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Abstract Transmission line faults are most common in

long distance power transmission system. Classification of

faults is crucial in removal of the faulted line from supply

end in order to discontinue the unwanted flow of power

through the fault point. The proposed work illustrates a

simple method of classification of faults in transmission

line using Principal Component Analysis- (PCA) based

approach. The proposed method uses to extract fault fea-

tures in terms of Principal Component Index (PCI), fol-

lowed by a threshold-based analysis of the PCI values.

Development of two threshold values helps in segregating

the three different levels of fault disturbance in terms of the

PCI values, thereby, developing fault signatures for clas-

sification. A 150 km transmission line has been modeled in

EMTP for simulating the different fault prototypes, fol-

lowed by analysis in MATLAB environment. Fault loca-

tions and fault resistances are also varied in order to

enhance robustness in the classifier. Most importantly,

noise level of the fault signals is varied in wide practical

range; especially, signal to noise ratio (SNR) is increased

to 15 dB to examine the robustness of the proposed clas-

sifier under severe noisy condition, where the same is

found to produce 99.78% classifier accuracy using half

cycle post-fault line currents only; thus, establishing the

insensitivity of PCA toward noise.

Keywords Principal Component Analysis (PCA) �
Principal Component Index (PCI) � Fault classification �
Signal to noise ratio (SNR) � Classifier accuracy

Introduction

Power transmission system is one among the most wide-

spread networks. These transmission lines spread across

long distances and go through different terrains. Hence,

these are often subject to different faults. Different envi-

ronmental constraints like storm, snow, ice, etc., often

initiate faults in these lines. Several other factors like the

presence of different animals, birds as and growing vege-

tation, weeds and other parts of the trees often cause short

circuit between the three phases of the transmission lines

and ground. In most of the cases, the faults occur between

single line and ground. Fast detection of fault and identi-

fication of the faulted phase is one of key area research in

power system protection and research. Classification of

faults, therefore, is very essential for detecting the dis-

turbed line; which enables quick isolation of the faulted

line. This restricts unwanted flow of electric power as well

as prevents damage to the working persons and equip-

ments. System stability is also maintained by the removal

of the faulted line.

Researchers have worked on several methodologies

regarding fault treatment [1]. Enormous advancement of

soft computation and artificial intelligence-based tech-

niques has paved the way for the development of digital

relays. In this paper, a PCA-based simple and effective

method of classification of power system fault is described.

The method uses the Principal Component Analysis (PCA)

to develop Principal Component Index (PCI) for each the

three phase fault signals of half cycle post-fault duration.
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Fault features of each of the ten classes are extracted using

the PCA schemes which are further analyzed using two-

level threshold-based analysis to segregate the three dif-

ferent levels of fault disturbance levels and hence develop

classifier model. The proposed classifier is verified using

diverse data of fault signals for fault conducted at various

intermediate locations along the line. Fault resistance,

another vital fault parameter, is also varied in steps to

provide robustness of the classifier.

The proposed classifier is simple and contains very less

computational analysis, as it uses only threshold-based

classification model, using the PCI values; hence, is fast

and easily implementable in practical power system pro-

tection models. This method is simple with the use of PCA

as the only feature extraction tool. Non-use of supervised

learning models like the neural network discards the

requirement of large training data set and the associated

large training time. At the same time, PCA is a simple

analysis model, compared to computationally heavier

transform-based models using wavelet or Fourier trans-

forms, thus making the overall analysis easier. Another

major feature of the proposed work is that it takes into

account the practical variability like the effect of varying

fault resistance, as well as inherent power line noise. The

most important part of the present work is that the proposed

fault classifier model shows insensitivity toward the effect

of adverse noise level, which is also studied in this work.

Gaussian white noise has been incorporated to the fault

signals to develop noise-contaminated fault signals. Noise

level of the fault waveforms is also varied in four steps by

changing the SNR level. More importantly, the proposed

model is studied at a high noise level of 15 dB SNR, which

is higher than the normal noise level adapted in most of the

researches. The effect of this adverse noise is considered

even with simultaneous occurrence of variation of fault

location and fault resistance. Hence, an attempt has been

made to design a robust fault classifier model using the

excellent feature extracting properties of PCA, following

the proposed two-level threshold identifier at this intense

level of noise. On the overall analysis, very high classifier

accuracy of 99.78% using simple PCA-threshold-based

scheme with reduced computational complexity, analysis

with practical alike simulated fault signals incorporating

simultaneous variation of fault location and fault resistance

and most importantly, the presence of a very high noise

level of 15 dB SNR proves the effectiveness of the pro-

posed classifier.

The development of the algorithm is explained in steps

using case studies in several occasions, followed by testing

of the model using unknown fault signals. Finally, a

comparative analysis of the same with some of the existing

methodologies has been illustrated in the discussion

section.

Background

Multivariate statistical method like Principal Component

Analysis (PCA), as has been adapted in this work, has been

often used to detect and classify faults in a long trans-

mission system. PCA is one of the most useful tools for

determining the directions of highest variance in a multi-

variate sample in descending order of importance. Power

system research has huge application of PCA due to its

usefulness in such feature identification, among the mul-

tivariate data set containing various combinations of volt-

age, current and power. Fault analysis in power system, in

particular, requires identification of directions of variations

of these fault signals of the three corresponding phases,

which on analysis with PCA yields useful fault features.

Another major advantage of PCA makes it extremely

useful as it has the ability to reduce the effect of noise

inherently by considering the most important direction only

in decaying order of importance. Hence, power system

applications find it very useful, especially in fault analysis,

where the electrical signals like voltage, current, etc., most

often remain corrupted with power line noise. The pro-

posed work also investigates the effectiveness of applica-

tion of PCA in adverse noisy environment for extraction of

fault features. PCA-based classifiers are relatively simple

and used heavily for fault analysis [2–11]. PCA is often as

a standalone feature extractor [2–4], while different hybrid

models of PCA with other popular methodologies are also

used in abundance in different researches [5–11]. The

researchers [2] have used symmetrical pattern-based

application of PCA, while the authors of [3, 4] have used

ratio-based analysis of the PCA features in terms of the

PCA index for classification of faults. PCA is often com-

bined with another very important supervised learning

method of pattern recognition like probabilistic neural

network or PNN for effective classification of power sys-

tem faults [5, 6]. Signal differentiation is another method

which has been often used for highlighting the transient

disturbances. The researchers [7] have used this scheme,

followed by analyzing the highlighted transients using

PCA. Support vector machine or SVM, which is already

proven extremely effective, especially for pattern recog-

nition problems, has often been used as hybrid combination

with PCA to develop effective classifiers [8]. Traveling

wave-based topology of analyzing faults has been practiced

since long back. This has also been used with PCA for

effective protection algorithms [8, 9], often incorporating

wavelet tool as an additional feature extractor [10]. Sci-

entists have also tried to develop fault analysis algorithms

incorporating several other methodologies altogether along

with PCA, as is done by the authors of [11]; although

incorporation of diverse methodologies develops compu-

tational complicacy in analysis. Apart from classification,
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the PCA feature analyzed here has also been usefully

applied for the purpose of fault localization, used with best-

fit analysis [12, 13].

Different other methodologies have also been applied in

power system fault analysis for detection, classification as

well as prediction of fault location in transmission lines.

Artificial neural network (ANN) along with a major variant

of the neural network family: Probabilistic neural network

or PNN has extensive applications in different pattern

recognition application and hence used widely in the field

of power system fault analysis [14, 15]. Supervised learn-

ing methods like neural network-based approaches are

quite accurate; but training of the network requires a

diverse and long set of data for successful development of

the model. This accounts for associated large training time

as well. Another useful tool like wavelet transforms (WT)

has also been employed extensively in fault analysis and

research [16]; although WT suffers from computational

intricacy, especially at higher level of decomposition.

Fuzzy inference system (FIS) is another method that has

good application in the same field of research. The inves-

tigators [17, 18] have proposed a FIS-based multi-sensor

data fusion-based approach for accurate fault analysis.

Different combinations of ANN, WT or FIS have been

applied in power system protection models very effec-

tively. Hybrid methods like combined approaches of WT

and ANN has been extremely popular as it contains the

accuracy features of both the methods [19]. The research-

ers [20, 21] have developed WT and FIS-based model,

while the researchers [22, 23] have developed a combined

approach of all three methods and extended the research to

develop wavelet-neuro-fuzzy adaptive network or ANFIS

model to develop effective fault analysis schemes. The

ANFIS-based models are extremely effective, although the

method computationally heavier as it includes supervised

training method in combination with mathematical trans-

form-based technique. Apart from these traditional meth-

ods of fault analysis, support vector machine or SVM has

come up with superior results, although SVM is sometimes

prone to inaccuracy due to noise perturbation. SVM is

often used standalone for extracting fault features [24, 25],

as well as like a hybrid model used with other method-

ologies for developing the complete fault analyzer [26–28].

The researchers [26] have proposed discrete orthogonal

S-transform or DOST-based SVM analyzer, whereas

authors of [27] have used SVM with wavelet analysis, and

those of [28] have described a hybrid model of SVM and

radial basis function neural network. Probabilistic neural

network (PNN) is a major variant of neural network and is

very effective for pattern recognition problems; hence used

in abundance for power system fault analysis, especially

classification-related researches [15, 29]. PNN is also used

with PCA to develop active fault classifier models [5, 6].

Traveling wave-based methods have also been applied by

several researchers [30, 31]; although the wave acquisition

time depends on the location of fault, which is a variable

measure.

Latest researches include several modern applications of

soft computational techniques. Phasor measurement unit or

PMU-based analysis has become extremely popular,

especially during the last few years [32–34]; although PMU

applications often need additional devices to be installed at

both ends to acquire fault features simultaneously from

both ends. This requires additional cost of installation.

Sequence network-based fault analysis schemes have been

practiced since long back, although recent advancements of

soft computational schemes have led to its latest advanced

developments [35, 36]. Advanced form of neural network,

like extreme learning machine (ELM) [37] or polynomial-

based Chebyshev neural network (ChNN) [38], hybrid

methods with artificial intelligence-based methods like

genetic algorithms [39] or mathematical morphology-based

fault feature extraction technique using median filter [40],

has been recent additions to the fault analysis methodolo-

gies. Combined involvement of a few methods like inde-

pendent component analysis (ICA), traveling wave theory

and SVM is shown in the literature [41] to and the

researchers [42] have used methods like stationary wavelet

transform (SWT), determinant function feature (DFF),

SVM and support vector regression (SVR) to develop

accurate classifier. Several methods are still being devel-

oped to improve accuracy using lesser duration of fault

signals, which would aid to the process of developing

effective digital relaying schemes.

Methods of Analysis

Simulation of Faults

The proposed work illustrates a simple method of fault

classification in a long transmission line. A 132 kV three

phase transmission line is modelled in ATP draw, and this

line is very much similar to the one designed as mentioned

in the researches [3, 4, 6, 7, 12, 13]. Fifteen individual

blocks of 10 km each are connected in cascade to develop

the proposed 150 km long ‘JMarti’ model of transmission

line. Fault data are collected from the simulated model in

the form of fault transient voltage and current for analyzing

with the proposed algorithm. The three phase transmission

line is made up of planar configuration of the three lines,

where each line is separated by 17.5 m. The height of the

line at the tower is 27.9 m, and the same at mid-span of the

line is 13 m. Line resistance has also selected as 0.0585 X/
km for each conductor. Two other ground conductors of

per unit resistance of 0.304 X/km are placed above the
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three phases at a mutual separation of 26.4 m. These

ground lines are placed at a tower height of 41.05 m. The

sampling frequency has been assigned as 2000 samples per

cycle, which corresponds to 100 kHz. Ten different pro-

totypes: three single line to ground fault (SLG), three

double line fault (DL), three double line to ground fault

(DLG) and one three line fault (LLL) along with healthy

condition are investigated for classification.

In order to make the simulation more practically suited,

we have incorporated Gaussian white noise to the fault

signals in MATLAB environment using the required signal

to noise ratio (SNR). The noise is simulated explicitly in

the software and added to the fault signals generated using

ATP Analyzer. Noise level is also selected accordingly as

per requirement of this work. We have found in many

studies that researchers have used the same Gaussian white

noise [13, 14, 31]; hence, we have used in this work.

Besides, we have found in several papers that many authors

prefer the noise level to lie in between 75 to 20 dB

[14, 31, 41], or in a few cases, upto 15 dB. Hence, the SNR

is varied here between 30 to 15 dB in steps of 5 dB as and

when required. This, altogether, creates a more practical

alike fault environment.

Analysis of Fault Levels

Three phase current waveform for all the ten fault classes is

studied carefully to extract special features in terms of the

Principal Component Index (PCI) values. It is observed

that fault signals produce high frequency transient oscil-

lations immediately on occurrence of a fault. These tran-

sients are developed primarily in the directly affected phase

(s) for all the above four categories of fault and less

prominently in the other un-faulted lines. The fault features

are observed with markedly minor impact in the un-faulted

lines in cases of a ground faults like SLG and DLG faults.

The circulation of the zero sequence current through the

grounded neutral and the grounded faulty line causes minor

irregularities in the line currents of the directly un-groun-

ded lines. These disturbances are larger compared to the

almost no disturbance of the un-faulted line for DL faults.

Less prominent zero sequence current flow for these faults

causes this almost no disturbance in the un-faulted lines.

Hence, disturbances are observed in the affected phases

only for the DL faults. Hence, the three phase lines are

categorized in three distinct classes according to the dis-

turbance level of fault occurred in all the phases. These

classes are denoted as fault disturbance level subsequently

which are mentioned as follows:

(i) Directly affected phase for all faults

(ii) Directly un-faulted phases for ground faults like SLG

and DLG faults.

(iii) Directly un-faulted phase for DL faults

The key features of faults, expressed in terms of the PCI

values, are arranged in proper order to categorize these

according to the above-mentioned three classes. The fault

transient signals are scaled before analysis in order to

impart generalization to the proposed scheme. These pre-

pared signals are mentioned as f(n) subsequently. The

phase A currents are shown here for identifying the above

three categories using three fault classes here as examples.

These are shown in Fig. 1.

It is observed from Fig. 1 that phase A is affected in

three different ways with three different levels of distur-

bance. Phase A is directly affected in case of AG fault

hence is most disturbed. This is prominently observed from

Fig. 1a where it is observed that the per unit line current

reaches almost 6 times within 300 samples, i.e., 3 ms post-

fault condition after the fault has been occurred at sample

time index of 500 approximately. Figure 1b shows line A

waveforms for BG fault where line acts as the indirectly

affected line for ground fault. Naturally, it is observed that

the effect of fault is much less prominent for this line A as

fault affects this line indirectly; yet the effect of fault is

observed in minor proportion due to the indirect connection

to ground through the directly faulted line B. Finally, for

BC fault, as observed from Fig. 1c, line A is almost

undisturbed due to the effect of fault. The only major

disturbance observed in thin line is due to the effect of

noise only. Hence, the three fault disturbance levels are

prominently classified graphically from the above obser-

vations of Fig. 1. Similar observations are also found for

other phases too, as well as for each phase for different

fault prototypes. The three phases of the ten fault proto-

types studied in this work are categorized using the above

concept and the fault disturbance levels are illustrated in

Fig. 2. These variations are also prominently obtained from

the PCI values so obtained at all fault locations, later

observed from Table 1. Hence, attempts have been made in

this work to differentiate the three fault disturbance levels

directly, using the two threshold values.

Effect of Variation of Fault Location

The robustness of the proposed algorithm is also validated

using fault data corresponding to faults conducted at vari-

ous intermediate locations along the line. Ten different

faults are conducted initially at three intermediate

equidistant points: 30 km, 70 km and 110 km from the

source and the PCI values are observed.

In this work, we have considered only the first two

major principal components. The data set is initially

arranged in such a way that the healthy signals are placed

in the first column, followed by the fault signals
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corresponding to different fault conditions. We have con-

sidered the PC scores (PCS) in the primary two directions

and computed the distance of the PCS of any other fault

signal from the PCS of the healthy condition. This distance

is referred to as the PCI in this work. Thus, the PCI values,

in turn, indicated the extent of disturbance caused in the

Fig. 1 Phase A currents for three classes of faults (a) AG, (b) BG and (c) BC faults conducted at 70 km with fault resistance of 10X

Fig. 2 Variation of fault disturbance levels for ten different fault prototypes

Table 1 Three phase PCI for different fault locations for ten classes of faults, with half cycle post-fault data, SNR = 30 dB

Fault Location 30 km 70 km 110 km

Fault PCIA PCIB PCIC PCIA PCIB PCIC PCIA PCIB PCIC

AG 209.871 2.90224 2.99509 120.867 3.60609 3.74604 89.0239 4.07311 4.06055

BG 2.98341 268.81 2.99197 4.01916 144.682 4.06782 4.55089 94.8086 4.62982

CG 2.9368 3.04102 321.926 4.38409 4.43051 202.667 5.14317 5.20349 145.847

AB 225.092 228.167 0.05542 115.438 116.382 0.04963 74.6527 75.7415 0.0418

BC 0.05388 328.002 331.004 0.02534 214.41 216.376 0.05707 152.877 153.834

CA 279.208 0.02646 281.217 194.394 0.02883 195.459 148.862 0.06384 149.828

ABG 226.14 303.026 2.61002 127.455 154.445 3.70548 92.1278 96.3896 4.15188

BCG 2.34741 307.749 370.354 3.05294 193.236 243.57 3.33856 134.905 175.998

CAG 260.327 2.53006 340.772 166.685 3.36372 233.341 128.155 3.75145 175.14

ABC 261.568 327.621 378.668 158.137 189.467 261.863 119.436 126.034 194.868
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signals due to faults; more the extent of fault, higher is the

PCI and vice versa.

The variation of line A currents for variation of fault

locations is observed as a prototype case for AG fault in

Fig. 3, where it is observed that as the fault point moves

away from the source, the magnitude of transients gradu-

ally reduces in proportion. This is also reflected from the

PCI value from Table 1.

The nature of transients discussed earlier, as well as

shown from Fig. 1, is also found to comply with the PCI so

found in Table 1. It is observed that the PCI for line A is

much higher compared to the PCI of B and C for AG fault,

since A is the most disturbed phase for AG fault. Other

faults too are found to follow the inferences drawn earlier.

It is further observed from Fig. 3 that as the fault moves

away, the level of disturbance also reduces for a fixed fault

resistance. Hence, it is well inferred that PCI values basi-

cally are a measure of the level of disturbance of the fault

signal from the healthy condition. Other faults are also

found to follow the disturbance levels as described from

Fig. 3. The three levels of disturbances are also promi-

nently observed from the same Table 1. It is further

observed that the diminishing PCI characteristics with fault

location are most prominently observed for the directly

faulted lines, compared to the indirectly affected ones.

Effect of Variation of Fault Resistance Along

with Fault Location, with Increased Noise Level

The variation of fault resistance is also studied in this work

by varying the same in steps of 0.01, 1, 10 and 100 X. The
noise contamination is also increased to 15 dB SNR

simultaneously to observe the effect of noise with this

increased distortion. Figure 4 shows the variation of line A

current for AG fault for variation of fault resistance for a

particular fault location. The three phase PCI values for

these four-fault resistances and for three intermediate

locations are mentioned in Table 2.

Analysis and Algorithm Development

Comparative Analysis of the Observations

The observations from all the above tables are used to

develop a classifier algorithm. It is worth inferring from the

observations of Tables 1 and 2 that PCI for the directly

affected line for all faults are very high, followed by much

lesser PCI for the un-grounded lines of ground faults.

Finally, the un-faulted lines for DL faults are found to

produce least value of PCI, thus justifying the classification

schemes developed in Sect. 2.2. These observations are

further found valid irrespective of the fault location and

fault resistance, although the magnitude of PCI reduces

gradually for increasing fault location as well as for

increasing fault resistance in accordance with the obser-

vations from Figs. 3 and 4, respectively. A comparative

analysis of the three phase PCI values obtained is shown in

Table 3 considering faults conducted at two more terminal

locations of the line: 10 km and 140 km, in addition to the

30, 70 and 110 km. Hence, the total set of fault locations

used for developing the classifier becomes 10, 30, 70, 110

and 140 km. Besides, and fault resistance is also varied

within the range 0.01 to 100 X.
The PCI values which are not required for developing

the algorithm are marked as NR in Table 3. The distinct

difference between the PCI ranges of the three fault dis-

turbance levels is observed prominently from Table 1.

These variations are again found justified even for varia-

tions in practically varying fault parameters like fault

location and fault resistance. Hence, considering the above

variations, the two intended threshold levels are developed

as two intermediate boundaries between the three sets of

fault disturbance levels so conceptualized. Figure 5 shows

the method of separation of the three fault disturbance

levels using the developed two threshold levels. The

highlighted values from Table 3 are used to design these

two threshold levels, which is illustrated graphically in

Fig. 5.

Fig. 3 Fault transients for line A current for AG fault conducted at

three intermediate locations of 30, 70 and 110 km, fault resistance

10X
Fig. 4 Fault transients for line A current for AG fault conducted at

70 km from the sending end, fault resistance is varied in four steps
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It is observed that the directly faulted phases produce

highest oscillation, followed by indirectly faulted phases of

ground faults and indirectly faulted phases of non-ground

faults, respectively, in order. Hence, the PCI-level bound-

aries are also obtained in the same order in Fig. 5. The NR

values, as described in Table 3, are either the upper limits

of the directly faulted phases or the lower limit of the

indirectly faulted phases of DL faults, which behave almost

similar to no-fault condition. This is understood from

Fig. 5 as well that these two limits are absolutely not

required for developing the classifier threshold limits;

rather, the thresholds reside at the intermediate region of

lower limit of directly affected phase and the upper limit of

the directly un-faulted phases for ground faults, as well as

lower limit of directly un-faulted phases for ground faults

and upper limit of directly un-faulted phase for double line

faults, as is easily observed from Fig. 5. The numerical

values of PCI of these limiting conditions are also observed

from Table 3 as well as from Fig. 5. Considering all these

values, classifier logic is designed as follows.

Fault classifier threshold selection

Two threshold values: hL and hH, as is observed from

Fig. 5, are selected for the development of the algorithm.

hL is denoted as the lower threshold which corresponds

to the maximum predicted obtainable PCI by the un-faulted

line of DL faults or no-fault signals. Hence, un-faulted

Table 2 Three phase PCI for different combinations of Df and Rf for AG fault with half cycle post-fault data, SNR = 15 dB

Fault location 30 km 70 km 110 km

Fault resistance PCIA PCIB PCIC PCIA PCIB PCIC PCIA PCIB PCIC

0.01 387.808 5.62327 5.64032 176.415 5.80892 5.66401 118.404 6.2039 6.19841

1 355.531 5.46109 5.04491 168.93 6.09823 5.97442 115.179 6.08793 5.68791

10 210.048 5.28909 5.33812 121.134 5.94682 5.71411 89.1041 5.84882 5.52681

100 41.1504 1.70996 1.74122 35.402 3.29107 2.54388 30.4435 4.41015 4.38821

Table 3 The limiting values of three phase PCI considering variation of fault location and fault resistance, for four major fault categories

including ten fault prototypes, using half cycle post-fault signal

Fault class Concerned phases Least PCI Highest PCI

SLG Directly faulted phases 26.6141 NR

SLG Indirectly faulted phases 1.6832 7.3953

DL Directly faulted phases 28.6569 NR

DL Indirectly faulted phases NR 0.0742

DLG Directly faulted phases 28.7041 NR

DLG Indirectly faulted phases 1.8956 5.6542

LLL Considering all phases 30.3481 NR

Fig. 5 Segmentation of three

levels of fault disturbance using

two-level threshold of PCI

values

J. Inst. Eng. India Ser. B (February 2022) 103(1):197–211 203

123



phases of DL faults are predicted to produce PCI less than

hL.
Similarly, hH is termed as the upper or fault threshold

which indicates the least predicted PCI level of the directly

faulted lines for any fault. The directly faulted lines of all

faults are expected to produce higher PCI than hH.
The values lying in the intermediate zone (in between hL

and hH) are signifying the PCI for the un-faulted lines of

ground faults. Hence, the un-grounded lines of the ground

faults (DLG and SLG faults) are expected to produce PCI

in this range.

These values are chosen based on a large set of obser-

vations considering diverse conditions of fault location and

fault resistance. As mentioned already, fault is conducted at

10, 30, 70, 110 and 140 km with fault resistance varying in

discrete steps of 0.01, 1, 10 and 100 X in order to obtain

fault signals for developing the classifier. The following

major findings were obtained from Table 3 as well as from

Fig. 5:

Case a) The highest PCI of un-faulted line for all DL

faults is 0.0742.

Case b) Also, the minimum value of PCI of any directly

affected line considering all four major categories of faults

is 26.6141 (for SLG fault).

Case c) The un-faulted lines in case of ground faults

(SLG and DLG) produce PCI in the range of 1.6832 and

7.3953.

A further factor of safety is imposed on these values to

obtain the threshold limits; hence, a tolerance of 25% is

applied over the values as a factor of safety. This alters the

obtained numerical PCI boundaries as shown in Fig. 4 and

the modified PCI values are shown in a modified PCI

threshold diagram as shown in Fig. 6.

The modified values of the limiting boundaries of the

three fault disturbance levels are obtained from Fig. 6.

Hence, 25% above the upper limit obtained in case (a)

produces: 0.0742 9 125% = 0.0927 and 25% below the

lower limit obtained in case (b) produces

(26.6141 9 0.75) = 19.9606. It is further observed that the

range of PCI mentioned in case (c) for ground faults

[1.6832: 7.3953] lies well within these modified lower and

upper limits of 0.0927 and 19.9606 , respectively, even

after applying the assigned factor of safety of 25% when

this range of case (c) is modified as [1.2624: 9.2441].

Hence, hL and hH are judiciously chosen following Fig. 6.

Hence,

a) hL is selected in the intermediate range of 0.0927 and

1.2624, and hence, hL is chosen as 0.5.

b) hL is selected in the intermediate range of 9.2441 and

19.9606, and hence, hL is chosen as 15, thus,

hL = 0.5 and hH = 15;

Thus,

(a) If any line has PCI less than hL, the line is denoted as

directly un-faulted phase for DL faults or no-fault,

(b) If any line has PCI higher than hH, the line is denoted

as directly affected phase for any fault, and

(c) If any line has PCI in between hL and hH, the line is

denoted as directly un-faulted phases for ground

faults.

And, the fault classifier logics are developed as follows:

Case 1: If the PCI for all three lines is less than hL, it is
classified as no-fault.

Case 2: If the PCI for any two lines is higher than hH and

one line is less than hL, it is detected as DL fault.

Case 3: If the PCI for any two lines is higher than hH and

one line is in between hL and hH, it is detected as DLG

fault.

Case 4: If the PCI for any one line is higher than hH and

that of other two is less than hH, it is detected as SLG

fault.

The sub-classifications of faults are done according to

the logic developed in Table 4. This defines the final fault

signatures for classification. The test PCI values PCIT for

the three lines are compared to the two threshold levels hH
and hL for fault classification. The basic classifier logic is

illustrated in a flowchart in Fig. 7, and the sub-classifica-

tion is done according to Table 4 as mentioned earlier.

Noise Immunity of the Proposed Classifier

PCA is well known for reducing the effect of noise as it

identifies the principal directions of the variation, of a

multivariate dataset, in the descending order of importance.

Since noise has inherent property of much lower magnitude

compared to power frequency of fault frequency signals,

the effect of noise in naturally eliminated from these

principal directions. This property of noise immunity is

also investigated in this work. Table 5 shows a comparative

analysis of the PCI for direct standardized fault signals and

that of its filtered form.

.

The above observations show that filtering does not

affect the outcomes of the PCA algorithm as there is no

remarkable change in the magnitudes of PCI, i.e., PCI for

direct and fault signals has almost insignificant difference.

Hence, one key advantage of using the proposed PCA-

based fault analyzer, as evident from Table 5, as it capable

of reducing computational burden by eliminating the

requirement of filtering. The proposed algorithm is further

carried out with more adverse conditions of higher noise

level. SNR is varied for this purpose to observe the vari-

ation in PCI. Figure 8 shows the variation of line A current

signal (per unit) under healthy condition for four different
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SNR levels. These PCI values of the direct and the filtered

signals are presented in Table 6.

It is well inferred from Table 5 and Table 6 that the

impact of noise is well taken care of by PCA, as it retains

only the most important directions of variation of the data,

thus discarding the effect of less magnitude noise naturally.

The filtered and non-filters signals when analyzed using

PCA produce very close outcomes which is reflected in the

PCI values of both the tables. Hence, filtering becomes

insignificant with PCA, thus saving vital time and com-

putation associated with filtering. This shows the inherent

property of PCA to ignore the effect of noise to a great

extent.

Table 6 further shows that the proposed PCA-based

analyzer produces robust fault features in terms of Princi-

pal Component Indices (PCI). The range of PCI values of

the non-faulted A phase for BC fault are highlighted in

Table 6. It is observed from Table 6 that the average value

of PCI for non-faulted phase in case of DL faults varies

from 0.048 (for SNR = 30 dB) to 0.36 (for SNR = 15 dB).

This increased magnitude of PCI is naturally due to the

higher level of noise. The lower threshold hL was selected

as 0.5 previously. It is found here that the PCI of the un-

faulted line (line A) of DL fault (BC fault) is less than 0.22

for 20 dB SNR, which is considered for many practical

simulations and considered in many researches [7]. PCI

increases to marginally higher than 0.36, even for very high

noise level of 15 dB of SNR, which still lies below the

previously selected threshold of hL = 0.5, by a margin of

26% approximately. Since there is not much of a difference

among PCI of the un-grounded lines of the ground faults

for cases corresponding to 30 dB and 15 dB, margin of

20% may further be considered to increase the magnitude

of hL safely from the previously selected value of 0.5 to a

new level of 0.8, considering the new PCI magnitude of

0.37. This updated value of hL is still much less than 1.6832

which is the minimum PCI of the un-grounded lines of the

ground faults mentioned in Table 3, as well as from Fig. 6.

hH although, is kept same as 15 in all the cases, as it is not

Fig. 6 Segmentation of three

levels of fault disturbance using

two-level modified threshold of

PCI values considering 25%

tolerance level

Table 4 Fault classifier logic development

PCI values of Predicted Output

PCIA PCIB PCIC

PCITA\ hL PCITB\ hL PCITC\ hL No-Fault

PCITA[ hH PCITB\ hH PCITC\ hH AG

PCITA\ hH PCITB[ hH PCITC\ hH BG

PCITA\ hH PCITB\ hH PCITC[ hH CG

PCITA[ hH PCITB[ hH PCITC\ hL AB

PCITA\ hL PCITB[ hH PCITC[ hH BC

PCITA[ hH PCITB\ hL PCITC[ hH CA

PCITA[ hH PCITB[ hH hL B PCITC B hH ABG

hL B PCITA B hH PCITB[ hH PCITC[ hH BCG

PCITA[ hH hL B PCITB B hH PCITC[ hH CAG

PCITA[ hH PCITB[ hH PCITC[ hH LLL
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affected due to minor noise disturbances. Hence, the

threshold levels are set finally as:

hL ¼ 0:8 and hH ¼ 15

Result and Discussion

The proposed classifier is tested for ten different fault

classes for wide variation in fault location and fault resis-

tance, and most impotently, for a large variation in noise.

Out of the fourteen intermediate locations in between 10

and 140 km, each 10 km apart of the 150 km long trans-

mission line, fault data corresponding to 10, 30, 70, 110

and 140 km are used for designing the classifier, whereas

the rest of the locations, e.g., 20, 40, 50, 60, 80, 90, 100,

120 and 130 km, i.e., a total of nine locations are used for

testing the same. Fault resistance is also varied within the

specified range of 0.01 to 100 X. Finally, the noise level is
changed in terms of four steps of SNR to test the robustness

of the classifier under practically simulated circumstances.

Each fault class is tested for faults conducted at the above-

mentioned nine fault locations with four different fault

resistance values for each level of noise. Hence, the volume

of the test dataset for each fault class becomes (9 loca-

tions 9 5 fault resistance), i.e., 45, for each of the four

levels of SNR. The classifier outcomes of the (45 obser-

vations 9 10 fault classes), i.e., 450 numbers of unknown

faults are summarized in Table 7.

Besides, the proposed model is also studied for variation

in fault inception angle (FIA). Three discrete values of FIA

of 0�, 45� and 90� have been tested using this scheme;

since each quarter cycle of a sinusoidal signal is symmet-

rical. It is found that this fault parameter has less impact on

the results; and more importantly, it hardly has any impact

on determination of the faulty phase(s). All the directly

affected lines were identified correctly even considering

the variation of FIA. Identification of the faulted phases is

of most importance, since a heavy power flows out through

these faulted lines causing system unbalance, and even

causing possible damage to persons and equipments. This

shows the robustness of the classifier against the variation

of another practical parameter like FIA.

Fig. 7 Flowchart of the proposed fault classifier

Table 5 Comparative analysis of PCI for direct and filtered signals for AG fault conducted at fault location 70 km with fault resistance 10X,
with half cycle post-fault data, SNR = 30 dB

Fault

Class

PCIA PCIB PCIC

Direct Filtered Direct Filtered Direct Filtered

AG 120.87 120.11 3.6061 3.4795 3.746 3.6419

BG 4.0192 3.9274 144.68 139.33 4.0678 3.9707

CG 4.3841 4.3824 4.4305 4.4263 202.67 200.96

AB 115.44 109.96 115.38 109.94 0.0496 0.0581

BC 0.0253 0.0259 214.41 210.34 214.38 210.29

CA 194.39 194.2 0.0288 0.0287 194.46 194.26

ABG 127.45 125.09 154.44 147.51 3.7055 3.7036

BCG 3.0529 2.9465 193.24 187.6 243.57 240.75

CAG 166.68 166.35 3.3637 3.2936 233.34 232.21

ABC 158.14 156.9 189.47 182.49 261.86 259.82
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Analysis of Results

A comparative analysis of the proposed method with that

of some of the existing methods is illustrated in Table 8.

Fault classifier features like classification accuracy, range

of variation of fault resistances, noise level incorporated

and post-fault detection duration of several researches are

Fig. 8 Magnified view of line A per unit healthy current signal for variation in SNR in four levels

Table 6 Comparative analysis of PCI values of phase A for direct and filtered signals for AG fault conducted at fault location 70 km with fault

resistance 1X, with half cycle post-fault data, SNR is varied in four stages

Fault SNR = 30 dB SNR = 25 dB SNR = 20 dB SNR = 15 dB

Class Direct Filtered Direct Filtered Direct Filtered Direct Filtered

AG 168.811 168.727 168.943 168.861 169.043 168.942 168.646 168.513

BG 4.15971 4.06701 3.95108 3.88664 3.93333 3.80456 4.05697 4.00783

CG 4.3574 4.35552 4.69275 4.69258 4.57224 4.564 4.24315 4.22921

AB 115.464 109.997 115.456 110.011 115.245 109.722 115.753 110.317

BC 0.04779 0.04978 0.17363 0.1885 0.21389 0.21362 0.35782 0.36245

CA 194.327 194.137 194.491 194.297 194.638 194.434 194.346 194.098

ABG 127.428 125.067 127.461 125.095 127.558 125.159 127.305 124.906

BCG 2.99521 2.9016 3.02894 2.90694 3.0584 2.98845 2.9007 2.84233

CAG 166.721 166.389 166.87 166.537 167.008 166.659 166.771 166.391

ABC 158.093 156.859 158.026 156.793 158.289 157.042 158.044 156.772

Table 7 Classifier results for different levels of SNR for variation in fault location and fault resistance over the line span

SNR

(dB)

Range of fault

locations tested

(km)

Range of fault

resistance

concerned (X)

Classifier

accuracy of SLG

faults (%)

Classifier

accuracy of DL

faults (%)

Classifier accuracy

of DLG faults (%)

Classifier

accuracy of LLL

faults (%)

Overall

classifier

accuracy (%)

30 10 to 140 0.01 to 100 100 100 100 100 100

25 10 to 140 0.01 to 100 100 100 100 100 100

20 10 to 140 0.01 to 100 100 100 100 100 100

15 10 to 140 0.01 to 100 100 100 99.26 100 99.78
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shown in a tabular form, which easily showcases the utility

of the proposed scheme, especially under severe noise

affected conditions.

It could easily be inferred from the above table that the

proposed PCA-threshold-based-fault classifier yields

effective results considering the entire set of above-men-

tioned fault features together. The major highlight of this

research, which is the high noise tolerance of the method, is

easily interpretable from the table. It is observed that most

of the schemes use noise level of 20 dB or more, whereas

the proposed method investigated the proposed classifier

with noise level of as low as 15 dB SNR; simultaneously, it

produces an average classifier accuracy of 99.78%, which

is very high compared to the existing schemes, especially

and most importantly, the obtained accuracy becomes

considerably significant considering the low level of SNR

investigated here. Some of the methods have considered

even very low noise level of 40 dB or more [31, 41],

compared to which the proposed method is inspected in a

further adverse noisy environment.

The range of variation of other practical parameters like

fault resistance is also comparable to that of the several

proposed schemes. Besides, the requirement of post-fault

signal duration for detection of fault is also half cycle only,

which is comparable to most of the methods, even better

than some of the existing ones. Finally, the PCA-threshold-

based classifier is computationally lighter than most of the

proposed methods, which use either, supervised learning

methods or critical computational mathematical or statis-

tical analysis. This ease of computation further makes the

scheme more effective for practical implementation.

Hence, the major highlights of this method are described in

the following section.

Table 8 Comparative analysis of the present method with some of the existing researches

Ref index Method used Line length (km) Fault

resistance

(X)

Classifier accuracy Noise level Post-fault

detection

duration

Mukherjee

et al. [6]

PCA-PNN 150 1–120 Accuracy of classification

100%

20 dB SNR (1/2) cycle

Roy et al.

[14]

S-transform, PNN and

ANN (BPNN)

300 0–100 Average accuracy of 99.6% 20 dB SNR

Moravej et.

al. [15]

S-transform and PNN 300 5–100 C1 and C2 are classified

with accuracy 100 and

90%, respectively

30 dB SNR (1/2) cycle

Yadav

et al.

[16]

WT and linear

discriminant analysis

(LDA)

100 0–100 Detection and classification

accuracy of 100%

Not mentioned clearly (1/4) cycle

Patel [26] FDOST and SVM Overhead line

100 km,

Underground

cable 40 km

0–100 Average classification

accuracy of 99.53%

30 dB SNR (1/2) cycle

Chen et al.

[37]

Summation-Wavelet

Extreme Learning

Machine (SW-ELM)

100 0–200 Average classification

accuracy of 98% or

above

Noise included 1 cycle

Vyas et al.

[38]

DWT and Chebyshev

Neural Network

(ChNN)

300 0–50 Classification accuracy of

99.81%

Not mentioned clearly (1/2) cycle

Godse

et al.

[40]

Morphological median

filter- (MMF) based

decision tree

150 0–20 Accuracy of 99.98% Gaussian noise with

standard deviation

varied from 0.1 to 1

Less than

(1/4)

cycle

Almeida

et al.

[41]

ICA, TW, SVM 200 20–240 Obtained errors\ 1% and

accuracy is 100% for the

classification

Varied between30 dB

and 75 dB SNR

1 cycle

Yusuff

et al.

[42]

SWT, DFF, SVM, SVR 361.297 0.001 X–
50 X

Accuracy of classification

100%

20 dB SNR 1/4 cycle

Proposed

work

PCA and threshold-based

classification

150 0.01–100 Classification accuracy of

99.78%

15 dB SNR (1/2) cycle
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Major Features of the Proposed Transmission Line

Fault Classifier Model

The following major highlights of the proposed classifier

are mentioned below:

(i) The proposed model considers practically simulated

environment using variation of two major fault

parameters like the variation of fault location and

fault resistance in order to ascertain the robustness and

flexibility of the proposed model. Fault location is

varied from 10 to 140 km, and fault resistance is

varied between 0.01 and 100 X in steps. It is found

that the proposed PCI threshold-based classifier is

almost insensitive to the variations of these

parameters.

(ii) Inclusion of another practical fault parameter like

power system noise has also been considered as a

major point of investigation in this work. It is evident

from the above table that the proposed classifier is

able to produce very high accuracy of classification.

Even the model yields an accuracy level of 99.78%

for a very high noise level of 15 dB SNR, which is,

for normal practice, quite an adverse level of

disturbance due to noise. Hence, the proposed model

may be justified as a robust classifier model to detect

transmission line faults, even at an adverse noisy

environment.

(iii) Another important feature of this classifier is that it is

able to classify the SLG faults with 100% accuracy,

even considering the practical variations and the high

level of noise of 15 dB SNR. This result is more

important since 70–80% to the total fault cases in

transmission lines are of SLG type.

(iv) The proposed method used PCA as the major

classifier tool, which is computationally lighter.

Further, the classifier is developed based on two

threshold limits, so selected using the PCI levels. The

threshold-based classifier logic is also very simple

incorporating simple comparison of the test PCI with

the prototype PCI fault signatures so developed.

Thus, the proposed method consumes considerably

reduced time for computation of fault class.

(v) PCA is inherently immune to noise, and hence, the

requirement of an additional filter is naturally elim-

inated, which also considers for a reduced computa-

tion associated with filtering of the signal.

(vi) Finally, direct application of PCA makes the analysis

simpler. Besides, the absence of other heavier soft

computational analyses including supervised learning

algorithms or major statistical approaches makes the

proposed classifier much effective for fast fault

detection as well as classification.

Conclusion

The proposed fault classifier presents a simple and accurate

scheme of classification of faults in long transmission line.

Principal Component Analysis (PCA) has been success-

fully applied to extract fault features in terms of the Prin-

cipal Component Indices (PCI) using the fault transient

oscillations of the line current signals. The proposed

method is fast enough to detect and classify faults within

half cycle after the occurrence of a fault with classifier

accuracy of 100% with a noise level of upto 20 dB SNR.

The proposed method is further tested with fault signals

with more adverse conditions, incorporating higher noise

level of 15 dB SNR, where the same is still found to pro-

duce a high accuracy of 99.78% which is superior at this

high level of noise.

The proposed method uses PCA to extract the fault

features, followed by simple comparative analysis of the

PCI so found using two threshold PCI levels. The thresh-

old-based segmentation of fault disturbance levels makes

the classifier scheme easy for implementation, as well as

contains less computational burden. The method does not

include applications of computationally heavier methods

like neural network, wavelet transform, fuzzy inference,

etc., which are more computationally heavier especially

compared to the proposed one. The effect of practical

constraints like variation of fault resistance and fault

location is also considered in this work unlike some other

methods. Most importantly, the effect of an adverse level

of noise is taken into consideration. Effect of noise level of

15 dB SNR is investigated in this work, which is consid-

erably heavy for normal power flow operation. The present

work achieves a very high classifier accuracy of 99.78%

even at this high level of noise. Besides, the method

described here requires only half cycle post-fault transient

signal for classification of faults, which is comparable, and

even better than some of the existing researches. These

major features of the present research make the proposed

classifier a practically suited one, even at a heavily noise

corrupted fault signal.
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