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Abstract Power transformer is most powerful and expen-
sive tool in power system for transmitting and distributing 
electrical energy to all consumers. High-voltage transform-
ers in power system are oil-immersed type transformer. 
Use of oil provides much needed cooling, insulation, and 
reduces vibrations to power transformer. Oil of the power 
transformer is monitored and diagnosed on a regular basis 
to preserve its dependability and efficiency. Dissolved gas 
analysis (DGA) is effective and efficient tools to interpret 
incipient faults. In DGA method, dissolved gases like H 

2
 , 

CH
4
 , C 

2
H

4
 , C 

2
H
6
 , C 

2
H

2
 are extracted from oil. Based on the 

gases threshold values in oil, different faults are identified. 
The current article focus on three traditional fault diagnostic 
methods IEC, Roger ratio, and Duval triangle and one arti-
ficial neural network-based intelligent method. Result spot 
light that intelligent methods gives higher accuracy and con-
sistency to identify the incipient faults of power transformer 
while traditional methods are proved inadequate, inaccurate 
and inconsistent.

Keywords DGA · Incipient faults · Transformer 
protection · ANN · Power transformer · Bootstrapping

Introduction

Power transformer in the power system is backbone of trans-
mission and distribution system. Performance of the power 

system is depend on power transformer. So its resilience 
affects not only on electrical energy but also operational 
economy [1, 2]. As a result, timely maintenance based on 
observed incipient faults is necessary. Nowadays most of the 
power transformers used in power systems are oil immerse 
type. And majority of the incipient faults are caused by elec-
trical, mechanical and chemical stress; hence, oil decompo-
sition and few gases like “Hydrogen (H

2
 ), methane (CH

4
 ), 

ethane (C
2
H

6
 ), ethylene (C

2
H

4
 ), acetylene (C

2
H

2
 ), carbon 

monoxide (CO), and carbon dioxide (CO
2
 )” [3] are dis-

solved in oil, and their threshold limits are measured in 
parts per million (ppm) [4, 5]. Dissolved gas analysis is the 
most effective method for finding early flaws (DGA) [6, 7]. 
Internal problems in a power transformer emit various gases 
that can be used to diagnose the malfunction. When many 
anomalies are present, the analysis is not always straightfor-
ward. Listed below are several flaws [8]. 

1. Partial discharge (PD)
2. Sparking discharge (SD)
3. Arcing discharge (AD)
4. Low-temperature overheating (LTO)
5. Middle-temperature overheating (MTO)
6. High-temperature overheating (HTO)
7. Thermal and electric faults (DT)

In partial discharge faults [9, 10], temperature has little bear-
ing; the bulk of gases are H 

2
 and CH

4
 , with minor residues 

of C 
2
H

2
 , resulting in pinholes and carbonized tiny punctures 

in paper. Surface tracking of paper or the development of 
tiny amounts of carbon particles in oil is both caused by the 
Sparking Discharge (low-energy arcing) fault [11]. Produc-
tion of large amount of H 

2
 and C 

2
H

2
 gases is evidence of 

that. Further discharge may lead to arcing (high-energy dis-
charge) type of fault which damage insulating paper. Other 
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faults are low-, medium- and high-temperature overheat-
ing faults which may occurs at below 3000 ◦ C, in between 
3000 and 7000 ◦ C, more than 7000 ◦ C. As an impact of 
these faults, larger amount of C 

2
H

4
 gases with small traces 

of CH
4
 , C 

2
H

6
 are generated and decomposed in oil. In the 

last stage fault identification, the DGA data will be used to 
analyze the transformer conditions [12]. The international 
standards IEC 60599 and IEEE C57.104 [5] include many 
diagnostic approaches for DGA [13], such as the key gas 
method, Dornenburg, the Roger ratio method, IEC (Interna-
tional Electro Technical Commission) ratio method and the 
Duval triangle method. The current article represents three 
traditional methods Roger ratio method (RRM), IEC ratio 
method (IRM) and Duval triangle method (DTM) and one 
intelligent ANN-based method are implemented on MAT-
LAB, and analysis is performed on empirical dataset [14, 
15].

Methodology

This paper represents two approaches of DGA dataset inter-
pretation methods. In traditional DGA dataset interpretation 
approach, three methods [16], Roger ratio (RRM), IEC ratio 
(IRM) and Duval triangle (DTM) are testes over different 
440 empirical observations [14, 15] with six fault categories 
listed above. MATLAB code is developed to test methods.

In intelligent approach, two ANN-based training func-
tions, Levenberg–Marquardt and Bayesian regularization is 
developed in MATLAB. Initially, both functions were tested 
with same observation but due to the lower size the observa-
tions, accuracy is compromised. To achieve the better accu-
racy, samples sizes are increased using bootstrapping.

Traditional DGA Interpretation Methods

IEC, IEEE C57.104 and other many standard [17] have been 
highlighted for the incipient fault detection of the power 
transformer.

Roger’s Ratio Method (RRM)

Four gas ratios (R1 = CH
4
/H

2
 , R2 = C 

2
H

6
/CH

4
 , R3 = C 

2
H

4

/C
2
H

6
 , R4 = C 

2
H

2
/C

2
H

4
 ) are used in this method to predict 

11 incipient faults [18]. But after revision in IEEE C57.104-
1991, R2 no longer exists [19]. As a result, only six types of 
incipient faults (PD, AD, SD, LTO, MTO, HTO) excluding 
no faults (NF) condition can be identified. Faults are recog-
nized using ratio range scheme shown in Table 1.

RRM was developed in MATLAB and tested on empiri-
cal dataset of 440 observations; results highlight that algo-
rithm gives the moderate result with accuracy of 63.42%. 

Result also enlightens that this methods fails to identify 
multiple faults.

IEC Ratio Method (IRM)

This method is exactly identical to RRM. Three gas ratios 
(R1= CH

4
/H

2
 , R3=C

2
H

4
/C

2
H

6
 , R4=C

2
H

2
/C

2
H

4
 ) are taken 

into consideration [20]. Finding which region of fault is clos-
est to the original ratio’s data point is the final step in deter-
mining the fault type. This method is able to diagnosis vari-
ous overheating faults, electrical energy discharge faults and 
also gives the information about the normal aging (Table 2).

MATLAB code is implemented and test on empirical 
dataset of 440 observations [14, 15], results spot that this 
method gives the reasonable accuracy 71.66% but in some 
cases this method fails to identify the faults accurately.

Duval Triangle Method (DTM)

DTM [21] uses the three gases, methane (CH4), ethylene 
(C2H4), and acetylene (C2H2) proportionate concentration 
to identify the different types of fault. Different fault types 
and its zone are specified in Fig. 1 and Table 4. Table 3 
indicates that the normal limits and its normal rising rate 
of the gases are from 10 to 50% per month. Once the fault 
exists, this method uses percentages of %CH

4
 , %C

2
H

4
 and 

%C
2
H

2
 to find the exact fault category of the fault (Table 4).

Table 1  Gas analysis by RRM [16]

Fault type R1 R3 R4

NF > 0.1 to < 1 >1 < 0.1
PD < 0.1 < 1 < 0.1
AD > 0.1 to < 1 >1 to <3 >0.1 to < 3
SD > 0.1 to < 1 >3 > 3
LTO > 0.1 to < 1 >0.1 to <3 < 0.1
MTO > 1 > 0.1 to <3 < 0.1
HTO > 1 > 3 < 0.1

Table 2  Gas analysis by IRM [20]

Fault type R1 R3 R4

NF > 0.1 to < 1 < 1 < 0.1
PD < 0.1 < 0.2 NA
AD 0.6 to 2.5 0.1 to 1 > 2
SD 0.1 to 0.5 > 1 > 1
LTO > 1 < 1 NA
MTO > 1 1 to 4 < 0.1
HTO > 1 > 4 < 0.2
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This traditional method gives best results among all 
other methods with the accuracy of approximately 88%. 
Later stage author [22] highlights the modified version of 
Duval triangle in which numerical method was employed 
from graph.

Other traditional algorithms like Doernenburg ratio method, 
key gas method [23], etc. are also used to predict the various 
fault, but these approaches exclusively depend upon human 

experience and expertise. Moreover these methods are unable 
to identify the multiple faults exist in the transformer oil.

ANN‑Based DGA Interpretation Method

For any nonlinear input–output patterns, artificial neural 
network (ANN) is greatest tool to find the hidden patterns 

Table 3  Normal limits of oil 
[18]

Gas L1 limits (PPM)

H
2

100
CH

4
75

C
2
H

2
3

C
2
H

4
75

C
2
H

6
75

CO 700
CO

2
7000

Table 4  Fault zone identification

Fault type % CH
4

% C 
2
H

4
% C 

2
H

2

PD 98–100 0–2 0–2
AD 0–31 23–71 29–77

31–64 23–40 13–29
SD 0–87 0–23 13–100
LTO 76–97 1–20 1–4
MTO 46–80 20–50 0–4
HTO 0–50 50–100 0–15
DT 0–35 40–100 4–29

47–96 0–40 4–13

Fig. 1  Duval triangle [21]

Fig. 2  Flow diagram of LMA

Fig. 3  Flow diagram of BR
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between input–output [24]. In this article, basically two train-
ing functions (Levenberg–Marquardt and Bayesian regulariza-
tion) are implemented

Levenberg–Marquardt (LM) Training Function

This approach employs statistics to reduce a nonlinear function 
over a set of parameters. Constraint optimization challenges 
include nonlinear programming and least squares curve fit-
ting. [3]. The LMA links Gauss–Newton method with (GNA) 
[25] and the gradient descent (GD). LMA targets second-order 
training speed without computing the Hessian matrix (Fig. 2).

Bayesian Regularization (BR) Training Function

Bayesian regulatory back propagation (BRP) [26] updates 
weight and bias variables using Levenberg–Marquardt opti-
mization (LMO) [27]. To construct a good network, it mini-
mizes squared errors and weights (Fig. 3).

Figure 4 shows the basic flow diagram of the ANN-based 
approach [28], these can be further divided into data acquisi-
tion, pre-processing, feature selection, Training and Testing 
with sample data.

(1)P
k+1 = P

k
− [JTJ + �I]−1JTe

Results and Discussion

Figure 5 shows the results of the three traditional methods. 
Total observation of 440 observations [14, 15] with differ-
ent category of faults were taken for these diagnosis. All 
methods are able to identify the majority of the incipient 
faults with reasonable accuracy and Consistency. Out of all 
three conventional, RRM provides 65% accuracy, IRM gives 
75% of accuracy and DTM yield best results and greater 
accuracy around 88%. Contrarily the results also shed a light 
that these methods are not able to identify multiple faults 
like discharge and overheating faults (DT).

Fig. 4  Basic flow diagram of ANN-based training functions

Fig. 5  Result comparison of traditional methods
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When ANN is trained with LMA, BR and BFGS quasi-
Newton training functions for same 420 observations [14] 
[15], accuracy during training fall in between 60 and 95% 
and accuracy during testing (20 observations) was 50–80%, 
respectively. These might be occur due to following reasons.

– Less number of observations
– Uneven faults cases
– Selection of hidden layer neurons and its activation func-

tions

So more observation were created using bootstrapping [29].
LMA training algorithm details

– Samples for training: 1195
– Samples for testing: 244
– Inputs: 05 (H

2
 , CH

4
 , C 

2
H

6
 , C 

2
H

4
 , C 

2
H

2
)

– Output: 08 (PD, SD, AD, HTO, MTO, LTO, DT, NF)
– Hidden layer neurons: 20
– Training algorithm: Levenberg–Marquardt
– Activation function: Hyperbolic Tangent

BR training algorithm details

– Samples for training: 1195
– Samples for testing: 244
– Inputs: 05 (H

2
 , CH

4
 , C 

2
H

6
 , C 

2
H

4
 , C 

2
H

2
)

– Output: 08 (PD, SD, AD, HTO, MTO, LTO, DT, NF)
– Hidden layer neurons: 20
– Training algorithm: Bayesian regularization
– Activation function: hyperbolic tangent

BFGS quasi-Newton training algorithm details

– Samples for training: 1195
– Samples for testing: 244

– Inputs: 05 (H
2
 , CH

4
 , C 

2
H

6
 , C 

2
H

4
 , C 

2
H

2
)

– Output: 08 (PD, SD, AD, HTO, MTO, LTO, DT, NF)
– Hidden layer neurons: 20
– Training algorithm: BFGS quasi-Newton
– Activation function: hyperbolic tangent

Moreover, when ANN is trained using different other 
training functions like one-step secant, conjugate gradient 
with Beale Powell series, gradient descent with momen-
tum and resilient backpropagation, the overall accuracy 
which will get arround 20, 33, 47, and 59.4%, respectively 
(Figs. 6, 7).

Table 5 shows the results of three ANN training algo-
rithm results and it highlights that with larger dataset of 
1439 observations which was derived through bootstrap-
ping [29] with different fault categories, accuracy of both 

Fig. 6  Regression curve for BR 
training

Fig. 7  Mean square error for BFGS quasi-Newton training
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training function (LM and BR) are more than 90% during 
training and testing phases (Figs. 8, 9 and 10). But accu-
racy using BFGS quasi-Newton training algorithm is poor 
or closer to tradtional methods. Moreover, LM and BR 
training functions provide best results to interpret multiple 
faults at same time due to overheating and discharge (DT).

Conclusion

In current paper, three traditional methods, i.e., Roger ratio 
method, IEC ratio method and Duval triangle method, 
were developed and tested with empirical dataset of 440 
observations. Result revealed that among three methods, 
Duval triangle gives best fault diagnosis with consider-
ably higher accuracy and consistency. Ratio approaches 
have a flaw in that they don’t cover all data regions, and 
occasionally ratios aren’t fit for tables. When it comes to 
dissolved-gas measurements, there is always some level 
of error. Gas concentrations and other analytical computa-
tions are all affected by this inconsistency. Furthermore, an 

Table 5  Result (Accuracy) 
comparison between LM, 
BR and BFGS quasi-Newton 
function

Types of faults Actual cases Levenberg–Marquardt Bayesian regulariza-
tion

BFGS quasi-
Newton

Training Testing Training Testing Training Testing

PD 154 100% 100% 98.5% 96% 70% 64%
AD 191 98.74% 96.87% 98.74% 93.75% 69% 58%
SD 221 92.39% 98% 93.56% 98% 67% 60%
LTO 195 95.23% 100% 96.87% 85.18% 64% 59%
MTO 99 98.70% 75% 96.10% 58.18% 63% 58%
HTO 242 99.46% 96.29% 96.25% 98.14% 64% 55%
DT 138 85.93% 90% 80.46% 60% 50% 40%
NF 209 97.71% 82.35% 95.42% 88.23% 61% 54%
Total 1439 96.06% 94.26% 93.97% 90.98% 63.4% 56%

Fig. 8  Regression curve for 
LMA training

Fig. 9  Mean square error for LMA training
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ANN-based strategy was constructed, tested, and assessed 
using two distinct training functions: Levenberg–Mar-
quardt and Bayesian regularization. Result of both training 
functions revealed that highest accuracy and consistency 
were achieved during training and testing phases, results 
also pined that ANN-based method easily identifies the 
multiple incipient faults presents in transformer. Moreover 
in future, the accuracy and consistency may increase by 
applying fusion of AI and ML techniques like (ANN + 
SVM), (ANFIS + SVM), (ANN + DT), etc.
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