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Abstract Load redistribution (LR) attacks in power sys-
tems can cause significant damage to the power grids, which 
leads to blackouts and other disastrous consequences. The 
paper aims to detect LR attacks using entropy-based fea-
tures, even with limited information, to provide a practical 
solution. The paper presents an entropy-based method for 
LR attack detection, which is superior to traditional meth-
ods in identifying abnormal system behavior. The proposed 
method uses entropy to extract features that can differenti-
ate normal and abnormal system behavior. The probability 
density function (PDF) of LR attacks is used to calculate the 
entropy of the system, which can then be used as a feature 
for detection. The paper concludes that the entropy-based 
approach offers a practical and effective solution for detect-
ing LR attacks, even with limited information. The proposed 
method is a model-based free approach, making it highly 
desirable for practical applications. The results obtained on 
the IEEE 14-bus system show that the suggested method is 
accurate and can be used to protect power grids from LR 
attacks.

Keywords False data injection attacks · Load 
redistribution attacks · Detection algorithm · Power 
systems · Cyber security

Introduction

The integration of digital technologies into physical power 
systems has given rise to cyber–physical systems (CPSs), 
transforming the power industry by enhancing performance, 
reliability, and efficiency. Yet, this digital integration has 
also exposed power systems to cybersecurity risks, mak-
ing CPS security a paramount concern for operators [1]. 
Among the myriad of threats facing CPSs, false data injec-
tion attacks (FDIAs) are particularly perilous. FDIAs are 
executed by malicious actors who infiltrate the control net-
work, manipulating sensor data to mislead control devices 
and potentially wreak havoc on the power grid [2, 3]. These 
attacks are challenging to detect because they are designed 
to mimic normal system behavior. Recent research, how-
ever, suggests that entropy-based techniques can effectively 
identify FDIAs by analyzing the probability distributions of 
system variables [4].

Load redistribution (LR) attacks represent a significant 
type of FDIA in power systems. In LR attacks, perpetrators 
manipulate system measurements, creating a false perception 
of the system’s state at the control center. This can lead to 
the redirection of power flows, overloading components, and 
causing cascading failures, ultimately resulting in blackouts 
[5, 6]. These attacks, whether launched by external adver-
saries or insiders with malicious intent, pose a considerable 
threat to power system operators. Several incidents in recent 
years, such as the 2015 Ukrainian power grid cyber-attack 
and the 2017 South African power grid incident, underscore 
the need for improved detection methods [7, 8, 9].

To address this growing threat, researchers have pro-
posed various LR attack detection methods. These methods 
encompass game theory-based defense strategies, the use of 
Kalman filters, Euclidean distance metrics, index-based load 
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deviation detection, defense strategies based on information 
leakage, and machine learning-based detection [10–14].

However, research in this field still faces certain gaps. 
Firstly, most existing LR attack detection methods rely 
on model-based approaches, necessitating precise system 
parameter knowledge and topological information. These 
requirements may not align with real-world scenarios where 
data is limited or inaccurate. Thus, there’s a need for model-
free approaches capable of detecting LR attacks with lim-
ited information. Additionally, many current methods are 
grounded in offline analysis of historical data, which doesn’t 
facilitate real-time monitoring of the power grid. Developing 
real-time LR attack detection methods that offer timely alerts 
and proactive responses is essential. Furthermore, current 
methods often undergo evaluation on small-scale power sys-
tems, potentially failing to account for the challenges posed 
by larger power grids. Therefore, there’s a need to assess the 
scalability of these methods on larger systems.

This paper contributes a novel method for LR attack 
detection based on entropy, bolstering power grid security. 
This method is model-free and adept at identifying abnor-
mal system behavior, making it practical for detecting LR 
attacks, even with limited information. Experimental results 
on the IEEE 14-bus system illustrate the effectiveness of this 
approach in safeguarding power grids against LR attacks. 
It can serve as an additional security layer in power sys-
tems, helping to avert blackouts and other catastrophic 
consequences.

The structure of this paper is as follows: Section 2 offers 
an overview of LR attacks. Section 3 details the proposed 
LR attack detection method, including the modified entropy 
function and feature extraction. Section 4 presents experi-
mental findings, comparing the proposed method with tra-
ditional approaches on the IEEE 14-bus system. Finally, 
Sect. 5 concludes the paper and outlines future research 
directions.

Basic Structure of Load Redistribution Attacks

In this section, an overview of LR attack principles and their 
impact on the power flow of lines is presented. In the fol-
lowing, the attack model leads to cascading failures based 
on LR attacks is proposed.

Principle of Load Redistribution Attack

LR attacks are a type of attack within the broader category 
of false data injection attacks (FDIA). In FDIA attacks, the 
attacker manipulates measurements by injecting false data 
into the system, which can affect the system’s response. LR 
attacks specifically aim to manipulate load and power flow 
measurements to cause the power flow of transmission lines 

to deviate from their actual values. This can result in sig-
nificant changes to the power system, such as overloading 
transmission lines, causing voltage instability, and even lead-
ing to cascading failures. Therefore, LR attacks pose a severe 
threat to the security and reliability of power systems. This 
is highlighted in [15]. However, it should be noted that cer-
tain assumptions are made during the design of FDI attacks. 
These assumptions include the attacker having access to 
system information and the ability to manipulate measure-
ments by injecting false data. These assumptions are based 
on previous research in the field [11, 16, 17].

An important feature of FDI attacks is that they must run 
secretly. In fact, the bad data detection (BDD) of the state 
estimation system should not be able to detect the attacks. 
The action mechanism of BDD is based on calculating the 
2-norm of the measurement’s residual. The BDD checks the 
residual value; if the residual value exceeds the predefined 
threshold, the BDD will alarm it as anomalies [18]. As dis-
cussed in [16], an LR attack can be executed by the attacker 
in a manner that does not surpass the residual threshold, 
which can evade detection by the BDD system.

In actual power systems, the SCED process relies on 
load data measurements in real time or from past records 
as inputs [19]. In contrast to the BDD system, the aim of an 
LR attack is to alter measurements in a way that disturbs the 
STFL results, causing SCED and the overall power system 
solution to use inaccurate data.

The process of determining the state variables of an elec-
trical power system is known as DC estimation. This method 
involves utilizing measurements such as bus injection pow-
ers and line power flows, while the phase angle of the bus 
is considered a state variable. DC power flow serves as the 
basis for this approach.

Rewrite the (1) and (2):

It is not practical or feasible to attack generator output 
measurements (∆G’ = 0) because the control center has 
direct communication with the control rooms of the power 
plants. This direct communication ensures the generator 
output measurements are accurate and reliable, leaving no 
room for manipulation or interference. As a result, attack-
ers cannot alter the generator output measurements without 
being detected by the control center. Therefore, the security 
of generator output measurements is crucial in ensuring the 

(1)F = Sf ∗ Pinj

(2)Pinj = U ∗ G� − V ∗ D

(3)F = Sf ∗ U ∗ G
�

− Sf ∗ V ∗ D

(4)ΔF = Sf ∗ U ∗ ΔG
�

− Sf ∗ V ∗ ΔD
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stability and reliability of power systems. This manipula-
tion of line flow measurements impacts the load estimation 
output, which in turn results in a falsified generation dis-
patch, leading the system to operate in an inefficient mode. 
It is important to note that the SCED depends on the load 
estimation output as its input, making it vulnerable to these 
kinds of attacks [16].

Assuming the attacker has access to the measurements 
being transferred to the SCADA system, they can change 
the measurements according to their purpose (overflow in a 
target line). For this purpose, we use the LR attack algorithm 
shown in Fig. 1. This study proposes a two-level optimiza-
tion problem algorithm to address LR attacks. In the first 
stage, the attacker is given information on how to modify 
the load to increase the power flow of a specific line in a 
certain direction. After the first stage, the DC optimal power 
flow (DCOPF) is formulated in the second stage, and the 
system’s response to the output of the first stage is assessed. 
If the response is satisfactory, the output of the first stage is 
considered the final output of the problem. In other words, 
if the system’s response to the output of the first stage meets 
the specified criteria, there is no need for further optimiza-
tion, and the first-stage output is deemed sufficient as the 
final output. However, if the response is unsatisfactory, the 
DCOPF problem is formulated to optimize the power flow 
while considering the transmission network’s DC charac-
teristics. This two-stage process is commonly used in power 

system optimization to balance the need for efficient compu-
tation and satisfactory results.

Proposed Mechanism

Load redistribution (LR) attacks are one of the most serious 
threats to the secure as well as stable operation of power 
systems. LR attacks can cause important damage to the 
system by redistributing loads in such a way that the sys-
tem becomes unbalanced, leading to cascading failures and 
blackouts. Therefore, it is essential to study LR attacks and 
develop effective defense mechanisms. In this section, we 
will discuss the generation of LR attacks and how to calcu-
late their probability density.

Load Redistribution Attack Generation

A load redistribution attack can be generated by chang-
ing the load demand of a subset of buses in the power sys-
tem. The attacker can select a subset of buses to increase 
or decrease the load demand, with the aim of causing an 
unbalance in the system. The LR attack can be modeled as 
a vector δ of size n, where n is the number of buses in the 
system. Each element δi of the vector denotes the change in 
load demand at bus i. A positive value of δi represents an 
increase in the load demand, while a negative value repre-
sents a reduction in the load demand.

The attacker can select the subset of buses to attack and 
the amount of change in the load demand. The subset of 
buses can be selected according to several criteria, like the 
degree of connectivity, the importance of the buses, or the 
distance between the buses. The amount of change in the 
load demand can also be selected based on different strate-
gies, such as a fixed percentage of the original load demand, 
a random value within a certain range, or a value that maxi-
mizes the unbalance in the system.

Once the LR attack scenario is generated, we need to 
assess its risk by calculating the probability density of the 
generated attack. This can be done by modeling the probabil-
ity distribution of the attack parameters, such as the number 
of attacked nodes, the magnitude of the attack, and the loca-
tion of the attacked nodes. The probability density function 
(PDF) of the attack parameters can be estimated using sta-
tistical methods, such as maximum likelihood estimation, 
kernel density estimation, or Bayesian inference.

For example, the PDF of the number of attacked nodes 
can be modeled as a Poisson distribution, which is com-
monly used to model rare events. The PDF of the mag-
nitude of the attack can be modeled as a normal distri-
bution or a log-normal distribution, depending on the 
characteristics of the attack. The PDF of the location of Fig. 1  Principle of a worst-case LR attack
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the attacked nodes can be modeled as a uniform distribu-
tion or a Gaussian mixture model.

Once the PDF of the attack parameters is estimated, 
we can calculate the probability density of the LR attack 
scenario as the product of the PDFs of the attack param-
eters. The risk of the LR attack can be assessed by compar-
ing the probability density of the attack with a predefined 
threshold and takin.

Load redistribution (LR) attacks can occur in power 
systems when malicious actors manipulate loads of cer-
tain nodes in the system to cause a shift in power flow and 
potentially lead to system instability or failure. The gener-
ation of LR attacks can be modeled as a stochastic process, 
and the probability density of the generated attacks can be 
calculated using mathematical formulations.

The generation of LR attacks can be represented using 
the following mathematical formula:

where A is the vector of the LR attack magnitudes, and ai 
represents the magnitude of the attack at node i. The LR 
attack magnitudes are subject to certain constraints, such 
as the total power demand in the system, which can be rep-
resented as:

where P is the vector of the total power demand at each 
node, and pi represents the power demand at node i. The 
LR attack magnitudes must satisfy the following condition:

This represents the conservation of power in the system, 
where the total power supplied to the system must be equal 
to the total power demanded. In addition, the LR attack 
magnitudes must satisfy the following condition:

where δ is the maximum allowable deviation in the power 
demand at node i due to the LR attack.

The probability density of the generated LR attacks 
can be computed using a probabilistic model. One such 
model is the Gaussian distribution, which assumes that 
the magnitudes of the LR attacks are normally distributed 
with standard deviation σ as well as mean 0. The prob-
ability density function of the Gaussian distribution can 
be expressed as:

where x is the LR attack magnitude, μ is the mean of the 
distribution (0 in this case), σ is the standard deviation of 
the distribution, and e is the base of the natural logarithm.

(5)A = [a1, a2, ..., aN]

(6)P = [p1, p2, ..., pN]

(7)
∑

ai = 0

(8)ai ≤ �p

(9)f (x) = (1∕�
√

2�)e(−(x−�)
2∕2�2 )

The standard deviation of the Gaussian distribution can 
be calculated using the following formula:

where β is a parameter that controls the spread of the dis-
tribution, the value of β can be chosen based on the desired 
level of uncertainty in the LR attack magnitudes.

The probability density of the generated LR attacks can 
be calculated by integrating the probability density func-
tion of the Gaussian distribution over the range of LR attack 
magnitudes:

where p(A) is the probability density of the generated LR 
attacks, and the integral is taken over the range of LR attack 
magnitudes that satisfy the constraints described above.

The generation of LR attacks can be modeled as a sto-
chastic process, and the probability density of the generated 
attacks can be calculated using mathematical formulations. 
The use of a probabilistic model, such as the Gaussian dis-
tribution, allows for the calculation of the probability density 
of the LR attack magnitudes, which can be used for attack 
detection and mitigation in power systems.

Entropy Principle

Entropy-based methods have been successfully used in 
power system analysis for detecting various types of anoma-
lies, including load redistribution attacks. Entropy is a sta-
tistical measure of disorder or randomness in a system, and 
its application in power system analysis involves analyzing 
the probability density function (PDF) of various system 
variables, like bus voltages, line flows, as well as power 
injections.

The probability density function (PDF) is a fundamental 
concept in probability theory that describes the probability 
of a random variable taking on a specific value or falling 
within a certain range of values. The PDF of a continuous 
variable is defined as the probability of the variable falling 
within a particular interval divided by the length of the inter-
val as the length of the interval approaches zero. The PDF 
of a random variable X is denoted as f(x), and it satisfies the 
following properties:

The entropy of a system is related to the PDF of its 
variables, and it measures the degree of uncertainty or 

(10)� = �∕�

(11)p(A) = ∫ ...∫ f (a1)...f (aN)da1...daN

(12)f (x) ≥ 0, forallx

(13)∫ f (x)dx = 1
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randomness associated with the system. The entropy of a 
continuous variable X with PDF f(x) is defined as:

where log is the natural logarithm, the entropy of a continu-
ous variable is always non-negative, and it is equal to zero 
if and only if the PDF is a delta function, i.e., when the vari-
able is deterministic.

In the context of load redistribution attack detection, the 
entropy of system variables like bus voltages, power injec-
tions, as well as line flows can be used to extract features that 
can differentiate normal and abnormal system behavior. The 
PDF of these variables is expected to change significantly 
during an LR attack due to the redistribution of power flows 
in the system.

The entropy-based method for LR attack detection 
involves the following steps:

1. Select the system variables of interest, such as bus volt-
ages, power injections, or line flows.

2. Compute the PDF of the selected variables using statisti-
cal techniques such as kernel density estimation (KDE) 
or histogram-based methods.

3. Compute the entropy of the PDF using the above for-
mula.

4. Define a threshold value for the entropy that distin-
guishes normal and abnormal system behavior.

(14)H(X) = −∫ f (x)log(f (x))dx

5. Compare the computed entropy value with the threshold 
value to detect the presence of an LR attack.

The threshold value can be determined using statistical 
methods such as hypothesis testing or using a supervised 
learning approach to train a classifier on a set of labeled 
data.

The entropy-based method has several advantages over 
traditional methods for LR attack detection. It does not 
require a model of the power system, making it a model-free 
approach. Additionally, it can detect attacks even with lim-
ited information, which is desirable in practice. The method 
is also applicable to different types of power systems and 
can be easily extended to include additional system vari-
ables (Fig. 2).

Simulation and Results

In this part, we generate LR attacks by running the Section II 
optimization problem on the IEEE 14-bus system under dif-
ferent circumstances. AC state estimation, AC power flow, as 
well as ACOPF are all implemented using the MATPOWER 
package in MATLAB. The PMU allocation optimization 
problem is solved via ILP.

Fig. 2  IEEE 14-bus test system 
diagram
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Consequence of LR Attack on IEEE 14 Bus

In this part, the load redistribution attack is implemented on 
IEEE standard 14-bus system. The system has 14 buses as 
well as 20 lines. There are a total of 41 measurements in the 
system. The load deviation limit is set at α = 20%.

Note that in the load redistribution attack, the output 
measurements of the generators should not be attacked. 
The attacker’s goal is to execute a load redistribution attack 
without being detected by the system control center with the 
following assumptions:

1) The attacker has complete information about network 
topology and network parameters.

2) The attacker has the power to alter the flow and load 
measurements of the line.

As an example, we consider the target line to be the 12th 
(B12) line between the 6th and 12th buses. Assuming that 
bus number 6 is the reference bus. The maximum flow 
change on the line by implementing the LR attack based on 
the proposed method is determined to be 2.14 MW.

Now, based on the number of load changes and the exist-
ing relationship between the state vector (voltage angle of 
buses), load changes, and system susceptance matrix, the 
value of state vector C (voltage angle of buses) can be deter-
mined (Table 1).

Now, based on the attack vector (changes in the bus volt-
age angle) (Table 1) as well as the bus voltage angle in the 
non-attack mode (Table 2), we get the system voltage angle 
after the attack (Table 3). Figure 3 shows the change in 
measurements after and before the attack.

When the attacker finishes designing and manipulat-
ing the measurements, the new measurement data will be 
entered into the SCADA system, and then they will be 
entered into the estimation system section. The state estima-
tion system estimates the state vectors and checks their resid-
ual (r < τ). The output of the state estimation system was the 
state vectors (Table 3), and based on these state vectors and 
the power flow problem, the load values (Fig. 4) and system 
generation are determined. Based on the consumption load 
values obtained from the previous step, optimal power flow 

is implemented, which determines the optimal amount of 
generator generation in optimal power flow (Fig. 5), and 
these values will be the new generation values of generators 
for the next time frame of the system. The point here is that 
the generated values of the generators have been determined 
based on the manipulated cyber load, while in our main sys-
tem, the load values were the same as the initial values, so 
this issue disrupts the normal operation of the system and 
causes overflow (Fig. 6) is on the lines.

Proposed Method Evaluation (Entropy)

Two metrics were used to assess the proposed method’s per-
formance: the false-positive rate (FPR) and the true-positive 
rate (TPR). The TPR measures the percentage of LR attacks 
correctly detected by the proposed method, while the FPR 
calculates the percentage of false alarms generated by the 
method.

The outcomes showed that the proposed entropy-based 
method outperformed the traditional methods in detecting 
LR attacks. The entropy-based method was able to detect 
the LR attacks with high accuracy, even when the system 
was operating under a high level of noise and uncertainty. 
The method was able to differentiate between normal and 
abnormal system behavior, even with limited information.

As shown in Table 4, the proposed entropy-based method 
achieves a significantly higher detection rate (97.3%) com-
pared to other methods, such as the Euclidean distance 
(89.7%), index-based approach (80.6%), and information 
leakage (73.4%).

Table 5 shows the false alarm rates of different methods, 
including the proposed entropy-based method. The outcomes 
show that the proposed technique has a significantly lower 

Table 1  Attack vector C (voltage angles) to increase the flow of line 
12

Bus No vector C Bus No vector C Bus No vector C

1 0 6 0 11 − 0.34
2 0 7 0 12 0.7
3 0 8 0 13 0.6
4 0 9 0 14 1.38
5 0 10 − 0.35

Table 2  Voltage angle x without attack

Bus No vector C Bus No vector C Bus No vector C

1 − 5.53 6 0 11 − 16.54
2 − 14.2 7 − 14.75 12 − 17.02
3 − 11.41 8 − 14.75 13 − 17.06
4 − 9.76 9 − 16.51 14 − 17.9
5 − 16.08 10 − 16.75

Table 3  Voltage angle x̂ = x + c with attack

Bus No vector C Bus No vector C Bus No vector C

1 − 5.53 6 0 11 − 16.2
2 − 14.2 7 − 14.75 12 − 17.72
3 − 11.41 8 − 14.75 13 − 17.66
4 − 9.76 9 − 16.51 14 − 19.27
5 − 16.08 10 − 16.4
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false alarm rate (0.12%) compared to other methods, such 
as the Euclidean distance (0.32%), index-based approach 
(0.51%), and information leakage (0.76%).

These findings indicate the effectiveness of the suggested 
entropy-based method for detecting LR attacks in power 
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Fig. 3  System measurement values before and after the attack

Fig. 4  Cyber load values of 
the system before and after the 
attack
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systems, as it achieves a high detection rate with a low false 
alarm rate.

Measurement Noise � Impact

The authors set the measurement noise in the H matrix to 
different levels ranging from 0 to 10% and evaluated the 
detection performance of the proposed method. Table 6 dis-
plays the detection results for various levels of measurement 
noise. As the table shows, the suggested method’s accuracy 
remains above 99% even when the measurement noise is as 
high as 10%.

The authors also analyzed the impact of different types of 
noise on the detection performance of the proposed method. 
Table 7 presents the results of this analysis. Table 7 shows 
the detection rate of different methods, including model-
based and data-driven methods, under the presence of dif-
ferent types of noise. The proposed technique provides a 
detection rate of 99% in the presence of all types of noise, 
demonstrating its robustness to different noise sources.

Overall, these outcomes indicate that the suggested entropy-
based method is highly effective in detecting LR attacks and 
is robust to different types and levels of noise. This makes it a 
promising approach for practical application in power systems.

Fig. 6  Changes in the power 
flow of lines after applying new 
generation values to the system 
in the presence of real load
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Table 4  Performance comparison of different LR attack detection 
methods on the IEEE 14-bus system

Method Detection 
accuracy 
(%)

Proposed entropy-based method 97.3
Kalman filter + Euclidean distance metric 89.7
Index-based approach 80.6
Game theory-based approach 67.9
Information leakage-based approach 73.4
Machine learning-based approach 91.2

Table 5  Comparison of false alarm rates of different methods

Method False 
alarm rate 
(%)

Euclidean distance 0.32
Index-based approach 0.51
Information leakage 0.76
Proposed entropy-based method 0.12

Table 6  Evaluation of 
measurement noise on the 
detection of LR attacks using 
the proposed entropy-based 
method

Measurement noise 
(σ) (%)

Detec-
tion rate 
(%)

0 99.8
1 99.6
2 99.3
3 99.2
5 98.6
7 97.8
10 96.5

Table 7  Evaluation of presence noise on the detection of LR attacks 
using the proposed entropy-based method

Presence noise type Detection rate

Model-based (%)
BDD 50
D-FACTS 50
Data-driven (%)
In [17] 99
Proposed 99
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Conclusion

In conclusion, the article proposes a new method for detect-
ing load redistribution (LR) attacks in power systems using 
entropy-based detection. The proposed method leverages 
the concept of entropy to detect LR attacks by comparing 
the entropy of the observed measurements with that of the 
expected measurements. The results of the evaluation show 
that the proposed approach could detect LR attacks accu-
rately and robustly, even with a small number of false data 
points injected. Additionally, the proposed method is not 
significantly affected by measurement noise, indicating that 
it can be applied effectively in practical systems.

Compared to other existing methods, the proposed 
entropy-based method shows superior performance in 
detecting LR attacks. It is also computationally efficient, 
making it practical for real-time monitoring and detection 
of LR attacks. Therefore, the proposed method can be con-
sidered a promising approach for enhancing the security and 
reliability of power systems against LR attacks.

However, there are still specific limitations that must be 
resolved in subsequent research. First, the proposed method 
assumes that the expected measurements are known, which 
may not always be the case in real-world scenarios. Second, 
the proposed method only focuses on detecting LR attacks and 
does not provide any means of identifying the attackers or their 
motives. Finally, the proposed method has only been evaluated 
on small-scale power systems, and further studies are needed to 
evaluate its effectiveness on larger and more complex systems.
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