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Abstract Transmission lines are one of the most widely

distributed engineering systems meant for transmitting

bulk amount of power from one corner of a country to the

farthest most in the other directions. The expansion of the

lines over different terrains and geographic locations

makes these most vulnerable to different kinds of atmo-

spheric calamities which more often develops faults in line.

It is imperative to remove the faulty line at the earliest to

restrict undue outflow of bulk power through the faulted

point as well as restore system stability earliest to resume

normal power flow operation. Here lays the importance of

having a robust fault identification, classification and

localization algorithm which would be successfully able to

drive as well as actuate the digital relaying system.

Researchers have worked out several methodologies in

developing improved power system protection algorithms

which would be able to serve to eliminate faults immedi-

ately on occurrence of the same. A brief yet exhaustive

review has been presented in this article including the

several methodologies adopted by numerous researchers

for developing effective fault diagnosis schemes, men-

tioning about the highlights as well as the shortcoming of

each of the methods. This compact and effective survey of

literature works would help researchers to take up appro-

priate techniques for different purposes of transmission line

fault analysis.

Keywords Transmission line � Fault identification �
Fault classification � Fault location

Introduction

Fault identification, classification and localization have

been practiced by scientists with a very high efficiency

since very long. People are using diverse topologies and

algorithms for serving the same purpose. Long transmis-

sion lines are the cheapest and the most efficient modes of

carrying huge amount of power over miles of distances.

Hence, these transmission lines are extended over several

miles and are one of the most exposed engineering systems

to the environment. Environmental calamities like storm,

snow, rain, wind, ice, etc., often cause major short circuits

among the intermediate lines, as well as in between the

lines and the ground. Other minor but natural problems like

animals, birds and even growing plants and vegetation also

cause short circuit many times. Hence, these lines are very

often subjected to various faults. As mentioned before, the

two major roles of the protection algorithm, i.e., fault

classification and prediction of fault location. Classification

of the fault is of primary importance for detection of the

faulted phase and disruption of power through the same.

This helps to ensure protection of the connected equip-

ments and the associated personnel as well as for imme-

diate restriction of unnecessary drainage of power. Four

major classes of faults occur in practice in a three-phase

transmission network. These are single line to ground fault

or SLG fault, line to line fault or double line fault denoted
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as LL or DL fault, double line to ground fault mentioned as

LLG or DLG fault and triple line fault, i.e., LLL or 3L

fault. Each of these faults, except for the LLL fault, is

further classified according to the short-circuiting phases:

SLG faults are subclassified as SLG-AG, SLG-BG and

SLG-CG faults, DL faults are subclassified as DL-AB, DL-

BC and DL-CA faults and DLG faults are subclassified as

DLG-ABG, DLG-BCG and DLG-CAG faults.

Identification of fault location is also of utmost impor-

tance for restoration of stability of the power system at the

earliest possible time and for resuming normal power flow.

Faults are often of two types in nature; either these are

temporary or permanent types of faults. Temporary faults

are very common in transmission lines. These are often

caused due to some sudden events like falling of leaves,

large branches of trees, of due to wing, rain or snow during

the atmospheric hazards or sometimes due to passage of

birds or other animals in between the lines which causes

sudden short circuit in between the lines or between the

line and ground. These temporary faults are of least

importance from the perspective of power system protec-

tion and analysis. But permanent faults cause serious

trouble in restoration of normal power flow. These faults do

not wear away until and unless some manual intervention

forcefully removes the cause of fault. In order to do so, the

knowledge of fault location is very much essential. This

helps the working personnel to detect the fault location

almost accurately and hence, identify the cause of fault

almost at the exact location without hovering through a

large distance along the faulted transmission line. This

helps in removal of fault very easily. Thus, it saves useful

time for resuming power flow through the lines and starts

to restore normalcy of operation in power shredded por-

tions in a zone.

In this article, several articles have been studied exten-

sively illustrating the development of the different

methodologies for developing different fault diagnosis

methods. The vital outcomes of the different research

works and their methodologies and contribution to this

field of power system fault analysis are also highlighted for

each article. Research in this field of power system pro-

tection, more precisely in the field of fault analysis, has

been practiced by scientists since very long back.

Researchers have investigated a number of different

methods throughout ages for identification, classification

and finally prediction of fault location of faults in a

transmission line [1–5]. Primitive and conventional

methodologies incorporate distance relaying schemes

which primarily use impedance relays and Mho relays for

distance estimation. Massive advancement of soft com-

puting methods and artificial intelligence (AI), especially

during the last few years, has paved the way for soft

computation-based digital relaying schemes, which have

almost replaced the conventional prototypes of distance

relays. These digital relays are much faster and accurate

and hence, enable earlier detection of correct fault line.

This further enables detection and isolation of the faulty

line much earlier than the old prototypes. The following

section discusses about the different effective methodolo-

gies adopted by different researchers in the field of trans-

mission line fault analysis.

Different Methodologies of Fault Analysis

Aleem, S. A. et al. (2014) in [1] and Chen, K. et al. (2016)

in [2] have described a comprehensive review of the dif-

ferent methods used for different types of fault detection,

classification and prediction of location in transmission and

distribution systems existing in the contemporary literature

works. Mishra, D. P. et al. (2017) in [3] have provided

another well-structured review of the different method-

ologies of fault analysis in recent research works. Besides,

they have also provided a comprehensive comparative

analysis of the different fault parameters and numerical

representations of the outcomes obtained from different

research works. Prasad, A. et al. in their two articles [4, 5]

have also illustrated the different prevalent techniques used

in this field of fault analysis and research with good

illustrations. All these review works have highlighted the

pros and cons of the different fault analysis methods.

Impedance measurement-based method as motioned

before along with traveling wave-based analysis is the

conventional methods often used for the overall diagnosis

of fault in a transmission line [3]. These methods are very

old and contain large error, especially for fault localization,

primarily due to several factors like fault impedance, shunt

and series components of line impedance, source and load

parameters, power line noise and variation in fault incep-

tion angle. Prasad, A. et al. have mentioned about the three

major types of fault diagnosis techniques:

(i) Prominent techniques, which include wavelet trans-

formation-based analysis (WT), artificial neural network

(ANN) and fuzzy logic approach;

(ii) Hybrid techniques which contain various combina-

tions of these fundamental techniques and finally,

(iii) Modern techniques like support vector machine

(SVM), different artificial intelligence (AI)-based methods,

phasor measurement unit (PMU), principal component

analysis (PCA)-based approaches and many others.

These methodologies are discussed in detail with some

of the reported advantages and disadvantages in the next

sections.
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Artificial Neural Network (ANN)-Based Fault

Analysis

Artificial neural network or ANN has been conventionally

applied in different sectors of fault analysis with a huge

success. This method is one of the most widely used

methods from the group of artificial intelligence and quite

rightly has immense importance in developing efficient

power system fault analysis schemes. A typical ANN

model consists of three primary layers: input layer, hidden

layer and output layer.

There are several advantages of ANN which enable its

extensive uses in developing fault analysis algorithms.

ANN is very effective in designing the fault diagnosis

models. The most effective advantage of ANN is its

inherent ability to learn by itself. It requires the adjustment

of only a few parameters to adjust. ANN updates the

associated path weights during training process; hence,

ANN is insensitive toward loss of data due to updating of

weights. Besides, parallel processing of data is another

advantage itself, which altogether allows for its ease of

implementation for serving real-life problems like fault

analysis. ANN suffers from some shortcomings as well [3]

lead by the requirement of training the ANN structure

using with large and distributed data for accurate weight

updating and development of the ANN structure. The

associated and unavoidable high training time is also a

major hindrance of its use, especially training becomes

complicated for multi-dimensional analysis. The gradient-

based back-propagation (BP) algorithm often sticks to a

local optimum solution. This occurs more for nonlinear

separable problem meant for pattern recognition-based

classification. This also causes slow convergence of the

method. Convergence of ANN also depends on the choice

of initial values of weights; hence, initialization plays a

major role in determining ANN performance. Besides,

ANN also suffers from the disadvantage of reproducibility

of the same output.

Several research works are found in this regard executed

using ANN methodology [6–10]. Jain, A. et al. (2009) have

described a ANN-based fault localization method for a

double end fed double-circuit transmission line using one

cycle post-fault three-phase current signal of both the cir-

cuits, but of one terminal only [6]. This work achieves an

average error of fault localization of about 1.472%, where

maximum error reaches nearly 7%. An effective fault

detection and classification method has been presented by

Hessine, M. B., et al. (2014) in [7] where each phase

current and voltage of transmission line is treated sepa-

rately. The fault class is determined from the four outputs

of the ANN structure where the first three output parame-

ters indicate presence of fault in each the three phases and

the fourth parameter is meant for detecting ground fault.

Variation in fault resistance is considered for both of these

works [6, 7]. The work by [8] explains diverse ANN

structures for single- and double-circuit two-terminal

transmission line faults. A tool, termed as SARENEUR,

has been used to select the best ANN structures with

training time less than a minute for both single- and dou-

ble-circuit lines. Fault classification error is zero for single-

circuit lines and smaller than 1% for double-circuit lines.

The mean error of fault location is also found to vary

between 0.015% and 0.4%. Sanaye-Pasand, M. et al.

(2003) in [9] has shown the use of ANN as a pattern

classifier for protective relaying in power system and

faulted phase selection, i.e., classification. Besides, the

authors have also shown that the performance of classifier

remains unaffected by the changing network conditions or

different fault parameters. A hardware implementation-

based work has been proposed by Ezquerra, J. et al. (2011)

in [10] who used field-programmable gate array (FPGA)

for implementation of ANN-based transmission line fault-

location system. The ANN model, for both fault classifi-

cation and localization process, was trained again using

SARENEUR application tool. The error fault location is

found only as 0.03% for a single-phase fault as reported by

the authors for the ‘La Lomba–Herrera’ 380 kV, 189.3 km

overhead transmission line. More importantly, prototype

hardware has been developed in this work. Modern

advancement of ANN has progressed to machine learning

and deep learning-based analysis which has made useful

progress in this research of fault diagnosis.

Wavelet Transform-Based Fault Analysis

Wavelet transform (WT) has tremendous influence on fault

analysis and research. WT basically analyzes the frequency

of the fault transient signals and decomposes the waveform

into subsequent detailed and approximate coefficients,

which bear vital information regarding the location and

class of fault. In this way, WT extracts key features from

the fault waveforms at different levels of decomposition.

Sometimes wavelet entropy is also used directly for the

analysis of fault. WT is very accurate and identifies the

fault features using the decomposed frequency components

of a fault waveform; although WT suffers from its inherent

disadvantage of progressively increasing complexity of

analysis, especially for increasing levels of decomposition

of the fault signal.

Similar to ANN, several researchers have paid attention

toward WT-based fault analysis algorithms [11–15]. WT

has been employed in [11] to decompose fault signals into

different frequency bands, followed by further processing

using multiresolution analysis or MRA for the development

of a real-time digital distance protection algorithm for

transmission line. Jiang, H. et al. (2012) in [12] presents a
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wavelet-based scheme for fault localization in smart grid.

The features from fault signal are extracted by computing

the maximum WT coefficients (WTCs), further processed

using a newly designed hybrid clustering algorithm for

multi-bus system. Along with transmission line faults, the

presented method also studies the effectiveness of the so

designed WT-based algorithm for detection of generator

fault, load fault and transformer fault as well. A WT- and

transient-based protection relaying topology has been pre-

sented by Janıcek, F. et al. (2007) in [13]. The WT coef-

ficient-based discrimination on the direction of relay is

studied in this article. The relay responses for different

classes of faults as well as system conditions are investi-

gated here to examine accuracy of response in all cases.

The authors of [14] present a four-bus, meshed system to

investigate their proposed WT-based high speed, compu-

tationally efficient scheme which is found to yield a clas-

sifier accuracy 99.53%, as well as an average fault

localization error of 0.217% with a maximum error of less

than 3%, which is high in accuracy in contemporary

analysis. A micro-grid connected power system protection

algorithm is presented by Shekar, S. C. et al. (2019) in [15]

using a wavelet-based analysis of transient fault current

signals. Multiresolution analysis (MRA) is used with

wavelet detailed coefficients of Mother Biorthogonal 1.5

wavelet.

Discrete wavelet transform (DWT) is the discrete vari-

ation in WT, which has become enormously accepted for

analyzing discrete or sampled signals. Nowadays, in an era

of digital communication and analysis, digital relaying

systems have possessed an increasing demand for DWT

methods. Most of the WT-based modern and digital fault

analysis methods rely upon DWT analysis [16–19], which

describe DWT-based fault detection method for transmis-

sion line faults. Devi, S. et al. (2016) in [16] have justified

the effectiveness of using DWT with dB4 mother wavelet

and a moving window for fault detection. The method

computes the detail and approximate coefficients for the

development of the algorithm. The detail coefficients with

the highest level of decomposition, kept at dB4 level, are

used for discrimination of faults and no-fault and develop

algorithm for classification. Swetapadma, A., et al. (2015)

in [17] have presented a DWT-based fault-location algo-

rithm using current and voltage signals measured at one

end. This method yields accurate prediction of location

with an error of ± 1% only; although the detection time is

a marginally on the higher side with one cycle pre-fault and

two cycles post-fault signals. One of the most important

outcomes of the work is that this method does not require

fault classification prior to location estimation, which is a

common practice. The authors of [18] have developed a

simple comparative rule base using the mean of the

approximate coefficient values of the three phases for the

132 kV 200 km long line. Upendar, J. et al. (2008) in [19]

have used another AI-based tool like genetic algorithm as

the basic analyzer of the features extracted using DWT for

developing a transmission lines classifier. A huge number

of 1,209,600 observations were used in this method for

testing and validating the algorithm which is huge in itself.

The range of variation in accuracy of classification is found

varying between 98.66% and 100%, whereas the average

overall accuracy is found approximately as 99.77%.

It is very common practice to associate wavelet analysis

to combine with ANN to produce accurate fault protection

schemes [20–26], although the disadvantages of both

methods exist in the developed hybrid model. In these

cases, wavelet transform is used to extract fault features

from the fault waveforms and ANN is used to analyze these

fault features in terms of wavelet coefficients to develop

fault diagnosis models. Beg, M. A. et al. (2013) in [20]

present a method to distinguish between the different

transients arising out of different switching operations,

different types of line faults and line switching using DWT

of d1 and d5 level only to produce an overall efficiency of

classification of 96.79%, with 96.15% for non-fault cases

and 97.47% for fault transients. Signal acquisition time

although is on the higher side for this work with three

cycles of post-fault duration. Wavelet entropy-based ANN

fault analysis architecture is presented in [21]. The authors

obtained an average error of localization of 1.72% and

worst error of 3.25% using Db4 decomposition level; fault

resistance although is kept static at 10 X. Bhowmik, P.S.

et al. (2009) in [22] have described novel topology using a

combined DWT and back-propagation neural network

BPNN.

DWT-linear discriminant analysis or LDA-based fault

analysis scheme is proposed by Yadav, A. et al. (2015) in

[23]. Quarter cycle current signal is analyzed using DB-4

wavelet up to level 3. The effect of nonlinear high impe-

dance fault as well as CT saturation is also nullified in this

scheme. The detection and classification efficiency is found

as 100% and within one cycle time. Another important

feature of this work is that it is able to analyze faults up to

99% of line length which is quite an important contribution

in this field of study.

Wavelet energy entropy-based analysis is proposed with

effective outcomes. He, Z. et al. (2010) in [24] have

worked with wavelet singular entropy (WSE) and it uses

the first half cycle of the post-fault signal for the analysis.

The authors have used db4 mother wavelet and four-scaled

WT. Sequence components of current and voltage signals

are studied to develop the algorithm which is able to

classify faults with 100% accuracy, even with the incor-

poration of dynamic fault resistance. Another quite similar

wavelet entropy-based work for fault analysis is proposed

by El Safty, S. et al. (2009) in [25]. Multi-level wavelet
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analysis has been adopted in several research works for

accurate identification of the dynamic characteristics of the

transient oscillations and extracts useful features; although

inherent power line noise and the different harmonics of

line voltage and currents often incorporate inaccuracies in

prediction of outcomes.

Hybrid Methods of Fault Analysis Using WT

and ANN

Wavelet packet transform (WPT) methodology is another

way of using wavelet analysis in developing power system

fault analyzer as adapted in [26, 27]. The authors in [26]

have used WPT with ANN architecture for estimation of

fault location. The method produces highly accurate results

with only 0.14% of worst deviations, especially with the

use of energy of current signal as input to the proposed

ANN model; although, nothing much is mentioned about

the variation in fault resistance. A two-terminal HV

transmission line is studied by Adly, A. R. et al. (2019) in

[27] using similar methods in spectral domain using db6

wavelet packet, i.e., using level 7 of decomposition to

obtain the energy coefficients; although this high level of

decomposition increases the computational burden many

folds. The key feature of this work is that the proposed

scheme is based on an adaptive threshold level and no

special adjustment is required for different transmission

systems. One WPT-based approach for fault detection has

been proposed in [28], even during power swing for a

hybrid transmission line. Another WPT-based fault analy-

sis is proposed in [29] by Ray, P. et al. (2013) using a

hybrid methodology combining with ANN in series-com-

pensated transmission line. Maximum localization error of

less than 0.35% with a mean error of less than 0.25% is

achieved by the authors. Fault resistance has been kept

dynamic, and the signal acquisition time is also moderate at

one cycle post-fault.

A directional protection scheme is proposed by Yadav,

A. et al. (2015) in [30] using similar hybrid localization

model for a double-circuit transmission lines with single-

end data. The maximum error found is 0.6665% with

dynamic variation in fault resistance fault inception angles

and two others. A different methodology using rough

membership neural network (RMNN) has been proposed

by He, Z. et al. (2014) in [31] using BPNN and wavelet

analysis. The mother wavelet used here is Daubechies 4

(db4), since it owns a good time resolution with accurate

detection of the fast fault transients to yield an overall

classifier accuracy of 99.4%. Another different topology

using DWT and Chebyshev neural network (ChNN) is

proposed by Vyas, B. et al. (2014) in [32] for a thyristor-

controlled series-compensated line. The work uses half

cycle post-fault three-phase current signals with db1

mother wavelet at first level of decomposition to obtain

99.81% classifier accuracy. Most of the works mentioned

above analyzed the fault signals using several levels of

decomposition. Higher-order decomposition levels make

the analysis more complicated.

Application of Radial Basis Function Neural

Network (RBFNN) for Fault Analysis

Radial basis function neural network or RBFNN contains

three layers similar to the ANN architecture. These are

again denoted as input layer, hidden and output layer. The

output signals from the input layer are thrown to the hidden

layer as input where nonlinear radial basis function neuron

action takes place. The output again contains linear neuron

architecture [3].

RBFNN has often used as a key method for the devel-

opment of fault models using the wavelet features.

Research works of [33, 34] illustrate similar works using

RBFNN. Samantaray, S. R. et al. (2007) in [33] presents a

distance relaying scheme for estimation of fault location

using radial basis function neural network (RBFNN);

although the fault classification is done using support

vector machine (SVM). Localization error is found to vary

with minimum value of 0.51% for a LLL-G fault and

maximum of 1.87% in case of a LL fault, with dynamic

fault resistance. The work uses one cycle pre-fault and one

cycle post-fault signal. Patel, B. et al. (2018) in [34] also

proposes wavelet packet entropy and RBFNN-based anal-

ysis for fault detection, classification and localization

technique for HVAC transmission line. The work considers

the dynamics of alternator and also considers the effect of

transformers.

Fuzzy Inference System Applied in Fault Analysis

Fuzzy inference system is often applied independently

without being combined with ANN or wavelet analysis.

The chief advantage of fuzzy analysis is that it is able to

solve uncertainty problems using ‘if–then’ type of rela-

tions. But fuzzy-based analysis is less robust. Besides,

development of fuzzy membership function requires good

expertise [3]. The articles [35, 36] are two among the

several literature works illustrating the application of fuzzy

inference system or FIS applied in the field of power sys-

tem fault analysis. A fuzzy multi-sensor data fusion-based

latest fault-location prediction algorithm is proposed by

Jiao, Z. et al. (2018) in [35] for transmission line fault

localization. FIS and weighted covariance fusion (WCF)

are applied in combination to obtain fast and accurate

location outcomes. Yadav, A. et al. (2015) in [36] have

described a performance improvement technique for

directional relaying and complete fault analysis including
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fault classification and fault-location schemes for trans-

mission lines using FIS model, with protection range of up

to 95% of line length. The worst performance is found as a

percentage error of -3.521% for a LLG fault. Fault resis-

tance is also kept dynamic, as well as inception angle. The

authors have also validated this fault-location scheme using

v2 test with 5% level of significance.

Fuzzy adaptive resonance theory (ART) neural network

has been also used independently to develop efficient fault

diagnosis schemes [37, 38]. Vasilic, S. et al. (2005) in [37]

have described a self-organized, supervised fuzzy adaptive

resonance theory (ART) neural network algorithm for

classification of power system faults by introducing

advanced pattern recognition approach for the classifica-

tion of transmission line faults. This method is based on

application of fuzzy logic with the help of neural network.

The improved algorithm ART2 is found to produce

excellent results, with nearly zero errors, in terms of fault

classification, compared with ART1 method, even with

dynamicity of different fault parameters. A real-time fault

analysis tool for monitoring operation of transmission line

protective relaying scheme is proposed in [38] using fuzzy

ART neural network and synchronized sampling method.

Fault detection accuracy of 100% is attained, whereas the

maximum error of localization is found to be 0.720% using

one cycle fault signal data. Fault distance variation is kept

in the range of 5–95%, whereas fault resistance is also kept

dynamic.

Hybrid Methods Using WT, ANN, Fuzzy Logic

Inference and SVM for Fault Analysis

Combination of WT, ANN and fuzzy logic or any paired

combination of these has often proved successful in

developing hybrid models for fault diagnosis [39, 40].

Reddy, M. et al. (2007) in [39] and Meyur, R. et al. (2016)

in [40] have proposed two such analyses using wavelet-

fuzzy combined approach for transmission line fault anal-

ysis. In [39], authors have presented wavelet multiresolu-

tion analysis (MRA) for classification and fuzzy logic for

prediction of fault location. The authors use about one

cycle of fault waveform, and the maximum location pre-

diction error is restricted to 6.5%. The authors of [40]

obtained an average location error of about 0.152%, and

the maximum error is found near 0.76%. But this analysis

for fault classification requires three cycles of nominal

frequency, which is on the higher side compared with some

of the contemporary analyses. Also, neither [39] nor [40]

has commented on the variation in fault resistance. Goli, R.

et al. (2015) have also proposed another fuzzy-wavelet-

based combined approach transmission line protection

mythology with the presence of flexible AC transmission

device like SVC in [41].

ANN too is often used with fuzzy logic inference to

develop hybrid method to develop adaptive neuro-fuzzy

inference system or ANFIS topology which has been used

by several researchers to develop efficient protection

schemes [42–47]. Parameter tuning in ANFIS becomes

accurate using the hybrid model, which leads to reduction

in the search space dimension, producing faster conver-

gence; although this method is computationally much

heavier than the other similar hybrid methods [3]. A

combined transmission system made with combination of

overhead transmission lines and underground cable is

examined using wavelet and neuro-fuzzy-based fault-lo-

cation predictor algorithm in [42] by Jung, C.K. et al.

(2007). Neuro-fuzzy analysis is used for fault localization

utilizing detailed coefficients from WT. Half cycle current

signals are used in this work with dynamic fault resistance

to obtain maximum location prediction error of 0.3306 km

for the cable part and 0.2551 km for the overhead line. An

ANFIS-based fault diagnosis scheme is proposed by Eristi,

H. (2013) in [43] which uses one cycle post-fault signal of

a series-compensated transmission line with dynamic

allocation of fault resistance with variation in other

parameter. The overall classifier accuracy is found as

99.301%, whereas average and worst location error are

found to be less than 0.25% and 1.288%, respectively. A

comparative analysis is described in by Reddy, M. J. et al.

(2007) in [44] between FIS and ANFIS topologies for

prediction of fault location. The maximum error of fault

location is found as 6.36% using the FIS model and 3.67%

using ANFIS model, showing the superiority of ANFIS

over FIS model, which is a significant contribution of their

proposed work. A parallel transmission line model is

investigated by Swarup, K. S. et al. (2007) in [45] using

WT-based ANFIS. Time frequency analysis-based pattern

recognition approach is adopted in this work to produce

100% classifier accuracy. A novel fault classification

analysis using correlation coefficients and inter-quartile

ranges of current signals and adaptive neuro-fuzzy infer-

ence system is proposed in [46] using dynamic fault

resistance separately for grounded faults and non-grounded

faults. The overall classification accuracy obtained is more

than 96% for all cases. The maximum location error as

described in [47] by Sadeh, J. et al. (2009) for the overhead

line and the underground cable is found as 0.0277 (about

24.9 m) and 0.038 (about 3.8 m), respectively, for SLG

faults, and the same for LLL fault is 0.0081 (about 7.3 m)

and 0.071 (about 7.1 m), respectively. The overall maxi-

mum location error is found below 0.07% using one cycle

post-fault signal. Another wavelet-based artificial neural

network method for ultrafast detection of transmission line

faults is presented by the Abdullah, A. (2017) in [48].

DWT analysis is used for extracting fault features from the

high-frequency components of the two aerial modal
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currents. A feature vector is developed with the wavelet

coefficients which are used to train the neural network.

Combination support vector machine or SVM with

wavelet has proven effective in several research works

[49, 50]. The authors of [49] have used WT to decompose

the fault signals and extract fault features, which are used

for training an SVM network. Two kernel functions:

polynomial and Gaussian radial basis function (RBF) are

used. Classifier accuracy is found to vary within 91.6667%

to 100%, with the obtained accuracy of 94.1358% for SLG,

which occupy almost 85% of the total faults. A high-fre-

quency transients-based fault analysis scheme for the

multi-terminal transmission lines is presented by Jafarian,

P. et al. (2012) in [50] using dyadic wavelet transform to

decompose the signal into different component frequency

bands, followed by computation of spectral energy of each

such band and finally, SVM-based classification is per-

formed. The maximum classifier accuracy obtained is

100% using Gaussian and polynomial kernel function. A

critical fault detection analysis and fault time for a flexible

AC transmission system like UPFC incorporated trans-

mission line is presented by Mishra, S. K. et al.(2019) in

[51]. The method uses discrete wavelet transform (DWT)

using db4 mother wavelet and discrete Fourier transform

(DFT) methods for estimating spectral energy (SE) of the

fault signals. The method is also able to detect fault within

20 ms, which is less than one cycle of power–frequency

signal.

Support Vector Machine (SVM)-Based Approaches

of Fault Analysis

Support vector machine (SVM) is another method used

extensively in power system analysis since very early ages.

SVM is very effective and accurate in identification, clas-

sification as well as localization of transmission line faults

even independently [50–54]. SVM is effective even for

data set which is not linearly separable. Besides, the

dimension of space remains almost unaffected by the upper

bound generalized error. But the primary shortfall of SVM

is that SVM requires a very large and diverse data set both

for training and testing purpose. Besides, the computational

burden of SVM is much higher than several similar

schemes, which also trigger the requirement of a large

volume of memory [3]. Chothani, N. G. et al. (2011) in [52]

have illustrated an algorithm for fault zone identification

for busbar protection using SVM technique. The method

uses one cycle post-fault current signals of all the lines as

an input to SVM classifier model. An overall classification

accuracy of more than 99% is achieved here. Gaussian

RBF kernel gives the highest accuracy of 99.833%. Effect

of CT saturation is also considered, along with variation in

fault resistance. Apart from the development of an SVM

for fault diagnosis scheme, Ravikumar, B. et al. (2008) in

[53] have also compared SVMs with radial basis function

neural networks (RBFNN) regarding analysis of different

faults on transmission system. Authors of [54] have

obtained an average localization error of only 0.015%,

whereas the maximum error is recorded as low as 0.7%

only, even with varying fault resistance. But the require-

ment of two cycles of post-fault waveform for analysis is

marginally higher than some of the comparative literature

works. Faults in transmission line with multiple generators

connected have been investigated by Reddy, M. J. B. et al.

(2016) in [55]. The method used for the analysis is discrete

orthogonal Stockwell transform or DOST. This article

further makes a comparative analysis of ANFIS, ANN and

SVM-based analysis to demonstrate the superiority of

SVM over some of the computational intelligence analyses

for fault localization. Moravej, Z. et al. (2012) in [56] uses

hyperbolic S-transform and learning machines for extract-

ing fault features using one cycle post-fault transient cur-

rent and voltage signals, followed analyzing the so

obtained features using SVM and regression-based method.

The method produces classification accuracy of 99.21%,

district detection of 98.11% and location relative error of

2.48E - 3% for the 100 km line. Fault resistance is again

kept dynamic.

A hybrid methodology combining SVM with and sev-

eral is proposed by Jiang, J. A. et al. (2011) in [57] where

the authors have proposed a multiple hybrid framework for

fault detection, classification and location for transmission

line. The proposed framework contains several arithmetical

algorithms like negative-sequence component (NSC),

wavelet transform (WT), principal component analysis

(PCA), support vector machines (SVMs) and adaptive

structural neural networks (ASNNs). The average detection

accuracy of this work is found to be 99.9%. The average

sensitivity and specificity of fault classification are

obtained as 99.78% and 99.87%, respectively, and average

fault-location error is about 0.47% only with a maximum

error of 0.84%, using one cycle time period of fault data.

But this method becomes extremely heavy as well as time

complex as it uses so many different algorithms.

A combined SVM- and WT-based approach has been

presented by Ekici, S. (2012) in [58] for classification and

localization of transmission line faults. Error of classifi-

cation is found less than 1% for all fault classes, and the

average and maximum error of fault localization is found

less than 0.26% and less than 0.95 km, respectively, using

half cycle pre-fault and half cycle post-fault signal, as well

as fault resistance is also kept dynamic.

SVM and fuzzy logic reasoning (FLR) have been

combined to develop a method for transmission line fault

detection and classification by Yusuff, A.A. et al. (2011) in

[59]. The authors have suggested a determinant-based
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feature extraction principle using single-end measurements

of the time shift invariant property of sinusoidal waveform.

Data window of 1/4, 1/2 and one cycle of post-fault signal

has been considered here for comparing the performances

of three classifier models based on SVM, FLR and J48

keeping varying fault resistance.

A multi-class SVM approach for fault classification is

presented in [60]. The authors have used wavelet decom-

position information of post-fault current transients as

input to SVM for classifier to obtain a classifier accuracy of

above 98.8%. Yusuff, A. A. et al. (2014) in [61] have

proposed stationary wavelet transform (SWT) for devel-

oping a filtering scheme and determinant function feature

(DFF) to extract distinctive fault features, support vector

machine (SVM) for developing fault classifier model and

support vector regression (SVR) for accurate fault-location

analysis. The relative location error is found as

2.10E - 03% with a maximum deviation of 0.4 km. SVM

often becomes less effective with abruptly increased power

line noise as well as when target classes seem to overlap.

SVM also suffers from high analytical complexity, as well

as it necessitates correct tuning of some of the model

parameters. Another application of SVM method has been

proposed by Vyas, B. Y. et al. (2016) in [62] for fault

classification in transmission lines compensated with

thyristor-controlled series devices. The method uses pattern

recognition features of support vector machine to good

effect for classifying faults.

Principal Component Analysis (PCA)-Based Fault

Analysis

Multivariate statistical analysis like principal component

analysis (PCA) is another useful tool used for classification

and localization of faults. PCA is useful to identify the key

directions of variation in a set of signals and find out the

principal components decreasing order of importance. In

this way, PCA effectively reduces a large multivariate data

to the most important directions, making further analysis

simple and fast. Hence, PCA is used in different engi-

neering fields for identifying the major affecting parame-

ters. Another advantage of PCA is that since PCA

considers only the most important directions of variations,

the effect of noise is reduced naturally. But, on the con-

trary, the development of the principal components uses

linear combination of the original features, which is quite a

broad approximation leading to reduced accuracy. Besides,

if in any case, the number of dimensions exceeds the

number of data points in a system, covariance matrix

becomes very large [3]. PCA is effectively used for power

system fault analysis either directly or in combination with

other methodologies. The authors of [63–67] have pro-

posed PCA-based fault classifier as well as localizer

algorithm. A PCA-ratio-based fault classifier scheme is

developed in [63], whereas a multiple linear regression

(MLR)-based fault localizer scheme is proposed by

Mukherjee, A. et al. (2020) in [64]. The analysis is made

using the principal component index (PCI) so developed

using the post-fault transient signals. These analyses use

closest match analysis to obtain the minimum distance

from the test signal PCI and each of the training fault

prototypes which are the ten different fault classes. PCA-

based classifier and localizer model is proposed by

Alsafasfeh et al. in [65, 66]. Alsafasfeh, Q. H. et al. (2012)

in [65] used PCA as the basic analysis tool and uses quarter

cycle post-fault signal which is appreciable. The maximum

localization error obtained is 2.7%. Symmetrical pattern

and PCA-based framework are illustrated in [66], again

using quarter cycle post-fault signal to develop the fault

signature patterns using symmetrical components and

PCA. The method yields 100% classifier accuracy, as well

as considers variation in fault resistance. Mukherjee, A.

et al. (2020) in [67] have proposed another direct appli-

cation of PCA for localization of transmission line faults

using the index values developed using the PCA algorithm

aided by best fit analysis.

Hybrid PCA methods are very much useful for fault

analysis and development of fault diagnosis methods. PCA

is effectively combined with another excellent feature

extraction, as well as pattern recognition technique: prob-

abilistic neural network or PNN. Sinha, A. K. et al. (2011)

in [68] illustrates a combined methodology of PCA and

PNN techniques, aided by WT. WT is used to extract

distinguishing features, which are used with PCA algo-

rithm to reduce the data dimensionality and obtain princi-

pal components. These are further fed to PNN architecture

to develop final classifier model which yielded accuracy

level in a range of 98–100%. Another modified ratio

analysis-based fault classification method is discussed

again by Mukherjee, A. et al. (2020) in [69]. This method

further compares the results of this direct PCA-based

classifier method with another method which additionally

uses probabilistic neural network or PNN in combination

with PCA. The PCA scores are fed to a PNN architecture

designed for fault classification. Both of these analyses are

found to yield 100% classifier accuracy which proves

effectiveness of PCA, even with variation in fault

resistance.

Jafarian, P. et al. (2010) in [70] have proposed a trav-

eling wave-based protection technique using complex

wavelet transform (WT), followed by principal component

analysis (PCA) to identify the dominant pattern of these

signals. This hybrid methodology shows the effectiveness

of combining WT and PCA together for fast identification

of faults, mostly being conducted inside the protected zone.

Authors of [71] have described another traveling wave-
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based distance protection scheme using PCA. In this

method, an ultra-high speed transmission line protection

algorithm is described. Wave front shape is characterized

for the different internal and external faults. PCA along

with ANN is used for feature extraction and implementa-

tion of these features with pattern recognition approach.

PCA is applied with DWT for classification of fault orig-

inated transients in high-voltage network in [72]. The

authors illustrate different types of capacitor switching,

load switching, and various classes of line faults and faults

due to energization and de-energization of line producing

an overall efficiency of 95%.

Govender, P. et al. (2013) in [73] examines the impact

of lightning, fire and birds on the power line and describes

an ANN-based system to identify the exact cause of fault

using features of PCA. Guo, Y. et al. (2012) presents

transmission line fault detection and classification method

using features of PCA and modeling the classifier model

using SVM in [74]. PCA has been used to reduce the

dimensionality as well as to find violating points of the

fault signals and used later to construct SVM networks.

Pattern recognition approach is used to distinguish the

faulty phase directly. The method produces a maximum

error of 1.1497%. PCA is also combined with a number of

the above methodologies simultaneously in [75] for

effective fault diagnosis. A novel hybrid framework for

rapid detection and localization of a fault is proposed by

Jiang, J. A. et al. (2011) in [75]. The method uses negative-

sequence current and voltage components for fast fault

detection, multilevel WT, PCA and SVM for fault classi-

fication and adaptive structure neural networks for fault

location. This method yielded 99.9% fault detection

accuracy, and the average fault-location error is around

0.61%, using one cycle data. But this method becomes too

complex as it uses several algorithms.

Traveling Wave-Based Analysis

Traveling waves (TW) are often used in developing

effective fault classification and localization methods

[76–78], but response time required depends on the time of

travel of the wave. Two-terminal TW-based fault local-

ization is presented by Lopes, F. V. et al. (2017) in [76].

This method depends on the time difference between the

first incident wave and the consecutive reflection from the

point of occurrence of fault, at both line ends; and hence,

data synchronization is not required of line parameters. The

maximum error of localization is found even less than

270 m for the designed 200 km line and the average error

was found as 31 m with a standard deviation of 36 m,

which could be treated as a highly effective result; although

like other TW-based analyses, this method requires vari-

able time which depends on the location of the fault, hence

is a variable factor. Besides, the range of fault resistance

used is not mentioned clearly. Hasheminejad, S. et al.

(2016) in [77] have described another TW-based protection

algorithm for parallel transmission lines using Karen-

bauer’s phase to modal transform and Teager energy

operator. High accuracy of about 0.9% maximum error and

0.15% minimum error is obtained here, which are again

highly effective. Ma, G. et al. (2016) have discussed about

a basic traveling wave theory-based method for fault

location, using WT as a supporting methodology in [78].

The maximum relative error is found as 0.65% for a two-

phase fault. A fast identification method for DC transmis-

sion line faults is proposed by Tang. L. et al. in (2019) in

[79] using the fault-induced traveling waves. The method

uses traveling wave features from single-end only. Besides,

fast identification method for lighting disturbances is also

proposed by the authors, which is able to detect in less than

1.2 ms. Another traveling wave frequency analysis has

been proposed by Akmaz, D. et al. (2018) in [80] for

prediction of fault location in transmission line. The

method incorporates transformation of the time domain

signal into frequency domain using the fast Fourier trans-

form (FFT), followed by analysis of the same using an

advanced form for supervised learning method like

extreme learning machine for developing the localizer

scheme.

Time–Frequency Domain Approaches for Fault

Localization

Time–frequency domain analysis of transmission line

faults is a common practice. Power spectrums are obtained

on frequency domain analysis, especially using Fourier

transform-based analysis. These power spectrums have

often been practiced, especially for estimating the fault

locations. The high-frequency fault transients developed

immediately after the fault contain the most vital infor-

mation regarding the fault type, location and others. This

information is mostly hidden in the fault transient fre-

quencies, which are investigated in time domain or fre-

quency domain analysis, leading to power spectrums

[75–83]. Hence, these power spectrums contain major

information regarding the fault parameters.

Mamiş, M. S. et al. (2013) have used fast Fourier

transform (FFT) for mapping the time domain signals to

frequency domain, and further in developing power spec-

trum model [81]. Further, they have used the frequency of

the first fault generated harmonic obtained using one cycle

post-fault transient signal for predicting fault location using

traveling wave theory of transmission line. The average

and maximum errors are obtained as 1.369% and 4.21%,

respectively, although the maximum error is marginally

higher. Fault resistance is also kept dynamic. Song, G.
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et al. (2014) have presented a novel method for locating

VSC-HVDC transmission line faults using one terminal

current data and traveling wave theory [82]. The average

and maximum error of 0.183% and 0.64% were found,

respectively. The analysis uses data window of only 5 ms,

which is analogous to quarter cycle of signal in AC

equivalent system and fault resistance is also kept dynamic

again. A protection scheme for phase-to-phase faults based

on spectrum characteristic of the post-fault high-frequency

transients is presented in [83]. The difference of funda-

mental natural frequencies at both the ends of the line is

used for identification of internal or external fault. A time–

frequency-based analysis is proposed in [84] using

S-transform along with complex window to generate fre-

quency contours, i.e., S-contours. These time–frequency

patterns with varying window are described as fault sig-

natures, which enable development of fault classifier model

using pattern recognition-based approach. Fault resistance

is again varied in this work. Radojevic, Z. M. et al. (2006)

describes a numerical spectral domain algorithm using arc

voltage amplitude and fundamental and third harmonics of

voltages and currents phasors taken at the terminal [85].

Spectral analysis of the input phase voltages and line cur-

rents signals is developed in addition to facilitate the

development of fault analyzer. Authors of [86] illustrate a

model-based approach, ESPRIT and its application to a

number of simulated voltage waveforms to identify the

parameters of oscillatory transients during disturbance.

Gopakumar, P., et al. (2015) in [87] describes a real-time

protection methodology for a self-healing grid in smart

power grids. Frequency domain analysis using FFT of

variations in EVPA and ECPA during fault is considered

here, and phasor measurement unit (PMU) is also incor-

porated. A multi-class SVM classifier is also been used for

this purpose. The accuracy of line identification in a multi-

bus model is very high using fundamental and harmonics,

even for variation in fault resistance; although use of FFT

and SVM simultaneously along with PMU for acquiring

signal data makes the analysis more complex. Dash, P. K.

et al. (2015) have developed a cumulative sum average

technique (CUCUM) in [88] which is used to detect the

instant of fault occurrence. Energy of the vital frequency

components is computed using fast frequency filtering

S-transform (FFST) or sparse S-transform for fault classi-

fication. Fault resistance is also varied. This FFST shows a

fault detection and classification reliability higher than

97% for high impedance faults ([ 250 X) and 100% for

low impedance faults. Fault localization error is also found

low as 0.3%. Fault classification time is also found mostly

less than 10 ms. Krishnanand, K.R. et al. (2015) in [89]

suggested a pattern recognition approach for current dif-

ferential relaying for power transmission lines. This

method uses spectral energy and fast discrete S-transform.

The highest error reported in this work is 2.4561E - 02

per unit which is excellent. Variation in fault resistance is

also considered. Half cycle before the CUSUM detection

point and half cycle after that point are used independently

to compute the change in energy content of the differential

and average signals.

Time-Synchronized Methods of Analysis, Phasor

Measurement Unit (PMU)-Based Analysis

Time-synchronized fault analysis methods are also gaining

immense popularity with days. One such method is pro-

posed by Dutta, P. et al. (2014) in [90], where the authors

use synchronized sampling of voltage and current signals.

This method uses the IEEE 118-bus model to perform the

multi-bus analysis, as well as is able to detect and classify

fault within 7 ms of fault inception which is very fast, even

less than half cycle time. Two groups of dynamic fault

resistance: 0-160X and 200-10,000X are used to study

normal and high resistance faults. Classifier accuracy is

found as 100%, and the location error is restricted to 3%.

Phasor measurement unit or PMU-based application is

an ideal example of similar time-synchronized technology

which helps in fault analysis by detecting electrical signals

simultaneously at both ends [91–96]. A PMU-based fault-

location scheme is proposed by Jiang, Q. et al. (2012) in

[91] which studies voltage signals of large transmission

networks. The authors use IEEE 39-bus system and ZJP

76-bus system to implement the same. Maximum local-

ization error is obtained as 0.8%, with classifier accuracy of

100% is achieved with variable fault resistance. Another

PMU-based fault detection and location methodology is

proposed by Barman, S. et al. (2018) in [92] for large

transmission system. One objective of this work is to

accomplish the work using minimum number of PMUs.

This work is further validated on the IEEE 14, 30, 39 and

118-bus systems for different fault conditions. The results

show a classification error of less than 0.01% with fault

resistance dynamic again. Gopakumar, P., et al. (2015) in

[93] describes a synchronous phasor angle measurement-

based adaptive fault identification and classification

scheme for smart grids. FFT is used here to analyze the

phase angles obtained from PMUs. This helps in devel-

oping frequency spectrum coefficients, containing fault

classifying features. Support vector machine (SVM) is

further employed to develop fault classifier simultaneously.

An optimal phasor measurement unit or PMU-based fault

localization method is proposed by Devi. M.M. et al.

(2018) in [94]. This work is validated using a 49-bus sys-

tem to obtain a maximum localization error of 0.19% for

symmetrical fault and 0.012% for unsymmetrical fault with

dynamic fault resistance; although the required number of

post-fault cycles is not reported clearly. But these
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methodologies often require major hardware support like

synchronized time-based GPS system, etc., which makes

the system costly. Sequence component analysis has been a

major tool of fault analysis since long and has been prac-

ticed since the earlier days. Another innovative fault-lo-

cation method has been proposed by Lee, Y. J., et al.

(2019) in [95] for estimation of fault location in a multi-

terminal nonhomogeneous transmission lines. The method

uses synchronized voltage and current phasors which are

recorded using synchronized data collection device like

phasor measurement units or other intelligent electronic

devices. The authors have used graph theory-based indices

in addition to optimal calculation data window for the

purpose. A method of remote monitoring for real-time

transmission line fault detection and classification has been

proposed by Gopakumar, P. et al. (2018) in [96]. The

method incorporates PMU measurement method for

acquiring the fault signals.

Probabilistic Neural Networks or PNN-Based

Analysis

Probabilistic neural networks or PNN, being a major

variant of ANN architecture, has inherent property of

pattern identification hence has been used effectively in

power system fault classification [97–101]. PNN has

immense capability of pattern recognition, for which, it is

applied extensively in such problems, like the fault clas-

sification. Initialization of the architecture with initial

weights is not required in PNN, which is a major advantage

of PNN; besides, PNN always converges in Bayesian

classifier, hence often used with such [3]. PNN learns fast,

as well as it is also insensitive to outliers, but similar to

other neural network models, training time as well as

memory requirement becomes large for a large network

and the selection of layers and neurons becomes doubtful at

times [3].

The authors of [97] have described a very fundamental

way of developing PNN-based fault classifier model, by

easy explanation of the basic architecture of PNN and the

Parzen’s method of density estimation which often used in

several PNN-based works for the estimation of the proba-

bility density function (pdf). The authors found the clas-

sification accuracy of 100%, compared with BP network

which they found to yield 90% accuracy. Another hybrid

methodology using WT and PNN is developed in [98] for

classification to obtain accuracy of 100%. Raval, P. D.

et al. (2016) in [99] investigates fault in a series-compen-

sated multi-terminal EHV transmission line using PNN

architecture to obtain 100% classifier accuracy with PNN-2

architecture. Variation in ground fault resistances is also

incorporated for the examined double split transmission

line. A fault analysis method is proposed by Roy, N. et al.

(2015) in [100] using S-transform-based PNN for classifi-

cation and BPNN for fault localization with dynamic fault

resistance. The authors obtained an average classifier

accuracy of 99.6% and the same is obtained as 98.7% using

noise corrupted signals. The localizer model produced a

maximum error of 4.46% and the same again of 4.35% for

with noisy signals. Moravej, Z. et al. (2015) in [101] have

proposed an effective combined method for symmetrical

faults identification in the presence of power swing. This

method again uses S-transform (ST) and probabilistic

neural network (PNN) to obtain average accuracy for

detection of power swing (C1) and fault during power

swing (C2) is 95.5% and 90.93%, respectively, using half

cycle current signal. C1 and C2 are also classified with

accuracy 100% and 90%, respectively, with dynamic fault

resistance.

Variants of Neural Network Applied for Fault

Analysis

Different other forms of neural network and its association

with other topologies have been investigated to justify their

effectiveness. Different analyses have been carried out

using ANN or its variations with numerous other tech-

niques [102–106]. Cui, H. et al. (2015) in [102] have

illustrated generalized regression neural network architec-

ture for predicting fault location in a HVDC transmission

line, which yielded a mean error of localization below

0.05 km and the maximum error is also found just higher

than 0.3 km, although the status of fault resistance or the

required number of cycle of signal required for analysis has

not been mentioned in detail.

WT and the adaptive resonance theory (ART) have been

hybridized in [103]. This ART2-based method has pro-

duced classification accuracy of 99.91%, compared with

99.88% as obtained with ANN. The location error is found

even lower than 1.5% based on the inverse interpolation

method and examining all classes of faults and with

dynamic fault resistance.

The authors of [106] have investigated the application of

HS-transform and radial basis function neural network in

this field. The change in energy and standard deviation of

current and voltage signals are computed using S-transform

of one cycle ahead and one cycle back from the fault

instant. The location error found is lowest for LG fault

which is 0.89% and goes highest up to 1.89% for LLG

fault.

Vyas, B. et al. (2014) in [105] have investigated

improved artificial intelligence techniques for fault classi-

fication in [98]. The authors use this methodology for

thyristor-controlled series-compensated transmission lines

with half cycle post-fault current signal. Polynomial-based

Chebyshev neural network (ChNN) and discrete wavelet
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packet transform (DWPT) are used as the basic building

blocks of the algorithm, which although increases com-

putational burden to some level. Classification accuracy

achieved is 99.39% justifying the effectiveness of ChNN as

an improved machine learning method against the multi-

layer perceptron NN and SVM.

A particle swarm optimization or PSO and ANN-based

fault classification scheme are proposed by Upendar, J.

et al. (2010) in [106]. An average classification accuracy of

99.91% is achieved in this process even with dynamic fault

resistance. It is observed that testing cases of the PSO-

based network yielded a successful prediction rate of up to

99.91%, compared with BPNN (99.88%) and SVM

(96.01%)-based methods tested in this work, which con-

cluded that the PSO-based method performed better than

the designed SVM and BPNN.

Extreme learning machine (ELM)-based neural net-

works have also been examined in research. Among the

key advantages of ELM network, the presence of a single

optimized hidden layer lies in front. Besides, this hidden

layer does not require tuning, as well as the weight and bias

adjustment are not essential at all; yet ELM suffers from

major shortcomings like the presence of local minima, ease

of over-fitting, as well as complicatedness in reaching the

optimal solution [3]. The authors of [107] have proposed an

innovative self-learning machine learning-based feature

extraction algorithm termed as summation-wavelet

extreme learning machine (SW-ELM). The authors have

also claimed that their proposed method is able to diagnose

faults within a single cycle to produce accurate classifica-

tion of about 95% as well as precise location estimation

with only 1.3%–4.8% of error. Besides, this method is also

found to remain unaffected by the variation in fault resis-

tance and inception angle. Another transmission line fault

localization method is proposed by Mirzaei, M. et al.

(2018) in [108] using another advanced analysis of the

neural network: deep neural networks, which are gaining

immense popularity with the massive advancement of soft

computational analysis.

Correlation-Based Analysis of Fault Signals

Correlation-based analysis is another effective tool to

identify interrelation between voltage and currents of each

phase in different classes of faults, since these parameters

seem to vary during the transients. Accordingly, this

method is applied with good effect in this field of research

[109-106]. Yu-Wu, C. et al. (2010), Haomin, C. et al.

(2014) and Zheng, Z. et al. (2012) illustrate a very popular

statistical method of correlation coefficient analysis for

fault treatment in transmission line for classification, as

well as for localization of faults to some extent [109–111].

Correlation coefficient is an important statistical tool which

identifies the interdependence of two variables. The voltage

and currents of the three phases are investigated using this

analysis, and the correlation coefficients are obtained,

based on which classifier algorithm is developed. The

affected phase voltage or current is disturbed maximum

from the healthy condition. Hence, correlation of the

faulted signal from the healthy one produces correlation

coefficient much less than unity. This is investigated in

several research works of this class of research for devel-

oping fault classifier model. Besides, fault current shoots to

a very high level abruptly on occurrence of a fault, whereas

voltage level seems to drop from the no-fault level. This

again produces a much less than unity value of correlation

coefficient while investigated between voltage and current

waveforms of the directly faulted phases. This method of

investigation is followed in several research works to

develop a direct threshold-based fault classifier model.

Dasgupta, A. et al. (2015) in [112] and Chatterjee, B. et al.

(2020) in [113] use cross-correlation analysis in a similar

way to develop fault identification and classification

topologies. The authors of [112] have used k-nearest

neighbor analysis to map the correlation values to identify

faults. The authors of [113] have further incorporated fuzzy

inference along with cross-correlation method to classify

transmission line faults. Another cross-correlation-based

method is investigated in Bhattacharjee, A. et al. (2019) in

[114] where Elman back-propagation neural network is

used to detect as well as estimate fault location of single

line to ground faults. Correlation-based method is also used

in combination with other feature extraction methodologies

like traveling wave analysis by Zhang, G. et al. (2016) in

[115] or frequency spectrum-based characteristics by Zhu,

K. et al. (2018) in [116] to develop effective fault analysis

methods. Lei, A. et al. (2018) in [117] have proposed an

efficient correlation-based ultra-high-speed directional

relay for very fast detection of power line faults. The

authors of [118] have proposed another fault diagnosis

methodology for localization of transmission line faults

using correlation analysis method applied with traveling

wave theory. This is an example of correlation analysis

used for localization of transmission line faults. Shu, H.

et al. (2020) illustrates another correlation-based method of

analyzing single pole-to-ground fault of MMC-HVDC

transmission lines based on capacitive fuzzy identification

techniques [119].Other methods of using correlation-based

techniques have also been proposed in [120, 121]. These

analyses have shown the effectiveness of a simple statis-

tical technique line correlation to develop simple yet

effective computational methods for fault analysis.
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Other Latest Methods of Fault Analysis

Upendar, J. et al. (2012) in [122] have proposed a fault

classifier and localizer algorithm implementing decision

tree-based modeling with classification and regression tree

(CART), DWT and ANN. Key features from the faulted

signals are extracted using DWT, and the statistical CART

is used to classify the type of fault with 99.97% accuracy

compared with 99.88% as obtained using BPNN architec-

ture. Localization error is mostly less than 1.5%, which is

quite high accuracy, especially with dynamic fault resis-

tance. Application of two excellent methods of artificial

intelligence (AI) like ANN and genetic algorithm (GA) has

combined together to develop effective hybrid method like

genetic algorithm-generalized neural network or GA-GNN

for fault classification in a three-phase transmission system

by Sharma, S. K. et al. (2019) in [123]. Radial Basis

Function (RBF), SVM and Scaled Conjugate Gradient

(SCALCG) basis neural network method have been applied

to develop a hybrid model for locating fault location on

Extra High Voltage (EHV) transmission line [124]. The

maximum and minimum error of fault location has been

1.93 km and 0.0001 km, respectively.

Time reversal-based analysis has also been conducted or

locating faults in transmission line [125, 126]. An elec-

tromagnetic time reversal-based method is studied by

Razzaghi, R. et al. (2013) in [125] for developing an effi-

cient fault localization algorithm for different faults

occurring in power system networks. Codino, A. et al.

(2017) in [126] have proposed another time reversal-based

method for transmission line fault location considering

different media for the forward and the backward propa-

gation phases. The authors also show that the proposed

method provides high localization accuracy of faults in the

range of ± 1 m for frequency higher than 1.22 MHz

and ± 100 m for frequency higher than 0.071 MHz with

single observation point. Fast discrete orthogonal S-trans-

form or FDOST entropy-based intelligent digital relaying

scheme for detection, classification and localization of

faults on the hybrid transmission line is presented by Patel,

B. (2018) in [127]. FDOST is used effectively for feature

extraction; SVM is used for classifier model and support

vector regression (SVR) model for pattern recognition of

faults, which is used for classification and prediction of

location of faults. Fault resistance is varied dynamically

with addition of noise to obtain maximum location error of

0.477 km with an average deviation of 0.077 km for the

140 km hybrid line and using half cycle post-fault signal.

The classifier accuracy is also obtained as 99.53%. A

comparative analysis of two excellent methods like ANN

and traveling wave has been described by Maheshwari, A.

et al. (2019) in [128] for developing effective fault local-

ization schemes for transmission lines. Liu, Y., et al. (2017)

in [129] have presented a dynamic state estimation-based

fault localization method for transmission line faults using

instantaneous sampled values instead of phasors which

enables estimation of the fault location. This method shows

improved accuracy, significantly for short duration faults.

A real-time fast mathematical morphology-based feature

extraction technique is presented by Godse, R., et al.

(2020) for detection as well as classification of faults in

transmission lines [130]. Morphological median filter is

investigated to extract unique fault features, followed by

analyzing the same using a decision tree fault classifier.

Classification accuracy of 99.9819% is achieved using this

method having reduced computational intricacy, more

importantly, using even less than a quarter cycle of the

fault waveform. Another mathematical morphology-based

fault detection method for double-circuit transmission line

has been proposed by Kapoor, G. (2018) in [131]. Fault

current of three-phase fault signals of both circuits is

measured at relay locations for analysis with mathematical

morphology analysis.

A very traditional method of fault analysis like sequence

network-based fault-location scheme has been well estab-

lished in recent methodologies [132, 133]. Ghorbani, A.

et al. (2019) have proposed a negative-sequence network-

based scheme for detecting location of fault in a double-

circuit multi-terminal transmission lines [132]. It is shown

that fault location estimated is possible using only one

element for each transmission line. The insensitivity of

fault resistance and infeed current on its performance is

also demonstrated. A maximum error of 1.9% is obtained

by the authors using this method. A positive sequence

superimposed network-based transmission line protection

system is developed by Ji, L. et al. (2019) in [133] using a

new single ended method during auto-reclosing. The pro-

posed method uses local measurement data only and is able

to quantify the negative effects of fault resistance, fault

distance and unknown remote end source impedance. An

average and maximum location error of less than 0.62%

and less than 1.36% are achieved, respectively, using one

cycle of fault waveform with varying fault resistance. Fan,

R. et al. (2018) have described an ensemble Kalman filter

(EnKF)-based fault localization technique [134]. Two dif-

ferent categories of faults: AG and BC faults are analyzed

to obtain an average fault-location error of 0.159 km, and a

maximum error of 0.242 km for AG fault and similarly

0.109 km and 0.199 km for BC fault, with variable fault

resistance and half cycle post-fault waveform.

Phasor analysis-based power system fault analysis

method has also been proposed by scientists in this field of

research. A similar approach is prescribed by Gajare, S.

et al. (2016) in [135] and is experimented using this

topology on a multi-circuit series-compensated transmis-

sion lines. This method uses phasor data from intelligent
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electronic devices (IEDs) at both ends. The method com-

putes errors for untransposed transmission lines, consider-

ing error in line parameters, complex fault impedance,

error in data and error in synchronization. The maximum

location error obtained is 0.0965% for overall untransposed

lines, 1.2120% with 10% error in voltage data and 1.9282%

error in current data; 0.5333% and 1.2380% maximum

error for 10 ns and 1 ls synchronization time error. Fault

resistance is also kept variable in this research work. The

authors of [136] explain another dynamic phasor modeling-

based analysis for asymmetrical faults with unbalanced

polyphase power systems. The advantage of using dynamic

phasors is that these are capable for fast numerical simu-

lations, since these tend to vary slowly even for an abrupt

change of instantaneous quantities.

A three-terminal transmission line is investigated by

Gaur, V.K. et al. (2017) to develop new faulty section

identification and fault localization technique [137]. This

method is designed to estimate the fault resistance too

along with fault location. The error for fault location and

fault resistance is found to remain within ± 1.5% and ±

3.5%, respectively, even for wide variation in system and

fault parameters. Dobakhshari, A. S. et al. (2014) in [138]

have presented linear weighted least-squares (WLS)

method for fault-location estimation by synchronized

voltage measurement technique using positive sequence

only. One advantage of this method is that it does not

require the prior knowledge of classification. The predicted

fault-location error is found to remain far below 1%; hence,

this method obviates the need to deal with CT saturation

and unreliable zero-sequence parameters of the line. A

novel fault detection method is proposed by Tong et al.

(2020) in [139] for transmission lines, based on pilot

impedance method. The authors have shown that the

method is insensitive to variation in fault location, fault

type, fault resistance and presence of weak source. The

method is also found to produce reliable performance, even

during power swing as well as during open-phase opera-

tion. Bagged tree ensemble classifier, another latest tech-

nology, has been successfully implemented to develop a

novel analysis method for classification of different cate-

gories of faults in a series capacitor compensated trans-

mission line by Mishra, P. K. et al. (2018) in [140].

Swetapadma, A. et al. (2016) have proposed a decision

tree-based scheme within half cycle of power swing for a

double-circuit line with dynamic fault resistance [141].

DFT is used for the signal processing purpose. This pre-

sented scheme effectively detects the fault with 100%

accuracy as well as yields 99.99% classifier accuracy. An

independent component analysis (ICA)-based approach is

presented by Almeida, A. R. et al. (2017) in [142] using

hybrid method with traveling wave (TW) theory and sup-

port vector machine (SVM) for localizing and classifying

faults in high-voltage transmission line. The location error

is found below 1%, and classification accuracy of 100% is

achieved; although combination of three methodologies

makes the analysis more complicated. A wide area mea-

surement-based fault detection and localization method for

transmission line is presented by Das, S. et al. (2017) in

[143] using only voltage signals from WAMS and bus

admittance matrix of the network. The authors have also

shown that the method is independent of fault type, fault

location as well as fault resistance. A cumulative sum

(CUSUM)-based approach for fault detection is presented

in Dash, P. K. et al. (2014) in [144]. Fast discrete

S-transform (FDST) is used to extract spectral energies

from current signals, thus precisely identifying fault before

or after the STATCOM and compute the fault location

using half cycle pre-fault and half cycle post-fault signal.

Localization error is found mostly below 1% for faults

before STATCOM and 2% for cases with STATCOM

present in the fault loop. Apart from this, fault-location

errors are mostly found within a bound of 2–3% and are

found to vary from 0.02 to 2.52% for different fault

resistance and other conditions.

Class-dependent feature (CDF) and two-Tier multilayer

perceptron network-based robust transmission line fault

classification analysis has been presented by Mahmud, M.

N. et al. (2018) in [145]. The accuracy level is tested in this

work with CDF and two-Tier MLP network for three dif-

ferent noise levels of the fault signal: with no noise, 20 dB

and 30 dB noise level. The method shows that a highest

average classifier accuracy of 99.36% is achieved. A

method for prediction of fault location in a double-circuit

series-compensated transmission line has been presented

by Sahani, M. et al. (2019) in [146]. The method uses

parameter optimized variational mode decomposition

(POVMD) and weighted P-norm random vector functional

link network (WPRVFLN) for estimating fault location.

Adaptive wavelets-based classifier is presented by

Perez, F. E. et al. (2011) in [147] using DWT and proba-

bility analysis method such as the Bayesian linear dis-

crimination analysis. This model classifies different faults

with an accuracy level of 100% and most importantly,

using only (1/10) cycles of post-fault signals, which is a

vital outcome of this work. Fault resistance is also kept

variable. A different type of classification scheme using

image classification-based transmission line fault detection

method has been presented by Wang, Y. et al. (2019) in

[148] which uses deep quality-aware fine-grained catego-

rization learning method. Analog relaying schemes have

been used traditionally using these methods. Advancement

of soft computational techniques has given abrupt rise to

digital relaying methods. Digital sequence component-

based methods have come out with accurate outcomes.

Magnetic measurement-based fault detection schemes have
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come up with effective measures to extract fault features.

These have used variation in magnetic flux for detecting

the same as proposed in by Kazim, M. et al. (2019) in [149]

where the authors describe a new approach of non-contact

magnetic-based measurement system for detecting and

localizing short circuit using highly sensitive and energy-

efficient magnetic sensors which detect the variations in

magnetic field levels along the lines. Laboratory experi-

ments were conducted by the authors, and they produced

error of less than 5% even for worst case; although the

additional sensors require additional cost. The authors of

[150] have described a fault-location prediction algorithm

for a compensated transmission line with series connected

FACTS devices. Recursive algorithm is used in this work

and applied at both ends. The error is found mostly below

0.5%; although this method does not use the compensator

device model for governing its operating mode to compute

the voltage drop during fault. Zhong, Y. et al. (2013) in

[151] have presented a novel distance protection algorithm

for the estimation of fault location on the lumped trans-

mission line model.

A Comparative Quantitative Analysis of Different
Methods in Literature

A comparative analysis is shown here with the different

state-of-the-art methodologies for classification and local-

ization of transmission line faults in power system network.

An overview of Table 1 gives a better idea about the dif-

ferent methods of fault analysis executed by different

researchers over the years. The analysis of comparison

primarily focuses on the level of accuracy reached in

classifying faults, as well as prediction of fault location,

number of power–frequency cycle required for analysis and

the methods used for computation of fault parameters;

hence, these values are mentioned in the table for respec-

tive research works.

Conclusion

In this article, a brief and overall review of the different

methodologies adopted for analyzing power system faults

is presented. The different techniques investigated by

several researchers for detection, classification and local-

ization of especially the transmission faults are described

here, analyzing their major advantages as well as short-

comings. The accuracy of classification as well as local-

ization obtained by various methods is also reported while

explaining the methodologies.

Literature works show that traditional methods like

artificial neural network (ANN), wavelet transform (WT)

and fuzzy inference system (FIS) have tremendous influ-

ence over fault analysis methods. These methods have been

proved extremely accurate for fault diagnosis over the

years, yet suffer from respective disadvantages. ANN and

other similar supervised models need intense training using

diversely distributed data hence make the analysis com-

plex, as well as time consuming due to the requirement of

adequate training time. WT has developed good mathe-

matical tools and waveform analysis methods for fault

diagnosis. But, WT becomes computationally intricate

progressively with increase in the level of decomposition.

Besides, selection of mother wavelet is another issue faced

in different research works; although WT is extremely

efficient to extract minor details in a signal, hence used in

abundance in fault signal analysis. Development of the rule

bases for FIS sometimes becomes difficult and introduces

inaccuracy in analyzer design. It is observed that many

researchers prefer hybrid combination of these fundamen-

tal techniques. Many analyses show that WT is used to

extract fault features and supervised learning method like

ANN or membership function based techniques like FIS

are used to develop suitable fault analysis models using the

extracted features. Combinations of these methods are

found to yield efficient fault analyzers; although at the cost

of heavier computational burden. Different other advanced

forms and variants of ANN and various hybrid method-

ologies combining these tools together have yielded

excellent results, especially over the past two decades.

Probabilistic neural network or PNN has come up with

admirable results of fault analysis, particularly for fault

classification due to its inherent capability of pattern

recognition; although, PNN also suffers from requirement

of severe training for achieving high accuracy of the fault

analyzer model. Support vector machine (SVM)-based

methods are very accurate; especially SVM-based classi-

fiers of faults achieve very high accuracy. But SVM often

loses accuracy under high noisy environment when fault

signals are affected by severe noise, apart from being

computationally heavy. SVM-based classifiers analyze

fault signals in a binary way: this puts the test signals either

above or below the classifying hyper plane, instead of the

class probability analysis done in case of PNN classifiers.

Principal component analysis or PCA is a statistical

method used in this research which enables reduction of

memory requirement by cutting down the dimensionality

of data as well as finds the major directions from a mul-

tivariate data; which, in turn, reduces the computational

burden as well as memory requirement, since it considers

only the major directions of variation in the data in

descending order of importance. This also helps to reduce

the effect of noise in signals in computation. But PCA

considers the derived components as the linear combina-

tion of fault features, which introduce minor inaccuracy.
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Table 1 Comparative analyses of different fault localization schemes

References Methods used Line length

(km)

Fault

resistance

(X)

Percentage error (PE) Number of cycles

required

[6] Jain, A. et al.

(2009)

ANN 100 0–100 Average PE found from table is

1.472%, maximum PE 7%

One cycle

[14] Valsan, S.

P. et al.

(2009)

WT 4-bus system 10–1000 Average error of 0.217% with

the maximum error less than

3%; overall classification

accuracy 99.53%

Less than one

cycle

[17]

Swetapadma,

A., et al.

(2015)

DWT-ANN 100 0–100 Percentage error in fault-

location estimation

within ± 1%

One cycle of pre-

fault and two

cycles of post-

fault signals

[21] Dasgupta,

A. et al.

(2012)

Wavelet entropy and ANN 150 10 Location accuracy of 98.28%,

i.e., error of 1.72%,

maximum PE 3.25%

1/2 cycle pre-fault

and 1/2 cycle

of post-fault

[23] Yadav, A.

et al. (2015)

WT and linear discriminant analysis

(LDA)

100 0–100 Detection and classification

accuracy 100%

1/4 cycle

[24] He, Z. et al.

(2010)

Wavelet singular entropy (WSE) 300 0–300 Classification overall accuracy

100%

1/2 cycle

[29] Ray, P.,

et al. (2013)

WT–ANN and WPT–ANN-based hybrid

method

300 0–45 Maximum error of less than

0.35% and mean error of less

than 0.25%

One cycle

[30] Yadav, A.

et al. (2015)

Wavelet and ANN 300 3–99 Minimum % error is - 0.0007

and maximum % error is

0.6665

–

[31] He, Z. et al.

(2014)

Wavelet transforms and rough

membership neural network (RMNN)

classifier

200 0–500 Average success classification

rate of 99.4%

1/4 cycle

[32] Vyas, B.

et al. (2014)

(DWT and Chebyshev neural network

(ChNN)

300 0–50 Classification accuracy 99.81% 1/2 cycle

[33]

Samantaray,

S. R. et al.

(2007)

Wavelet and SVM for classification;

RBFNN (radial basis function neural

network) with recursive least-square

algorithm for location

330 0–200 The classification rates are

above 97%; location error

calculated for all kinds of

fault is below 2%

One cycle ahead

and one cycle

after the fault

inception

[36] Yadav, A.

et al. (2015)

Fuzzy inference system (FIS) 200 0–100 Fault-location error within 1 km

mostly

Less than 1/2

cycle

[39] Reddy, M.

et al. (2007)

Wavelet-fuzzy 300 0.001 Average PE found from table is

2.655% and Maximum PE

6.5%

One cycle

[40] Meyur, R.

et al. (2016)

Wavelet-adaptive network-based fuzzy

inference

300 – Average PE found from table is

0.152% and Maximum PE

0.76%

Three cycles of

nominal

frequency

[42] Jung, C. K.

et al. (2007)

Wavelet and neuro-fuzzy system 14 ? 6.06

(line ? cable)

0–200 Maximum location error for

cable is 0.3306 km, and for

overhead line 0.2551 km

1/2 cycle

[43] Eristi, H.

(2013)

WT and ANFIS 320 0.1–50 Average location error less than

0.25%

maximum location error of

1.288%,

classification error 99.301%

About one cycle

[44] Reddy, M.

J. et al.

(2007)

WT, FIS and (ANFIS) 300 0.001–100 Maximum fault-location error

varies - 3.67% to ? 3.33%

–

[47] Sadeh, J.

et al. (2009)

ANFIS 90-km overhead

10-km cable

0–100 Maximum location error below

0.07%

Within one cycle
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Table 1 continued

References Methods used Line

length

(km)

Fault

resistance (X)
Percentage error (PE) Number of cycles

required

[49] Bhalja, B.

et al. (2008)

WT and SVM 128 0–100 Highest classifier accuracy of

98.5185%

–

[50] Jafarian, P.

et al. (2012)

Dyadic WT and SVM 330 0.01–50 Maximum classification accuracy is

100% of Gaussian and polynomial

kernel function

1/4 cycle

[52] Chothani,

N. G. et al.

(2011)

SVM 100 0–50 The Gaussian RBF kernel gives the

highest accuracy of 99.833%

One cycle

[54] Salat, R.

et al. (2004)

SVM 200 2–25 Minimum error 0.015% for LLL fault,

maximum PE 0.7%

Two cycle

[56] Moravej, Z

et al. (2012)

Hyperbolic S-transform and SVM 100 1–50 Classification accuracy 99.21%

location relative error 2.48E-3

1/2 cycle

[58] Ekici, S.

(2012)

SVM and WT 360 10–1000 Classification error is below 1%;

average location error\ 0.26%,

maximum error\ 0.95 km

1/2 cycle pre-fault

and 1/2 cycle

post-fault

[61] Yusuff, A.

A. et al.

(2014)

Stationary wavelet transform (SWT),

determinant function feature

(DFF), SVM and SVR

361.297 0.001–50 Classification accuracy of 100%

location accuracy: % relative error for

fault location is 2.10E-03%

1/4 cycle

[65] Alsafasfeh,

Q. et al.

(2012)

PCA 100 5–100 Minimum error 0.3% and maximum

error of 2.7%

1/4 cycle

[76] Lopes, F.

V. et al.

(2017)

Traveling waves 200 50 Average error equal to 31 m, i.e.,

0.0155%; maximum error

\ 270 m, i.e., 0.135%

Variable

[81] Mamiş, M.

et al. (2013)

Spectrum 240 0.1–50 Average PE found from table is

1.369%, maximum PE 4.21%

One cycle (20 ms)

[82] Song, G.

et al. (2014)

Frequency 225 0–100 Average PE found from table is

0.183%, maximum PE 0.64%

5 ms data window,

1/4 cycle AC

equivalent

[88] Dash, P. K.

et al. (2015)

Fast frequency filtering ST (FFST)

along with a cumulative sum

(CUSUM) average and fast Gauss–

Newton (FGN) algorithm

230 5–200 Fault detection and classification

reliability[ 97% for high

impedance faults ([ 250 X) and
100% for low impedance faults

fault-location accuracy is of the

order of 0.3%

Classification

time\ 10 ms in

most cases

[89]

Krishnanand,

K. R. et al.

(2015)

Spectral energy, fast discrete

S-transform, CUSUM algorithm

308 0.1–100 Maximum location error of

2.4561E-02 per unit

Half cycle before

and after the

CUSUM

detection point

(CSDP)

[90] Dutta, P.

et al. (2014)

Synchronized V and I samples IEEE

118-bus

0–100/

200–10,000

Fault-location accuracy is within 3%

except for one case

Within 7 ms of

fault

[94] Devi, M.

M. et al.

(2018)

Phasor measurement units Multi-bus

(49-

bus)

10–50 Maximum error of 0.19% for

symmetrical fault, and 0.012% for

unsymmetrical fault

–

[100] Roy, N.

et al. (2015)

S-transform-based PNN and BPNN 300 0–100 4.46% without noise and 4.35% with

noise

–

[101] Moravej,

Z. et al.

(2015)

S-transform (ST) and PNN methods 300 5–100 Power swing and symmetrical fault

during power swing are classified

with accuracy 100 and 90%,

respectively

1/2 cycle
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Table 1 continued

References Methods used Line length (km) Fault

resistance

(X)

Percentage error (PE) Number of cycles

required

[103] Upendar,

J. et al.

(2010)

Adaptive resonance theory

(ART) neural network

for classification and

inverse interpolation for

location

300 0–200 Classification accuracy 99.91%

and location errors lower than

1.5%

–

[104]

Samantaray,

S. R. et al.

(2006)

Hyperbolic S-transform

(HS-transform) and

radial basis function

neural network

(RBFNN)

300 0–200 Fault-location error varies from

0.89 to 1.89%

One cycle ahead and one

cycle back from the

fault inception

[105] Vyas, B.

et al. (2014)

Polynomial-based

Chebyshev neural

network (ChNN) and

discrete wavelet packet

transform (DWPT)

300 0–50 Classification accuracy 99.39% 1/2 cycle

[106] Upendar,

J. et al.

(2010)

PSO-based multilayer

perceptron neural

network and wavelet

transform

300 0–200 99.91% Average fault

classification accuracy

–

[107] Chen, Y.

Q. et al.

(2017)

Extreme learning machine

(ELM)

100 0–200 Absolute fault-location errors of

between 1.3 and 4.8%; average

classification accuracy of 98%

or above

One cycle

[122] Upendar,

J. et al.

(2012)

Classification and

regression tree (CART),

WT, ANN

300 0–200 Overall classification accuracy

99.97% using CART, 99.88%

using BPNN, and location error

is less than 1.5%

Two full cycles (0–720

degree)

[127] Patel, B.

(2018)

FDOST entropy 140 (100 ? 40) 0–100 Average error below 0.077 km

maximum error below 0.477 km

1/2 cycle

[132] Ghorbani,

A.

et al.(2019)

Negative-sequence

network

Multiple lines 0–300 Maximum error of 1.9% –

[133] Ji, L. et al.

(2019)

Positive sequence

superimposed network

100 0.1–200 Average error below 0.62%

Maximum error below 1.36%

One cycle

[134] Fan, R.

et al. (2018)

Ensemble Kalman filter 200 0.01–15 AG fault: average error of
0.159 km, maximum error of

0.242 km, BC fault: average

error of 0.109 km, maximum

error of 0.199 km

1/2 cycle

[135] Gajare, S.

et al. (2016)

Phasor data from

intelligent electronic

devices (IEDs) at both

ends

500 0.001–100 Maximum error 0.0965%; worst

error of 1.9282% with 10% error

in current data, 5.0369% with

10% line parameter error

Pre-fault phasors

calculated at a cycle

pre-fault and phasors

during fault obtained

from second cycle

[137] Gaur,

V.K. et al.

(2017)

Time-synchronized and

superimposed of fault

signals

(310 ? 60 ? 50)

km

Estimation

parameter

Fault location and fault resistance

remains within ± 1.5% and

± 3.5%, respectively

1/2 cycle

[138]

Dobakhshari,

A. S. et al.

(2014)

Weighted least-squares

(WLS) method

9-bus and 22-bus

test systems

2–50 Fault-location error is less than 1% One cycle starting two

cycles after fault

inception
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Traveling wave and frequency analysis-based methods are

also used effectively. Fourier transform-based analysis

helps in developing frequency spectrums which bear major

information regarding faults. Apart from these, entropy-

based methods, correlation and regression analysis, time

synchronous analysis of fault signals and several others

have been proved effective in this regard. Phasor mea-

surement unit (PMU) has come up over the last few years

with excellent results of fault localization. But time syn-

chronous analysis methods like PMU requires measure-

ment of fault signals from both ends of the system

simultaneously, which require additional hardware support,

which further involves enhanced costing. Several other

effective methods have also come up in the last few years

especially with the rapid advancement of soft computa-

tional analysis as discussed earlier.

All these above methods of fault analysis are mentioned

in brief in this article, both qualitatively as well as quan-

titatively. Citations are duly mentioned along with corre-

sponding key features and outcomes of each of the research

works. This is done with an aim to help researchers to

develop an overall idea of research in this field, as well as

identify the suitable method for serving the intended pur-

pose regarding fault analysis for detection, classification

and localization of power system faults, occurring in the

transmission lines.
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