights and selected activation function to minimize the val-
ues of errors. The best validation response of training is 
achieved at 1000 epoch with MSE as function is 2e-05 and 
RMSE 0.00447 for DC-link, while AC-link voltage perfor-
mance MSE = 0.0035194 and RMSE = 0.0059. Figure 7 (a) 
demonstrates that the RSO algorithm performs better than 
other competitive candidates and improves the voltage regu-
lation to minimize the voltage error.

The input-error cross-correlation function shown in 
Fig. 7 (b) illustrates the errors correlation mechanism with 
the selected input sequence x(t). For perfectly predictive 
models, all the values for the correlations should be zero. 
The RPFFN accuracy is predicted by using RSO, and the 
error metrics were calibrated by incorporating the 15% of the 

Fig. 5   Convergence plot for ReTSK using SOA
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Fig.6   a Optimal results for train data at error 3.6885. b Optimal results for test data at error mean 3.5902

Fig. 7   Nature for DC-link profile a performance comparison curve MSE as function, b cross-correlation plot input versus error, c actual and 
predicted error response, d regression coefficients of DC-link
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entire data which gives a better performance for the defined 
statistical metrics. The tracking of predicted and actual value 
voltage error is depicted in Fig. 7 (c), and the strength of cor-
relation between the forecasted and sensed data using RSO 
is shown in Fig. 7 (d). Figure 8 (a-d) shows the performance 
characteristics for AC-link voltage regulation. The compara-
tive performance details of DC- and AC-link voltage using 
statistical indices are illustrated in Table 2. Therefore, it can 
be inferred from the tabular result that the integration of 
RPFNN with the RSO method can enhance the training and 
generalization capability of RPFNN. This improves the over-
all DVR performance.

Compensation of External Disturbances using 
ReTSK‑SOA and RPFNN‑RSO‑based DVR

The developed ReTSK-SOA and RPFNN-RSO control sig-
nificantly enhances the DVR performance by the elimination 
of all the voltage disturbances incorporated in the grid volt-
age, as it has a fast response to the dynamics and estimation 

of the reference set value. The intelligent control algorithm 
response for DVR is observed as follows.

Dynamic Response using Integrated ReTSK‑SOA 
and RPFNN‑RSO Control Scheme

The ReTSK-SOA and RPFNN-RSO outcome has been 
determined for the 410 V supply voltage. The external volt-
age disturbances like voltage dip from 0.5 to 0.55 s, swell 
case from 0.6 to 0.65 s, distortion from 0.7 to 0.83 s and 
imbalance from 0.68 to 0.73 s are generated by different load 
adjustments. The wave shapes of the three-phase source volt-
ages (Vsabc) , load voltage(VLabc) , compensating voltages ( Vca

,Vcb , andVcc ), currents of load ( iLabc),the DC-link voltage (
Vdc

)
 , AC-link voltage (Vt) and reference load voltage V∗

Labc
 

are depicted in Fig. 9 [from top to bottom]. This provides 
that the integrated control mechanism of DVR with adap-
tive neural weights can eliminate the voltage imperfections 
and maintain the load voltage at the consumers. Figure 10 

Fig. 8   Nature of AC-link profile a performance comparison curve MSE as function, b correlation plot input versus error, c actual and predicted 
error response, d regression coefficients of AC-link
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illustrates the fast-compensating capability of 0.002 s during 
the swell event of grid voltage.

ReTSK‑SOA and RPFNN‑RSO Steady Response

The effectiveness intelligent DVR system is illustrated by 
the THD spectrum of phase ‘a’ before and after removal is 
portrayed in Fig. 11 (a) and (b). The target response for the 

proposed method is a 2% tolerance band. The Settle time 
(Ts1) of RPFNN is 0.15 s as compared to the ZA-LMS-PI 
and classical SRF-PI controller with a Settle time (Ts2) of 
0.2 s and 0.35 s, respectively, as shown in Fig. 12. The other 
PQ indicator for performance evaluation of RPFNN control 
is Rise time (Tr), Overshoot (Os%), undershoot (Us%) and 
Recovery Time of 0.08 s, 3.3%, 3.3% and 0.42 s, respec-
tively, mentioned in Table 5. The sag compensation time 

Table 2   Comparative accuracy evaluation of RPFNN using different algorithms

Proposed optimized model Type of voltage MSE RMSE SI MAE MAPE R

Normal neural model DC-Link 4.4053 2.0989 2.0338e-04 178.6893 170.3744 0.45782
Optimized RPFNN–MFO neural model 0.041 0.0643 6.2319e-06 5.6054 9.7845 0.99794
Optimized RPFNN–SHO neural model 0.0030 0.0549 5.3208e-06 4.6796 10.7063 099917
Optimized RPFNN–HHO neural model 0.0013 0.0358 3.4686e-06 3.1804 4.2174 0.99936
Optimized RPFNN–RSO neural model 2.1818e-05 0.0047 4.5262e-07 0.3872 1.1216 0.99998
Normal neural model AC-Link 14.2206 3.7710 2.9881e-06 3392.54 111.69 0.54287
Optimized RPFNN–MFO neural model 0.0070 0.0839 6.6518e-08 51.3973 7.0278 0.99647
Optimized RPFNN –SHO neural model 0.0046 0.0676 5.3567e-08 62.2585 51.2772 0.999
Optimized RPFNN –HHO neural model 0.0015 0.0392 3.1080e-08 26.3599 7.7759 0.99923
Optimized RPFNN-RSO neural model 0.0035194 0.0059 4.7008e-9 5.8648 4.6974 0.99998

Fig. 9   Overall DVR response 
based on integrated ReTSK-
SOA and RPFNN-RSO control 
algorithm
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taken is 0.002 s. This confirms the efficacy of the proposed 
control algorithm for the voltage quality compensation. 
Therefore, the amount of THD in the output voltage is 
limited with the proposed RPFNN-RSO controller, and a 
comparative analysis with other competitors is mentioned 
in Table 3.

Performance Estimation of DC‑Link Capacitor Voltage 
using RPFNNF‑RSO

The main aim is to regulate the DC-link voltage (Vdc) at the 
reference set of 300 V, as the controller RFNN-RSO is con-
stantly tracking and controlling the voltage deviation. The 
Gaussian MFs are employed for the DC voltage control, and 
the significant insight of the recommended controller is sought 
in terms of settle time, rise time, overshoot, undershoot and 
recovery time which provides the precise output at transitory 
state compared to classical SRF-PI and advanced method like 
ZA-LMS-PI [3, 13, 20]. Table 4 represents the comparative 
analysis of different controllers employed in DC-link voltage 

regulation and proclaims the effectiveness of the proposed tun-
ing method.

Figure 13 shows the estimation of mean weight for active 
load quantity under a voltage swell state with different adap-
tive controllers and compared with the proposed ReTSK-
SOA. It is revealed that the weight oscillations are low in the 
ReTSK-SOA as compared to the standard classical ZA-LMS-
PI and SRF-PI methods [3] [13]. This ensures better accuracy 
and fast weight convergence is obtained in case of proposed 
ReTSK-SOA control. Also, the proposed adaptive ReTSK-
SOA method enhances the weight converging features toward 
stability under unbalanced scenarios due to its self-learning 
capability and adaptive nature which minimizes the magnitude 
of oscillations and it leads to lesser time to stabilize under grid 
voltage disturbances.

Fig. 10   DVR compensation 
time behavior during the voltage 
swell

Fig. 11   a Source voltage THD 
and b load voltage THD with 
proposed ReTSK-SOA learning 
control scheme
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Hardware Experimental Results

The performance response of the recommended system is 
analyzed using the test measurement results with an experi-
mental setup illustrated in Figs. 14, 15, 16, 17 and 18. The 
developed prototype is tested under different operating states 
to record the responses with a single phase-based PQ ana-
lyzer (Fluke 43B) in both situations i.e., steady and dynamic 
states. The dynamic state outcomes are captured by DSO. 
Appendix B lists the experimental parameters of the devel-
oped system.

Experimental Waveform of Intermediate Control 
Signals

The integrated ReTSK and RPFNN-based controlling sig-
nals are illustrated in Fig. 15. The demonstration for the 
reference load voltage under voltage disruption in the grid 
voltage of phase ‘a’ is illustrated in Fig. 15 (a-e). Figure 15 
(a) includes the other phase ‘a’ quantity signals like source 
voltage (vsa), in-phase unit weight vector (upa) and quad-
rature quantity (uqa), and load current (iLa) required for 
computing the average fundamental weight quantity. Fig-
ure 15 (b) represents the average active quantity of funda-
mental weight 

(
W

pm
avg

)
 along with the maintained sensed DC 

voltage (VDC,act) in respect of reference value 70 V, and 
DC voltage (Wap) represents the outcome response of 
RPFNN which is employed to yield a total weight quantity (
W ref

p

)
 of active side. Figure 15 (c) represents the average 

reactive quantity of fundamental weight 
(
W

qm
avg

)
  along with 

the maintained sensed AC-voltage (Vt,act), and DC voltage 
(Wrq) represents the outcome response of RPFNN which 
is employed to compute a total weight quantity 

(
W ref

q

)
 of 

reactive side. Figure 15 (d) demonstrates the tracking of 

Fig. 12   Voltage response 
of DC-link using proposed 
RPFNN-RSO-based DVR

Table 3   Comparison values of THD with different controllers

Voltage 
parameters

SRF-PI 
control (%) 
[15]

ANN-
ANFIS 
LMBP con-
trol strategy 
(%) [15]

NNT-ML 
and ANFIS 
PSO control 
strategy (%) 
[15]

Proposed 
ReTSK-SOA 
and RPFNN-
RSO (%)

Supply 
voltage

25.22 24.76 25.21 12.1

Load volt-
age

4.92 4.88 3.27 2.39

Table 4   Comparative 
performance characteristics 
evaluation of controllers

T performance criteria
Controllers Settle time 

(Ts) sec
Rise time (Tr) sec Overshoot 

(Os) (%)
Undershoot 
(Us) (%)

Recovery 
time (Sec)

RPFNN-RSO 0.15 0.08 3.3 3.3 0.42
ZA-LMS-PI [13] 0.2 0.1 10 6.66 0.53
SRF-PI [3, 13, 20] 0.35 0.142 18.33 23.33 0.58
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reference load voltage 
(
v∗
La

)
 with actual load voltage (vLa) 

along with load current (iLa) event at distortion in grid 
voltage (vsa). The pulses for IGBT are computed by com-
paring the sensed and reference load voltage even under 
dynamical state.

Dynamic Situation Response with Proposed Control 
Strategy

The control approach response is demonstrated by voltage 
power quality perturbation in the supply side voltage and 
information’s obtained after compensation. Figure 16 (a) 
gives all the information from power quality sag in sup-
ply voltage (vsa), to compensating load voltage (vLa) along 

with injected voltage (vinja). The effectiveness of the com-
pensating is actualized with a dc link voltage (vdc) under 
the dynamical situations shown in Fig. 16 (a).

Figure 16a and b depicts the compensating effect of sag 
voltage with the injection voltage (vinja), dc-link voltage 
(vdc) and compensated load voltage (vLa). This reveals the 
DVR compensating strength with the recommended control-
ling algorithm. The DSO half of the screen is employed for 
capturing the disturbances i.e., sag/swell, and the next half 
screen reflects the compensated signals. The distortion in 
supply voltage (vsa) and its compensation are realized with 
injected voltage (vinja) and compensated load voltage (vLa) 
and load current (iLa) as demonstrated in Fig. 16 (c). The 
waveform in Fig. 16 (d) represents the compensating effect 
of the recommended control method with maintained volt-
age (Vdc) of dc-link and maintained terminal voltage (Vt). 
The variation is observed in the dc-link voltage due to sud-
den supply side variations in voltage. Figure 16 (e) reveals 
the unbalanced-on supply side voltage (vsa) and is analyzed 
together with the dc-link voltage (Vdc) and compensating 
load voltage (vLa). The next sub-plot (f) provides the com-
pensation realization with maintained dc-link voltage (Vdc), 
terminal voltage amplitude (Vt) and load current (iLa). The 
complete experimental setup is examined under steady and 
dynamic conditions.

Performance Evaluation under Steady‑State Scenario

The performance behavior is shown in Fig. 17 (a-h) with an 
event of sag on supply side and compensated load voltage. The 
obtained harmonic results confirm the THD is within IEEE 
benchmark. Figure 18 (a) illustrates the distorted waveform of 
phase ‘a’ introduced in the supply side voltage with load side 
line current, while the THD is analysis is carried out in Fig. 18 

Fig. 13   Average mean active weight component comparison with 
ReTSK-SOA and RPFNN-RSO

Fig. 14   Experimental DVR 
setup
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(a) and (b) which depicts the distorted voltage RMS value of 
101.2 V with a THD of 10.5%, respectively. The load side 
compensating effect is analyzed in Fig. 18 (d) and (e) with an 
RMS load voltage value of 108.2 V and THD of 4.9%, respec-
tively. Table 5 represents the summarized statistical value for 
other phases and shows satisfactory results.

Conclusion

The proposed hybrid machine learning-based control 
scheme is employed for DVR under different voltage 

power quality scenarios. The adaptive direct and quad-
rature components of the fundamental weight compo-
nents are extracted by using the proposed ReTSK-SOA 
control. The proposed ReTSK-SOA and RPFNN-RSO-
based prediction model confirms an optimal performance 
and its optimized results during the training phase are 
verified from error metrics. The evaluated error metrics 
for the ReTSK-SOA model during the training phase 
are (MSE = 3.6885, RMSE = 1.9206, ME = 1.2426, 
SD = 1.4644 and R = 0.99992), and testing phase error 
indices are (MSE = 3.5902, RMSE = 1.8948, ME = 1.2214, 
SD = 1.4887 and R = 0.99993), respectively, confirming 

Fig. 15   Internal signals of ReTSK with RPFNN-based controlling signals for phase ‘a’ under distortion event avsa, upa, uqa and iLa b Wavg
pm  , 

VDC,act, Wpa and W ref
p

 c Wavg
qm  , Vt,act, Wrq and W ref

q
d vsa,v∗La,vLa,and iLa evsa,v∗La,vLa and Gating Pulses 
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the considerable improvement in dynamic response. The 
evaluated error metrics for the RPFNN model trained by 
RSO to maintain DC-link voltages are (MSE = 2e-05, 
RMSE = 0.00447, SI = 4.5262e-07, MAE = 0.3872, 
MAPE = 1.1216 and R = 0.99998), and this confirms the 
improved response time during transitory state compared 
conventional SRF-PI and ZA-LMS-PI. The simulated 
results confirm that the proposed intelligent controller 
outperforms the other in terms of convergence of weight, 
harmonic compensation and compensation time. The time 

required to achieve the system stability for the RPFNN 
method is comparatively less than that of the classical 
SRF-PI control. The stability of the system is ensured by 
applying the Lyapunov stability theorem and observing 
that the proposed controller stabilizes the performance. It 
is also observed that the voltage harmonic level is below 
5% which satisfies the IEEE benchmark. Experimental 
results validations are observed satisfactory under both 
the steady state and dynamical condition.

Fig. 16   Dynamic response under voltage sag, distortion and unbalance: a sag with vsa, vinja, vLa, iLa, b sag with vsa, vdc, vLa, iLa, c distortion with 
vsa, vinja, vLa, iLa, d distortion with vsa, Vdc,Vt, iLa, e unbalance with vsa, vdc,vLa, iLa and f unbalance with vsa, Vdc,Vt, iLa
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Fig. 17   Steady-state response under sag: (a)–(c) supply side (vsa), (vsb), (vsc) with source current (isa), (isb), (isc), (d)–(f) load side voltage (vLa), 
(vLb), (vLc) with load current (iLa), (iLb), (iLc)(g) THD of (vLa), (h) injected voltage (vinja)

Fig. 18   Steady-state response under distortion of phase “a” supply a supply side voltage (vsa), load current (iLa), b THD of vsa, c injected 
voltage(vinja), d load voltage (vLa) after compensation, e THD of vLa, f THD of iLa
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Appendix A

Simulation System Parameters

Supply mains: 410  V(L-L), 50  Hz; grid impedance (Rs 
and Ls) = 0.01 Ω, 2mH, respectively; load current 
(iL) = 21A; filter: Rf = 6 Ω, Cf = 10 μF; interface inductor 
Lf = 1.3mH; dc bus capacitor Cdc = 3300 μF; dc bus volt-
age Vdc = 300 V; AC bus voltage (Vt) = 335 V; load:18kVA 
(0.8 p.f. lag.), sample time (ts) = 20 µs.

ReTSK-SOA Data: Parameters considered for simula-
tion are total epochs (1000), type/number of MFs (Gauss-
ian), and learning method (SOA). The parameters of the 
proposed model after training with SOA are given as the 
number of neurodes = 126, linear and nonlinear variables 
are 60 and 90, respectively, the total variables = 150, train-
ing data pairs = 63,751 and fuzzy rules = 15. The K-FCM 
is utilized for data clustering in this method as it requires 
less parameters to find the optimal global solution for vari-
ous inputs.

Appendix B

Experimental Parameters

Polluted supply voltage: 110 VL-L, 50 Hz; 0.353 kVA load; 
2 A load current (iL); DVR interface two winding trans-
former: 4 kVA, 125/125 V; dc bus voltage (Vdc) = 60 V; 
capacitor at dc bus (Cdc) = 4700 μF; and interfacing induc-
tor (Lf) = 0.5mH; switching ripple filtering elements: Rf = 10 
Ω and Cf = 120μF.
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