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Abstract Attackers may take advantage of a flaw in the

data encryption and decryption mechanisms. Therefore,

cryptography is used to prevent such attacks. Cryptography

ensures that only authorized individuals can intercept data.

One such cryptography method is the pseudo-random

binary sequence (PRBS). It was proposed a precision-

based PRBS generator using a B-Exponential chaotic map.

The proposed precision-based PRBS generator’s output

passed all of the NIST test suite’s performance assessments

with a 98.45% success rate. It has been tested the algorithm

for multiple B values up to 10,000 and discovered that the

Lyapunov exponent was positive (approximately 3.8),

indicating good randomness in the output. The output bit

rate, for 106 bits, was determined to be 1.09 Mbps. Com-

pared to the methods reported in the literature, it has

been managed to produce a highly efficient cryptographic

pseudo-random bit sequence generator with a correlation

coefficient of 0.00076. It anticipated that the proposed

system can be implemented for various applications such

as OTP generation, image encryption, online transactions,

etc.

Keywords Randomness � NIST � Chaotic cryptography �
B-exponential map

Introduction

Chaotic systems are dynamic systems whose output

appears to be random but is actually generated using

underlying patterns and highly sensitive initial conditions.

An essential element in developing a chaotic system is a

pseudo-random binary sequence generator. The random-

ness of a chaotic system can be improved, if the system

parameters, on which the chaotic map depends, are also

generated using a chaotic system.

Random number generation is one of the most important

processes in the security domain. These deterministic and

yet chaotic bits are useful for secured data transfer,

e-commerce encrypted messaging, and even in some of the

apps. The software that generates the random number is a

system for creating deterministic chaotic numbers with

high-quality random sequences. The chaos was first

determined in semi-conductor super-lattices with the tem-

perature being a variable that controlled the nature of

chaos. Later on, this chaos was mathematically modeled

and became the characteristic equation for chaotic oscil-

lation models. Chaos is defined as a complete disorder or

deterministic confusion. Many of the graphic designing and

animation industries use this chaos to produce effects such

as ocean waves and clouds in the background.

A B-exponential map has a dynamic behavior and is

well-known for producing chaotic values for certain range

of B parameter. The current technologies use a generator

polynomial to produce a pseudo-random sequence of

numbers. However, the B-exponential map can be very

useful because of its chaotic hoping and still act as a

deterministic random number generator. The name map is

given to the B-exponential map because it has a function

that produces value in the given range space and is deter-

mined by a nonlinear discrete iterative equation. Chaos is

& Rasika B. Naik

rasika.naik@spsu.ac.in

1 Sir Padampat Singhania University (SPSU), Udaipur, India

123

J. Inst. Eng. India Ser. B (August 2022) 103(4):1283–1292

https://doi.org/10.1007/s40031-022-00722-w

http://orcid.org/0000-0002-0850-1809
http://crossmark.crossref.org/dialog/?doi=10.1007/s40031-022-00722-w&amp;domain=pdf
https://doi.org/10.1007/s40031-022-00722-w


characterized by dynamic nature with deterministic non-

linearity. Chaotic maps are typically non-periodic and

show high sensitivity towards the initial seed values.

Before the B-exponential map, the most popular chaotic

map used was the logistic map which has 1D iterative

nature. The logistic map was proposed for population and

is very useful in determining the twin effect of reproduc-

tion and starvation. The B-exponential map was derived

from this logistic map.

Precision is a refinement in the measurement repre-

sented by the number of digits that are exact or accurate.

Precision-controlled chaotic maps were typically used with

space experimental circuits along with switch and skip

chaotic maps. The finite precision chaotic map allows

computational accuracy and control over a logistic map.

The combination of precision control and B-exponential

map gives rise to new horizons in the field of random

number generators. In this manuscript, it was proposed a

B-exponential map that generates pseudo-random numbers

in a chaotic manner. The proposed system generates a large

number of pseudo-random bit sequences and its random-

ness is tested using NIST SP800-22 tests.

Literature Review

Many literature reports used precision-controlled chaotic

pseudo-random number generators and there were also a

few reports with a B-exponential map. The following

section covers a summary of the existing studies on

pseudo-random number generation. Previous studies per-

formed on pseudo-random number generators like the one

done by Kocarev et al. [6] have summarized different

chaos-based cryptography techniques. They found that, the

term Random is linked to compressibility and has deter-

ministic dynamical parameters that are dependent on sys-

tem trajectory. Most of the random number generators try

to use the shortest program. Also, there are entropy-based

random generators that use probability distributions.

According to Kocarev et al., the number of iterations for

encryption is usually less than 32, but the number can also

be as high as 65536 and the discrete probability distribu-

tion, positive exponents result in a higher entropy and large

value of complexities. They also mention that although

chaos is a significant property in encryption algorithms, it

is not sufficient.

Pareek et al. [11] have built a system using external keys

to generate discrete chaotic cryptography. They proposed a

symmetric key block cipher algorithm that creates an initial

condition due to the 128-bits long secret key. Their algo-

rithm was secured but deterministic. They have produced

different ciphertexts and found that the number of alpha-

bets appearing in this ciphertext is uniformly distributed.

They suggested this cryptography can be used over the

Internet and other public networks. They have used only

3000 characters for their testing and it took almost 17

seconds for execution and their file size can be as big as

1.4Mb. The main drawback of their proposed system was is

the attacker gets the information about symmetric block

key cipher their entire chaotic map can be easily decoded

and hence the system cannot be considered safe enough to

use for internet banking. Also, their ciphering algorithm

was using a common 128-bit secret key ’wh91-qa9g-k*xd/

.’, which was static. Hence, it is necessary to develop an

algorithm that does not use such static keys.

Shastry et al. [14] proposed a method to generate

pseudo-random numbers using a generalized 1D B—ex-

ponential map. They found that the B-exponential map

exhibits the most random behavior for all real values of B

where B is greater than or equal to e�4. They then built an

algorithm using B-exponential maps to generate pseudo-

random numbers using a method that randomly hopped

from different values of B. For testing, the system was

compressed using the ENT Pseudo-random Number

Sequence Test Program which gave an entropy of 1 per bit

indicating the system is random. The sequences generated

by their proposed method fell in the range of 25 to 75% for

the chi-square test. The mean was seen to be 0.5 for one-bit

sequences and 127.5 for 8-bit sequences. They also

achieved a correlation coefficient of 0.000035 for a

sequence length of 1 Gb. They also tested their system of

the NIST and DIEHARD statistical test suites and showed

that the sequences passed all tests with great results. But

they discovered that the randomness of the system ended at

B = 2.618.

Patidar et al. [12] used chaotic logistic maps to build a

pseudo-random bit generator and they also performed sta-

tistical tests on it. They have used two chaotic standard

maps to produce the random initial seeds. The outputs from

both the chaotic maps were compared to produce a bit.

They generated 2000 random binary sequences with 106

bits each and tested them with DIEHARD and NIST suite

for randomness checking with a passing rate in the range of

98 to 99.5%. Although their system shows great results

when tested on the NIST tests, the use of two chaotic maps

and their comparison makes the bit generation process

more time-consuming.

Zhang et al. [17] broke a chaotic image encryption

algorithm built using perceptron model. They also pro-

posed a chaotic picture encryption technique that uses

perceptron for security reasons to test the security of the

method. They found that the complex encryption

scheme was equivalent to stream cipher and could easily be

broken using known plain text (ciphertext). They also

showed how this technique was insensitive to plain images

and images with no randomness. They tested 100 random
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sequences generated by the algorithm and found that only 4

to 5 tests were able to be passed by the sequences whereas

the other tests were passed by 0 sequences making it a bad

PRBS.

Mansingka et al. [8] have developed a fully digital jerk-

based chaotic oscillator to achieve high throughputs of up

to 8.77 Gbps for PRNGs. They have used Xilinx Virtex 4

FPGA to implement the PRNG and the maximum

throughput was 15.59 Gbps for the chaotic oscillator. They

could achieve logic utilization up to 1.73%. Although the

throughput achieved are very high the Virtex 4 FPGA is

costly hardware resulting in an overall high cost for man-

ufacturing the device. Hence, a low-cost solution was

required to be developed that are trying to solve using

B-exponential chaotic map-based PRNG.

Franccois et al. [4] proposed a method to generate

pseudo-random bits using three logistic maps that are

chaotic in nature. In their proposed algorithm, at the end of

each iteration of the chaotic maps, a 32-bit sequence is

generated where the initial seed of the sequence is chosen

randomly. Their generator algorithm also relied on the use

of the IEEE 754-2008 floating-point representation. Their

system had a keyspace of 10173 bits, and even with little

similarities in the seed, it gave completely random outputs.

Their system achieved a fast throughput with 44.112 Mbps.

But their system is very sensitive to the initial seed making

it susceptible to attack in cases where the initial key is

guessed.

Chaudhary et al. [2] proposed an encryption method

built using chaotic logistic map. They have used chaotic

encryption techniques to generate the initial values and

applied these seeds to a modified logistic map for making

images more secure. Their system has similar complexity

as two 1-Dimensional (1D) chaotic maps.

Pak et al. [9] used a combination of 1D chaotic maps to

encrypt color images. They have used a basic chaotic

system that performs encryption of a picture. They used

linear-nonlinear-linear encryption for total shuffling in

picture encryption. They proved 1D chaotic systems are

better performers at large ranges. They have used 5 secu-

rity keys u, x0, k, N0, lp to create a keyspace of 2138 to

make their system less susceptible to brute force attacks.

The initial values of u, k, and N0 were taken as 5.4321, 14,

and 1000, respectively. They tested their method by

attacking the encrypted image with a 64 X 64 data-cut and

3% salt and pepper noise. Although most of the attacked

images were very close to the original images there was

still some data loss.

Recently Krishnamoorthi et al. [7] have published a

similar work where they have used a turbulence-padded

chaotic map instead of a B-exponential chaotic map. Their

method achieved chaotic behavior, 3.6 times more space

with a 5% improvement in computing performance. They

tested their proposed method with the NIST SP 800-22

statistical test suite. The disadvantage of the system was

that although they had improved computational capacity,

the system was taking a lot of time and their system was

also periodic.

Saber et al. [13] have designed a PRNG using a Lem-

niscate Chaotic Map. In their system, fractal behavior is

seen up to r = 1. They have also used a Spartan-6 FPGA

board for hardware implementation. They achieved a 48%

resource consumption reduction and a 34.6% power

reduction. They achieved an entropy of 7.9980, a correla-

tion coefficient of 0.0014, and the number of changing

pixel rate was 99.661%. But the FPGA implementation is

very expensive.

Akhshani et al. [1] proposed a pseudo-random number

generator based on the quantum chaotic map. They used

different values of the controlling parameter r to the

quantum map. Their proposed method was able to achieve

an entropy of 7.999995 with a v2 value of 255.19 and a

correlation coefficient of 0.0001. They tested their system

on the NIST SP 800-22 test suite, DIEHARD test suite,

ENT and TestU-01 to validate the randomness of the

system.

Methodology

In the proposed system uses the basic idea of the B-ex-

ponential map by Shastry et al. [14] and modified their

proposed method with positive feedback which is used due

to which the chaos in the system should increases.

The proposed system generates sequences of random bits

(i.e., ones and zeros) based on the concept of positive

feedback of the control system with a B-exponential map.

Figure 1 shows the block diagram of the proposed

Pseudo-Random Binary Sequence (PRBS) generator built

using a B-exponential map. Here X, Z, B, K1, K2, K3, and

l are user-defined inputs that are fed into the B-exponential

map (A) controlled by X. These inputs act as a seed point

and control the output. A secondary B-exponential map

(D) is used for feedback. This secondary map (D) is

identical to the forward map (A). The closed-loop map’s

output is fed into a multiplying block (K3). Another

B-exponential map (Z), controlled by X, G, and K3, is

added to the output of the multiplier (K3), yielding the

overall output (O = A x K3 ? Z). A modulo operation is

performed on O with the modulo 1 operator to obtain the

floored value, resulting in a decimal point stream that can

then be compared. Here, the precision is controlled by

defining the type of the input going to the modulo one

operation. It can vary between uint8 to long 128 bit. The

user-specified precision was used to compare the decimal

places of G, X, and Z to produce the final randomly
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generated bit. If the initial value X is greater than Z, the

random bit generated is 1, otherwise, it is 0. This is the

modified precision-based approach different than the ones

reported in the literature.

As shown in Fig 1, the B-exponential map (A) is the

forward path and the B-exponential map (D) is the feed-

back path. The Positive sign at the mixer indicates the

feedback is positive. Considering equation of B-exponen-

tial map as a transfer function of block 1 (A) is controlled

by x, denoted by Eq. 1.

GLðB; xÞ ¼ A ¼ B� x� Bx � ð1� xÞ � B1�x

B�
ffiffiffi

B
p ð1Þ

Equation 1 shows output 1 at the block diagram (Fig. 1). In

the proposed system, positive feedback ensures that the

current output is greater than the past and output will be

generated without any input. Considering a random value

of x at the start of the iteration, set K1, K2, and K3 as

K1[ 33:5;K2[ 37:9;K3[ 35:7 as mentioned by

Franccois et al. [4] and B = 100 for the proposed system

after seeing Lyapunov exponent value is positive (with B

can be any value up to 10,000).

Transferfunction ¼ A=ð1� A� AÞ ð2Þ

equation 2 shows output 2 at the block diagram (Fig. 1).

As shown in the block diagram the block K1 is con-

sidered in series with the oscillator part (i.e., transfer

function of the oscillator) hence, output at point 2 repre-

sented by Eq. 3 is obtained.

Output2 ¼ K1� A

1� A� A
ð3Þ

This output is added with z (where z is initially a random

value produced with a B-exponential map) to produce

output at point 3 as O and denoted by Eq. 4.

Output3 ¼ K1� A

1� A� A
þ Z ð4Þ

Equation 4 shows output 3 at the block diagram (Fig. 1).

The remainder is calculated by dividing O by number 1

(modulo 1 operation) which is shown by G and denoted by

Eq. 5.

G ¼ modðð K1� A

1� A� A
þ ZÞ; 1Þ ð5Þ

Equation 5 shows output 4 at the block diagram (Fig. 1).

Let,

Q1 ¼ðl� sinðZÞÞ � K2Þ ð6Þ

Q2 ¼l� Z ð7Þ

Q3 ¼X � K3 ð8Þ

The value of x is used when the next value of A is

generated using Eq. 9. Where 0\l\ ¼ 3:999 is used to

increase chaotic behaviour [17]. Hence,

X ¼ modððQ1þ GÞ; 1Þ ð9Þ

Extraction of values after decimal points is done for G and

z. The value of x is found out using Eq. 10.

Z ¼ modððQ2þ Q3þ GÞ; 1Þ ð10Þ

Let, P = Rounded value of X

T = Rounded value of Z

These Values of P and T are compared.

If P[T then set bit as 1

Else set bit as 0

Fig. 1 Block diagram of the proposed pseudo-random binary sequence (PRBS) generator using a B-exponential map. The user-defined inputs X,

Z, B, K1, K2, K3, and l are fed to the B-exponential map (A) controlled by X. For a feedback purpose a secondary B-exponential map (D). The

output of the closed-loop map is fed to a multiplying block K3. Another B-exponential map (Z) controlled by X, G, K3 is added to the output of a

multiplier K3 producing the overall output (O = A x K3 ? Z). A modulo operation is carried on O with modulo 1 operator to achieve the floored

value producing a decimal point stream which can then be further compared. Based on the value of G, X and Z decimal places were compared as

per the user-specified precision to produce the final randomly generated bit. If the initial value X is higher than Z then the random bit generated is

1 and 0 otherwise
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In this way, random bit sequence is generated as per

user’s requirement.

B-Exponential Map

The B-exponential map is as explained in Eq. 11, which is

the function of variables B and x. The x lies between 0 and

1 and B can be any value in positive real numbers. Due to

the positive loop, the B has an iterative function i.e., Xn?1

= GL (B, Xn).

GLðB; xÞ ¼ A ¼ B� x� Bx � ð1� xÞ � B1�x

B�
ffiffiffi

B
p ð11Þ

where, 0\ ¼ x\1 and B belongs to R?

The fixed-point analysis [6] defines GL(B,0) = 0 and

GL(B,0.5) = 1. Hence, B-exponential function has at least 5

critical points, due to symmetry around 0.5 and unimodal

nature of GL(B,x).

Lyapunov Exponent

The Lyapunov exponent is given by Eq. 12.

kðxÞ ¼ lim
n!1

1

n

X

n�1

i¼0

ln f 0ðxiÞj j ð12Þ

A Lyapunov exponent quantifies the rate at which extre-

mely small trajectories in a non-static system separate from

each other. A positive value of Lyapunov exponent denotes

the potential chaotic behaviour of a system.

NIST Test Suite Details

There are 15 tests of the National Institution of Standard

and Technology (NIST) Suite, that can be used to check the

randomness of a binary sequence created by the Pseudo-

Random Number Generator. These sequences being tested

on this suite could be implemented at the hardware level or

on software. These tests focus on the several types of non-

randomness that can be found in a pseudo-random

sequence. It’s one of the most widely used tests for

determining how efficient random number generators are.

The 15 tests in the NIST Statistical Test Suite (STS) tests

and evaluate a given sequence’s attributes against those of

a perfectly random sequence. This NIST STS has been

used, for the Puesdo-random sequence generator for vali-

dating with files with 106 bits and a bitstream/iteration of

200 files. Individual tests are considered passed if the p-

value was between 0.01 and 0.99. The likelihood of a

perfect random number generator delivering the same or a

worse test result was represented by the p-value. The 15

tests were classified into the nonparameterized tests and the

parameterized tests.

Results

Figure 2 shows a plot of the Lyapunov exponent for vari-

ous values of B. By the definition of Lyapunov exponent, if

the value of Lyapunov exponent is positive, then the

chaotic nature of the system output can be confirmed. To

verify this it has been varied the value of B from 5 to 10k

in steps of 100. For all the values of B up to 10,000, we

found that the Lyapunov exponents for the proposed

algorithm were found to be positive (approx. 3.8), indi-

cating that the system is chaotic.

Figure 3 shows the graph of the proportion of passing of

the bitstreams for the NIST SP800-22 test suite’s proposed

40 tests. It has been found that for all 40 tests the test

results values were greater than 95%. This allowed us to

conclude that the proposed chaotic system passes the bit-

stream randomization process, as specified by the NIST test

rules. The overall average success rate was 98.45%. The

cases like DFT, Block frequency test, and Binary matrix

rank test were successful with 99% accuracy. On the other

hand, cumulative sum and the cumulative sum was around

97%.

Figure 4 shows the histogram of p-values for the NIST

test suite’s linear-complexity test. As can be seen, the p-

value is nearly 50% or more times greater than 0.6 with

maximum frequency occurring at the p-value of 0.9 and 1,

each with a frequency of 14. The overall distribution of the

p-value is peaking at around 0.6. But, the overall distri-

bution is non-Gaussian distribution, indicating the chaotic

behavior of the proposed system.

Table 1 shows how the precision digit consideration can

still pass the NIST tests even if digits are greater than 10.

For only 8 or 9 precision digits 2 or 3 tests such as non-

overlapping or serial test were slightly producing non-

Fig. 2 A plot of Lyapunov exponent for different values of B. The

output chaotic nature is confirmed when the Lyapunov exponent is

positive. For the proposed algorithm for any value of B up to 10,000

Lyapunov exponents was found to be positive (approx. 3.8) showing

that the system is chaotic
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randomness and hence the proposed system should always

run with precisions greater than 10 digitals to ensure suf-

ficient randomness.

Table 2 shows the results obtained by performing vari-

ous statistical tests using the NIST SP800-22 test param-

eters on our proposed B-exponential map-based pseudo-

random sequence generator. The input sequence, which

consisted of 0’s and 1’s, was provided in the form of an

ASCII file. The PRBS generated by the proposed B-ex-

ponential map generator passed all 15 NIST tests suc-

cessfully. The NIST test parameters examined the

consistency of p-values in 200 streams of 106 bits each and

returned the p-value of the p values obtained for each test.

The spectral Discrete Fourier Transform (DFT) achieved a

p-value of 0.3 with a 99% passing rate i.e., 198 out of 200

tests were successful. In this test, the DFT of each sequence

is calculated and the variance in peak height is measured.

The overlapping template matching test achieved a 98%

accuracy with 196 successful attempts out of 200 and a p-

value of 0.19. Here, an M-bit window slides over the bit

sequence searching for a specific pattern. If the pattern is

found, it restarts the process, or else it moves slide by 1 bit.

The mono bit frequency test achieved a p-value of 0.03

with a 98% proportion of passing i.e., 196 out of 200 tests

were successful. This test determines and compares the

sequence’s one-to-zero ratio to that of a random sequence.

For the universal statistical test, which determines the level

of compressibility of the sequence without any error for-

mation, the p-value obtained was 0.38 with a 97% passing

rate i.e., 194 out of 200 tests were successful. The system

achieved a 0.15 p-value and 99% proportion of passing for

the block frequency test, 198 out of 200 tests were suc-

cessful here. This test finds out the equality of 1’s and 0’s

in a sequence. For the binary matrix rank test, the system

achieved a p-value of 0.67 with 198 successful tries out of

200 i.e., 99% accuracy. In this test, the reliability of a

specific substring on the input is checked. For the linear

complexity test, which determines the randomness of a

sequence based on its length in terms of the linear-feedback

shift registers, the system obtained a p-value of 0.98 with

196 successful attempts out of 200 i.e., 98% passing rate.

The run test showed a p-value of 0.4 and 98% passing rate

with 196 successful tries out of 200. This test checks for the

variation from 0 to 1 and vice versa in the consecutive bits.

The serial test gave a p-value of 0.28 with 196 out of 200

successful tries with a 98% passing rate. This test checks if

specific N-bit patterns repeat in the sequence. The non-

overlapping template matching test gave a 0.57 p-value

with a 98 % passing rate i.e., 196 successful tries. This test

is similar to overlapping template matching except that the

window slides with 1-bit increments. The run test showed a

p-value of 0.27 with a 98% passing proportion with 196

successful attempts out of 200. In this test, a comparison

between the number of consecutive 1’s in a sequence and a

random sequence is done. For the approximate entropy test,

the system gave a 0.43 p-value with a 98% pass rate i.e.,

196 successful tries. This test gives an estimate of entropy

Fig. 3 A graph showing the proportion of all proposed 40 tests

suggested by the NIST SP800-22 test suite. It was found that almost

all test results were above 95% success and hence we can conclude

that the proposed chaotic system passes the bitstream randomization

process as mentioned by NIST tests. The overall success rate was

98.45%

Fig. 4 The histogram of p-
values for the linear complexity

test of the NIST suite. It can be

seen that out all experiments,

the p-value is almost 50% of all

times was found out to be higher

than 0.6. Maximum frequency

occurred at a p-value of 1 and

0.9 with a frequency of 14. The

overall distribution of the p-
value is peaking around 0.6 but

has non-Gaussian distribution

showing its chaotic behavior
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using the frequency of consecutive blocks having a length

difference of one. The forward cumulative sums test gave a

97% passing proportion i.e., 194 out of 200 tests were

successful with a p-value of 0.69 and the backward

cumulative sums test gave a p-value of 0.59 with a 98 %

passing rate. These tests check whether the sum of bits, in a

forward and backward direction, in a sequence is as close

to 0 as possible. The random excursion test was tried using

different values of X ranging from - 4 to ? 4. The average

p-value obtained was 0.43 with a 98.62% passing propor-

tion. This test checks the divergence of the number of trips

to a certain state in one cycle of a sequence to that of a

random sequence. The random excursion variant test was

performed for different values of X from - 9 to ? 9. The

system achieved an average p-value of 0.64 with a passing

rate of 98.67%. In this test, the 18 different tests are per-

formed to determine the number of times a specific state

repeats and then comparing this to a random sequence.

For the verification of the randomness, it has been

performed the DIEHARD test and ENT test and have

passed all the tests with successful results. The ENT test

resulted in entropy of 7.9999 bits per byte where the

optimum value is achieved. The chi-square distribution

came out to be 0.54 which randomly would exceed this

value by 47% of the time. The arithmetic means value

achieved with data bits is 0.49 and the Monte-Carlo value

of pi came out to be 3.141725651. The correlation coeffi-

cient in our case was 0.00076.

For the DIEHARD statistical tool, the birthday spacing

p-value came out to be 0.910523. The overlapping per-

mutations were 0.284522. The rank of 31 X 31 matrices, 32

X 32 matrices, and 6 X 8 matrices were 0.3313, 0.4827,

and 0.7415, respectively. Monkey test on 20-bit word,

Overlapping-Pairs-Sparse-Occupancy (OPSO), Overlap-

ping-Quadruples-Sparse-Occupancy (OQSO), and DNA

were 0.019, 0.071, 0.723, and 0.298, respectively. The

count of 1’s in a stream of a byte, and in a specific byte

were 0.24 and 0.062, respectively. The parking lot test was

successful with a p-value of 0.805. The minimum distance

test was successful with 0.326. The random sphere test

achieved a p-value of 0.901. The sequence test was suc-

cessful with 0.812 and the overlapping sum test was suc-

cessful with a p-value of 0.802. The run test Up and Down

values were 0.81 and 0.80, respectively. The crab test for

the number of wins and throws per game were 0.501 and

0.404, respectively. The overall bit generation speed was

21 Mbps.

Many methods have reported B-Exponential chaotic

map for various purposes, such as, generation of mathe-

matically random patterns (Nagraj et al. [14]), But none of

the reported work combined methods of precision-based

pseudo-random binary sequence generator. The main

novelty of this work lies with the precision-based method

in combination with the unique construction of the gener-

ator as shown in Fig. 1. Here a total of 3 B-exponential

Random number generators are connected in series-parallel

Table 1 Result obtained with different precision values using NIST SP 800-22 test suite for the proposed pseudo-random sequence generator

using B-exponential map

Test name P value for different precision value Test passed

8 digits 16 digits 32 digits 64 digits 128 digits

Frequency 0.289667 0.759756 0.616305 0.202268 0.334538
p

Block frequency 0.001399 0.12962 0.016717 0.978072 0.699313
p

Forward sum 0.12962 0.048716 0.383827 0.935716 0.595549
p

Backward sum 0.366918 0.657933 0.699313 0.779188 0.304126
p

Run (0 to 1) 0.137282 0.455937 0.289667 0.595549 0.637119
p

Longest run (1’s) 0.153763 0.739918 0.002374 0.987896 0.779188
p

Rank 0.834308 0.181557 0.897763 0.334538 0.115387
p

Fast-FT 0.759756 0.437274 0.319084 0.514124 0.030806
p

Non-overlapping template 0.319084 0.897763 0.897763 0.574903 0.23681
p

Overlapping template 0.045675 0.798139 0.494392 0.350485 0.350485
p

Universal 0.319084 0.574903 0.12962 0.816537 0.334538
p

Approximate entropy 0.000000 * 0.867692 0.637119 0.01265 0.262249
p

Random excursions 0.195163 0.304126 0.657933 0.671779 0.867692
p

Random excursions variant 0.350485 0.102526 0.213309 0.437274 0.249284
p

Serial test 0.000000 * 0.55442 0.319084 0.383827 0.191687
p

Linear complexity 0.935716 0.162606 0.955835 0.637119 0.911413
p
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combination making the chaotic nature more complex and

possible periodicity is further extended with such feedback

and series approach. The precision digit matching with

modulo 1 operation is implemented first time with any

Table 2 Result of NIST SP800-22 test suite for proposed pseudo-random sequence generator using B-exponential map

Sr no Name of the statistical tests P-value of p-values Proportion of passing Test passed

1 Discrete Fourier transform (spectral) 0.304126 0.99
p

2 Overlapping template matching 0.191687 0.98
p

3 Monobit frequency 0.032923 0.98
p

4 Universal statistical 0.383827 0.97
p

5 Block frequency test 0.153763 0.99
p

6 Binary matrix rank test 0.678686 0.99
p

7 Linear complexity 0.987896 0.98
p

8 Run test 0.401199 0.98
p

9 Serial test 0.289667 0.98
p

10 Non-overlapping template 0.574903 0.98
p

Matching (subtest1)

11 Run test (longest run of ones) 0.275709 0.98
p

12 Approximate entropy 0.437274 0.98
p

13 Cumulative sums (forward) 0.699313 0.97
p

Cumulative sums (backward) 0.595549 0.98
p

14 Random excursions test

1) Var = - 4 0.637119 1
p

2) Var = - 3 0.931952 0.98
p

3) Var = - 2 0.437274 1
p

4) Var = - 1 0.500934 0.95
p

5) Var = 1 0.074177 1
p

6) Var = 2 0.066882 0.98
p

7) Var = 3 0.706149 1
p

8) Var = 4 0.16206 0.98
p

15 Random excursion variant test

1) Var = - 9 0.602458 1
p

2) Var = - 8 0.468595 1
p

3) Var = - 7 0.671779 1
p

4) Var = - 6 0.602458 1
p

5) Var = - 5 0.834308 1
p

6) Var = - 4 0.534146 0.96
p

7) Var = - 3 0.97606 0.96
p

8) Var = - 2 0.991468 0.96
p

9) Var = - 1 0.637119 0.98
p

10) Var = 1 0.77276 1
p

11) Var = 2 0.468595 1
p

12) Var = 3 0.275709 1
p

13) Var = 4 0.911413 0.98
p

14) Var = 5 0.122325 1
p

15) Var = 6 0.862344 1
p

16) Var = 7 0.739918 0.98
p

17) Var = 8 0.706149 0.96
p

18) Var = 9 0.437274 0.98
p
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chaotic map pseudo-random number generator. The

uniqueness of the proposed method also lies in how we are

generating the final bit. Instead of directly outputting bits,

the decision has been taken based on the comparison of

two bits from two pseudo-random binary sequence gener-

ators. The matching mechanism doubles the periodicity. It

is expected that this kind of approach helps future

researchers in developing more complex maps using sim-

ple mathematical functions.

Table 3 shows a comparison between the proposed

method and existing methods reported in the literature. It

has been found that most of the methods could reach a very

good entropy value Pan et al. [10] being the least at 7.98

and Shastry et al. [14] being the best at 8. The proposed

method could reach 7.9999 which is one of the best among

the reported literature. The correlation coefficient should

ideally be 0 but most of the reported literature could reach

up to 2 digits precision. Shastry et al. [14] had the best

correlation coefficient of 0.000024 and Tang et al. [15]

could just reach up to 7.99. The proposed method could

reach up to 0.00076.

Although Shastry et al. [14] provided better results when

using the B-exponential map, their system did not use

precision tuning. Due to the absence of precision tuning in

their algorithm, the complexity of their method is more.

This complex nature in turn leads to a slower execution

time. Whereas our system provides precision-based tuning

thus reducing the complexity and hence, the random bits

are generated at a faster speed. So while the method pro-

posed by Shastry et al. [14] is good to use in systems that

want to acquire high entropy and low correlation coeffi-

cient, our approach is more reliable for real-time applica-

tions that require a fast generation of bits. Although the

result of the NIST SP800-22 test suite obtained by Shastry

et al. [14] was 99%, which was 0.55% better than ours, our

approach was able to outperform or perform equally well in

most tests. But, it was only due to the Universal Statistical

test and Cumulative sums (Forward) test that the results of

our system reduced slightly.

Conclusion

The proposed precision-based PRBS generator using a

B-exponential chaotic map can generate random bits. This

map could pass all the NIST tests with an overall success

rate of 98.45%. It has been checked the randomness of our

bit generator’s various precisions ranging from 8 bits to

128 bits and found the average correlation coefficient to be

0.00076. Randomly generated bit sequences have a wide

range of applications such as online transactions, image

encryption, etc. Because of the CPU processing limitation,

it could only reach up to 1.09 Mbps but, when imple-

mented on a standalone FPGA hardware platform, even

higher bit rates are possible. The produced random bit file

can be used to create one-time passwords (OTPs) that can

be used in a variety of security activities. Researchers can

explore more applications of these PRBS generators in this

online era.
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