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Abstract Transmission line fault classification is one of

the most studied themes of power system analysis and

research. This is of utmost importance to isolate the faulted

phase for avoiding undue drainage of bulk power during

fault. This paper presents a simple and effective method for

classification of power system faults in a transmission line

using a multivariate statistical method like Principal

Component Analysis (PCA). Half-cycle post-fault sending

end fault transient current signals are used as the working

data for the work, which are normalized, scaled, filtered

and finally differentiated. Differentiation of the fault cur-

rents is a key method used here in order to highlight par-

ticularly the post-fault transient oscillations compared to

the original fault transients. These increased oscillations of

the modified signals are analyzed using PCA, which

extracts fault features in terms of Principal Component

scores, which, in turn, are remodeled to develop Principal

Component Indices (PCIs). These PCI values as obtained

from the analysis of differentiated signals are found higher

compared to un-modulated signals in most of the cases;

thus yielding more prominent features to distinguish dif-

ferent fault classes, as well as fault and no-fault conditions.

The algorithm is tested by varying fault locations at an

interval of 10 km. Besides, the proposed scheme is made

more practical by incorporating power system noise, as

well as varying fault inception angle at intervals of 45�,
finally to yield an overall classifier accuracy of 99.41%.

This, in turn, validates the robustness of the proposed

model.
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Introduction

Long transmission lines are one of the most widely

expanded engineering systems. These lines spread over

miles across different terrains and often come across dif-

ferent natural unpleasant phenomena like strong wind,

storm, rain, snow and others. Living creatures like birds,

animals, etc., often cause short circuit among the lines or

between lines and ground, causing temporary or permanent

types of faults. More often, these faults cause major

severity to the system. Hence, isolation of the faulted phase

is very important to prevent damage to the system, the

associated equipments, as well as the working personnel.

Besides, huge power outage during fault is required to be

restricted with utmost importance. So, immediate discon-

tinuation of power flow is absolutely essential to prevent

damage to the system as well as prevent large of power

loss. Hence, classification of fault is very essential in order

to isolate the faulted line by opening the respective circuit

breaker of the affected phases.

Researchers have investigated numerous schemes for

the analysis of power system faults: their identification,
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classification and localization [1]. This paper presents a

simple PCA-based approach for classification of power line

faults in a long overhead transmission system. PCA is a

multivariate statistical analysis which is mostly used to

determine the principal directions of variation in a multi-

variate system. Besides, PCA is well capable of reducing

the dimension of a large and spread data set [2]. Hence,

PCA is widely used in different engineering fields includ-

ing power system analysis. PCA is often used as a stan-

dalone method of analysis tool or in combination with

several other methodologies as a hybrid system [3–12].

Electrical power system is one such multivariate system

which consists of several electrical parameters like voltage,

current, frequency, etc. These parameters are severely

affected during faults. Besides, the three individual phases

are affected in different levels for each fault prototype.

Hence, PCA becomes a major handful tool, especially for

pattern recognition of the fault classes: often alone [3–5] or

in combination with other methodologies as hybrid

scheme [6–12]. Fault signals are analyzed in this work

using PCA-based algorithm to extract key fault features in

terms of three-phase PCI. Half-cycle post-fault three-phase

current signals of the sending end are used as the test data

for the proposed scheme. It is observed that voltage or

current waveforms carry very high-frequency transient

oscillations immediately followed by fault. These high

frequencies are one of the most vital features of faults used

for fault diagnosis. In order to enhance these features fur-

ther, the scaled and filtered signals are differentiated. It is

observed that this method of differentiation enhances the

oscillations to a higher level compared to the original

signal, which contain increased fault features in terms of

more pronounces high frequency fault oscillations. Hence,

in this work, the method of differentiation is adopted.

These highlighted fault features are analyzed using PCA to

obtain three-phase PCI for each fault class independently.

These PCI on analysis revealed three distinct classes of

values, based on which two thresholds are developed,

which in turn are modeled in the form of direct classifier

rule base. The unknown fault PCI is compared to this

rule base table to predict fault class. The major advan-

tage of using PCA in fault researches is its inherent

property of identification of the major direction among

diversely directed variables [2]. PCA is used effectively

to bring out the fault features from the three-phase

current signals as Principal Component Indices (PCIs).

Since PCA extracts only the key directions of variation,

it has the inherent property of reducing the less signifi-

cant effect of power line noise, which is another

advantage of using PCA in this research. Hence, the

extent of disturbance caused in each phase during each

class of fault is mapped in the PCI values, which are

processed to obtain the fault classes.

The proposed work is simple in design incorporating

multivariate statistical analysis like PCA. The simulated

fault signals are contaminated using externally impreg-

nating noise in order to develop robustness of the model.

Besides, the proposed model is investigated by varying the

fault locations and fault inception angle (FIA) for intro-

ducing practicality of the classifier model as well as

develop higher level of robustness to the algorithm. The

method of differentiation adopted in this scheme is able to

highlight the fault transients more prominently compared

to the original signal, which in turn produces more distinct

PCI features and enables distinct differentiation among the

fault classes. These PCI values are basically indicate the

extent of disturbance in each line. Inclusion of PCA as the

single method of feature extraction reduces computational

burden of the algorithm, even compared to more popular

supervised schemes like neural network or mathematical

analysis-based schemes like wavelet or fuzzy inference

schemes, which mostly suffer from heavier computation.

Besides, PCA largely disregards the effect of noise as it

concentrates only the most prominent fault signal varia-

tions. The threshold-based analysis is also easily imple-

mentable, simple, yet very much effective. Altogether, the

proposed PCI threshold-based work shows a high accuracy

of 99.41% toward classification faults using fault signals

simulated with diverse combination of practically varying

combinations of fault location, FIA and power line noise.

This primarily highlights the practical suitability of the

proposed work. Many researchers have used PCA models

for transmission line fault analysis, although the proposed

method of signal differentiation has rarely been used. It is

observed that this differentiated signal contains pro-

nounced fault transient oscillations which are more dis-

tinctly identified as well as classified using PCA, which is

one of the key features of this work. Besides, non-sus-

ceptibility toward practical fault parameter variations and

the presence of simulated power line noise further justifies

the superiority and robustness of the proposed work.

Survey of Existing Literatures

Researchers have worked on several methodologies for

determining accurate fault classes since long [1]. Artificial

intelligence-based methods like neural network (ANN),

signal analysis-based mathematical method like wavelet

transform (WT) and computational method like fuzzy

inference system have been most widely practiced methods

in this field of research traditionally. ANN and several of

its variants have been extensively used in fault diagnosis

[13], but being a supervised method, ANN requires healthy

level of training using a large and well distributed data set

for its successful modeling, which is also subject to con-

siderable training time. Wavelet transform (WT) and
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wavelet entropy-based methods have also been applied in

numerous researches as a key feature extraction tool

[14, 15]. WT is also used with ANN for developing hybrid

fault diagnosis to give high level of accuracy, further

incorporating wavelet entropy and wavelet packet trans-

form for researches regarding fault analysis very frequently

[16–19]. But wavelet analysis suffers from its disadvantage

that it becomes progressively intensive in computation,

especially for higher level of decomposition. Fuzzy infer-

ence system (FIS) has also been highly effective in this

regard [20, 21]. Different combinations of these three

fundamental methodologies like ANN, WT and FIS have

often been combined in several researches for developing

efficient hybrid algorithms for complete or partial fault

analysis [22–24]. Adaptive neuro-fuzzy inference system

or ANFIS methods have come up with accurate algorithm

development [24]. Traveling wave-based analysis is one of

the few methods which use wave propagation time to

detect faults, especially aiding in fault localizer design.

These methods of analysis have been acquired effectively

in many researches, especially for distance estimation of

faults apart from classification [11, 12, 25, 26], but the

detection time of fault is mostly dependent on the propa-

gation time and hence, is a variable quantity. Support

vector machine (SVM) has been another major approach in

fault analysis for its ability of zone segmentation, which

influenced many researchers to design SVM-based trans-

mission line fault analysis schemes: either as a major

standalone feature extractor [27–29] or as a hybrid model

incorporating other analysis methods like discrete orthog-

onal S-transform or DOST [30], wavelet analysis [31] and

supervised analysis like neural network [32] to develop

excellent fault features. PCA-based schemes are also

popular among fault analysis and research. PCA is often

combined with several other methodologies like SVM [10],

WT-aided traveling wave [11, 12] or a combination of WT,

ANN, SVM and others [6, 7] to develop fault analysis

algorithms. Probabilistic neural network (PNN), being a

major variant of neural network, is very effective for pat-

tern recognition problems [13, 33]. Power system faults,

being one such kind, have huge applications of these

methodologies. PCA is often combined with PNN for

developing effective fault diagnosis schemes [8, 9]. Hence,

the overall power system fault analysis is researched over

using several schemes.

Apart from these major conventional schemes, several

other methods have come up in latest researches. Phasor

measurement unit (PMU) has been one of the latest addi-

tions to the power system research which includes com-

putation of magnitude and phase angle of electrical

parameter using common time source for synchronization

[34, 35], although the cost of implementation becomes

higher due to the incorporation of additional hardware

support, apart from the computational heaviness. Ensemble

Kalman filter-based analysis has been applied in similar

research [36]. Sequence analysis of voltage or current

parameters has been traditionally applied in research,

although these have been investigated with latest compu-

tational analysis with positive and negative sequence cir-

cuit-based analysis [37, 38]. ANN methods have been

investigated extensively in recent few years to develop

machine learning and deep learning algorithm, which have

come up with major challenges to existing schemes.

Extreme learning machine (ELM)-based neural networks

have been investigated as a part of such research [39].

Other artificial intelligence-based methods like genetic

algorithm too have been applied as hybrid combination

with neural networks to develop GA-GNN [40]. Decision

tree, a powerful statistical-mathematical method, has also

found application in few studies [41]. Frequency domain

analysis including Fourier transform-based power spec-

trums is very useful in fault analysis. The high-frequency

fault transients bear significant fault information which is

investigated in several researches [42]. Recent develop-

ments in fault analysis include mathematical morphology-

based feature extraction filtering [43]. These altogether

gives an overview of the trend of contemporary fault

analysis researches.

Methods and Analysis

System Design and Data Collection

A 132 kV, 50 Hz, 150 km long transmission line is stim-

ulated in EMTP/ATP software, similar to the one devel-

oped in [9]. The simulated model is shown in Fig. 1.

Different classes of faults have been simulated at different

intermediate points. The sending end phase current signals

are collected as the working data for the proposed work.

The data so collected are normalized followed by scaling

with respect to no-fault signal. These signals are filtered

Fig. 1 Simulated transmission line model in EMPT/ATP
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further to reduce the effects of power line noise to some

extent. The sampling frequency is kept at 100 kHz, i.e.,

each cycle of the nominal frequency produces 2000

samples.

The faults are segmented into four major classes, each of

which are divided further into different classes to constitute

the ten different fault prototypes as follows: single line to

ground faults or SLG (contains AG, BG and CG faults),

double line faults or DL (contains AB, BC and CA faults),

double line to ground faults or DLG (contains ABG, BCG

and CAG), and LLL, i.e., ABC faults. The proposed work

uses only a half-cycle post-fault signal for necessary

analysis, which means the length of the vector of each

phase signal becomes 1000 samples. Thus, the input vector

of each set of fault signal becomes:

Xai½ � ¼ IaiIbiIci½ �1000�3;

where Ia, Ib and Ic are the sending end three-phase fault

signals and i indicates the fault class; hence, i = 1, 2, 3, …,

11, i.e., ten fault classes and one healthy condition.

Development of Idea of Signal Modulation

The proposed work uses the three-phase normalized, scaled

and filtered current signals, denoted by f(nT), for devel-

opment of the classifier model. Instead of using the signals

directly, these are differentiated to develop the modified

working signal d(nT). The idea behind such analysis lies in

the fact that the edges of the high-frequency post-fault

transient oscillations of the current signals are found to

enhance further on differentiation. These enhanced oscil-

lations create a high difference between the fault and no-

fault conditions, as well as the individual fault classes.

These are highlighted difference between the faulted and

non-faulted line signals which are analyzed through the

PCA algorithm. It is known that PCA reduces the dimen-

sionality of a signal by finding out the most important

directions of variation in the descending order of impor-

tance in terms of the principal components (PC). In this

work, we have considered only the two primary PCs for the

analysis, from which the PCIs are developed, which are

primarily a measure of the extent of disturbance of the line

currents from their respective healthy conditions. Hence,

the enhanced oscillations of the differentiated signals d(nT)

signals are also observed accordingly from the PCI values.

These PCI values are primarily the vector the measures of

the disturbances of each of the signals from the healthy

condition. It is further required to mention here that in this

work the large data size of 1000 samples per signal cor-

responding to half-cycle post-fault signal reduces to a

simple scalar PCI value only from the analysis of the two

most major PCs. Hence, PCA in our work effectively

reduces the dimension of the large current data set

associated with fault, thus reducing the memory require-

ment as well.

It is very important to smooth out the noise contami-

nation to the highest possibility, without losing vital

information regarding the fault oscillations. Differentiation

enhances the edges of oscillation in a signal. Noise has an

inherent nature of prompt and complete random change in

magnitude. Hence, these noise signals, on differentiation,

are also prone to cause abrupt changes in signal, which

may even hide the highlighted post-fault transient oscilla-

tions. Thus, selection of the cut-off frequency of filter is

highly important for this work. Spectrum analysis shows

that noise frequencies are very high, even compared to

most of the high-frequency post-fault transients. Hence, the

cut-off frequency of the low-pass filter is selected such a

way that it only allows even the highest frequency of the

fault transients observed for the 150 km long line and

discards most of the noise contamination.

Analysis of Modulated Fault Signals

The differential line A currents d(nT) are shown in Fig. 2

for different categories of faults, as an example case. It is

evident that the differentiation of signals enhances the fault

transient edges. It is further observed that in case of AB,

AG and ABG faults, line A is the directly affected; hence,

the transients are most prominent and of high magnitude.

Again, the d(nT) for line A for BC fault and the healthy

condition are much similar and hardly possess any distur-

bances other than noise. Finally, in case of BG fault, the

directly un-faulted line A produces higher disturbance

compared to the same for BC fault, but less than AG fault,

immediately after the fault.

It is understood that the directly affected lines, since are

disturbed the most, produce maximum value of the PCI.

The un-faulted line in case of double line faults behaves

much like the healthy phases. The un-grounded lines in

case of ground faults are disturbed to higher extent than the

un-faulted lines of DL faults. These phenomena are clearly

observed from the sub-figures of Fig. 2. These un-faulted

lines of ground faults like SLG or DLG are indirectly

connected to ground by the grounded neutral and the

directly grounded lines. This causes the zero sequence

currents to flow through these un-grounded lines too,

causing higher disturbances in these lines compared to the

third line of DL fault, where ground involvement is nearly

absent. This causes almost no such disturbances in the un-

faulted lines. This distinction is also observed from the BC

(DL fault) and BG (SLG fault) of Fig. 2, where phase A

behaves as the un-faulted phase in both the cases. These

inferences are interpreted mathematically in terms of the

PCI values, based on which some fault classifier rules are

set, followed by development of fault signature table. The
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unknown fault is also analyzed similarly which produces

three-phase test PCI values. These three-phase test PCI

values are compared directly with the fault signatures to

predict fault classes.

Numerical Analysis of PCI

The ten different fault classes for faults carried out at three

intermediate locations along the length of line and the

three-phase PCI values are obtained which are described in

Table 1. The above discussion, in connection with the

observations from Fig. 2, is well interpreted in terms of the

PCI values from this table. It is found from the combined

analysis of these two that that the PCI values are basically

measure of the extent of disturbance caused during fault in

each of the line currents. It is mentioned already that an

attempt has been made to make the proposed method more

robust by incorporating power system noise as well as by

varying the fault geometric location and fault inception

angle. Hence, for the sake of initial analysis of the PCI

values, the FIA is kept fixed at 90� and fault location is

only varied in three intermediate locations: 30 km, 70 km

and 110 km. Level of noise is also kept at 30 dB, which is

quite often a near practical situation. The PCI values are

obtained as described in Table 1 using these fault

parameters.

It is duly observed that the directly affected lines in case

of all fault classes produce a very high PCI and the un-

faulted lines of DL faults produce the least PCI, which is

near to no-fault value. The un-faulted lines of ground faults

like DLG or SLG produce PCI values higher than the un-

faulted lines of DL faults, although this difference is nar-

row. Hence, the DL and DLG faults are required to be

separated using some suitable method. Faults have been

carried out for three times for each fault class and at each

of the fourteen intermediate locations. These repetitions are

done in order to reduce the effect of randomness due to

noise. Hence, a total of (14 locations 9 3 repetitions) i.e.,

42 unknown conditions of each fault class, are tested with

this proposed algorithm. It is further observed that the PCI

of the directly affected phases is almost monotonic in

nature with variation in fault location, following a certain

pattern. Hence, the two terminal locations of the line, i.e.,

Fig. 2 Immediate post-fault differential signal d(nT) of line currents for phase A under different fault conditions, for fault at 70 km from the

sending end
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10 km and 140 km, are appended with the three above-

mentioned locations of 30 km, 70 km and 110 km in order

to enhance the accuracy of the proposed algorithm. The

highest and the lowest PCIs for each of the major classes of

faults obtained at these five locations, for two successive

repetitions at each location, are described in Table 2. The

values which are of least importance, i.e., which are not

required for the development of the scheme, are described

as NR in the table.

The FIA is altered next for testing the above limiting

values of each of the fault classes. It is rather found that

these limiting values are altered to some extent with vari-

ation in FIA. It is needful to mention here that since all the

quarters of a complete sinusoidal waveform are symmetric,

FIA has been varied in the range from 0� to 90� in three

discrete steps. The PCI obtained for SLG-AG fault for FIA

0�, 45� and 90� at these three locations and with the same

30 dB noise level is shown in Table 3 as follows. These

values are observed carefully to note that PCI values vary

almost in proportion to the values we had obtained for 90�
only; although the PCI values vary with variation in FIA

values. PCI values seem to reduce gradually as the FIA

closes towards 0�, primarily for the directly affected lines

which is line A in this case. PCI of the indirectly affected

lines, i.e., line B and C, does not show any such prominent

trend. Hence, considering all the ten fault prototypes, the

limiting values of PCI for different major classes of faults,

as described in Table 2, are further modified in Table 4.

The PCI values obtained from analyzing the terminal

points of the line, i.e., 10 km and 140 km, are also con-

sidered while constructing Table 4, as done during con-

struction of Table 2. These limiting values corresponding

to Table 4 are considered as the final limiting values for the

faulted and un-faulted line.

Analysis of PCI Leading to the Development of Two

Threshold Values

The four major observations of PCI values in Table 4 are

marked in bold. These reveal the following facts:

i. The lowest PCI of the direct faulted line is obtained for

SLG fault among all classes and it measures 180.451.

ii. The highest PCI for the un-faulted line among ground

faults (SLG and DLG) is 84.574 obtained for SLG

fault.

iii. The least PCI for the un-faulted line of ground faults

(SLG and DLG together) is 6.017 obtained for SLG

fault.

iv. The highest PCI obtained for the un-faulted lines of

DL faults is 3.463.

These PCIs corresponding to the four major fault cate-

gories are deterministic for the development of the pro-

posed classifier. A factor of safety of 25% is further applied

over these values to incorporate more reliability and sta-

bility of the classifier scheme. Hence, applying the

Table 1 Three-phase PCI of d(nT) for ten fault prototypes for faults at locations 30 km, 70 km and 110 km, fault resistance: 1X, fault inception
angle (FIA): 90�

Fault location Fault location

30 km

Fault location

70 km

Fault location

110 km

Fault class PCIA PCIB PCIC PCIA PCIB PCIC PCIA PCIB PCIC

AG 1281.4 18.619 18.475 593.06 23.77 26.311 429.37 24.482 28.654

BG 7.4539 672.35 7.3784 9.6177 392.55 12.142 11.858 288.01 17.341

CG 11.013 11.117 795.85 16.161 16.047 405.74 15.06 15.636 271.78

AB 929.56 930.81 1.4718 612.57 616.56 2.0751 518.14 525.59 0.7527

BC 1.1659 680.27 680.39 1.5036 392.01 393.26 0.4426 277.7 282.49

CA 1055.6 0.6206 1057.3 610.29 1.8019 615.07 463.9 1.5968 483.19

ABG 1088.3 870.78 9.9127 682.64 585.1 13.44 560.45 507.54 10.469

BCG 9.7413 688.68 883.01 18.365 439.66 456.14 15.05 337.91 315.85

CAG 1195.5 6.5369 980.32 688.93 8.9181 582.32 528.86 8.846 461.36

ABC 1245.8 827.53 1009.9 773.15 553.12 558.07 644.38 463.54 397.72

Table 2 The limiting values of PCI for different major classes of

faults

Fault class Faulted line Un-faulted line

Highest PCI Lowest PCI Highest PCI Lowest PCI

SLG NR 216.875 31.574 6.652

DL NR 235.183 3.251 NR

DLG NR 253.372 22.485 6.273

LLL NR 325.641 – –
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mentioned 25% tolerance limit, the modified boundary

limits are reformed as described next:

Case 1: If a line has PCI higher than (180.451– 25% of

180.451), i.e., 135.338, it is assumed to be directly

affected.

Case 2: If a line has PCI lesser than (3.463 ? 25% of

3.463), i.e., 4.329, it is assumed to be indirectly affected

in case of DL fault, or under no-fault.

Case 3: If a line has PCI in between 4.329 and 135.338, it

may be treated as un-grounded line of ground fault.

In order to further verify these two levels, the obtained

limiting values of the directly un-grounded line of ground

faults are tested. These limiting values are found from

Table 4 as 84.574 and 6.017, including both SLG and DLG

faults. Thus, applying the tolerance limits of 25% again,

the limiting PCIs for these two limits become:

Table 3 Three-phase PCI of d(nT) for SLG-AG fault for faults at locations 30 km, 70 km and 110 km, fault resistance: 1X, fault inception angle
(FIA): 0�, 45�, 90�

Fault location Fault Inception Angle (FIA) (Degree)

0 45 90 0 45 90 0 45 90

PCI-A PCI-B PCI-C

30 1024.1221 1229.9626 1278.514 6.875 28.1256 20.485 7.486 20.145 28.475

70 478.154 560.145 588.457 8.458 19.458 27.184 10.458 32.745 20.164

110 324.821 371.245 431.247 12.485 25.145 32.147 6.984 19.458 35.475

Table 4 The modified final limiting values of PCI for different major

classes of faults

Fault class Faulted line Un-faulted line

Highest PCI Lowest PCI Highest PCI Lowest PCI

SLG NR 180.451 84.574 6.017

DL NR 192.782 3.463 NR

DLG NR 201.645 76.354 6.132

LLL NR 249.418 – –

Fig. 3 Selection of lower and

higher thresholds (with 25%

tolerance) for the proposed

classifier

Table 5 Rule base for fault classification: fault classifier table

PCI PCI B DL DL\PCI\DH PCI C DH Predicted

Fault

Class

Fault line

status

No-fault Un-faulted line

of ground fault

Direct

fault

Number of

PCI values

in this

range

3 0 0 No-fault

0 0 3 LLL

1 0 2 DL

0 1 2 DLG

0 2 1 SLG
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Lowest value with tolerance: (6.017 - 25% of 6.017)

i.e., 4.513

Highest value with tolerance: (84.574 ? 25% of 84.574)

i.e., 105.718

Selection of threshold limits

It is observed that the higher limit of the un-faulted lines of

the ground faults obtained above with tolerance, i.e.,

Fig. 4 Flowchart of the proposed classifier algorithm
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105.718, is much less than the limit obtained in case 1 as

135.338. Again, the lower limit of un-faulted lines of the

ground faults is found as 4.513, which is higher than that

obtained in case 2, i.e., 4.329. Hence, both these limits lie

well within the in-between limits of fault and no-fault

levels, i.e., 4.329 and 135.338. Hence, two thresholds:

lower threshold (DL) and the higher threshold (DH), are
selected based on these ranges. It could be inferred from

Fig. 3 that the higher threshold or DH must lie to segregate

PCI values of two fault levels: directly faulted line having

highest disturbance level and un-grounded line of ground

faults, which has lesser level of disturbance. This DH is

instrumental to identify the direct faulted line. Hence, any

line having PCI higher than DH is indicated to be directly

faulted. Similarly, the lower threshold (DL) is used to

distinguish between the un-grounded line of ground fault

and un-faulted line of DL faults (or no-fault). Hence, any

line having PCI less than DL is indicated as belonging to

either un-faulted line of DL faults or no-fault class. Hence,

it could be summarized that these two thresholds DH and

DL signify, respectively, the predicted minimum level PCI

of the directly faulted line and the predicted maximum

level of the un-faulted line of DL faults or no-fault PCI.

The preceding discussion regarding selection of these two

thresholds is illustrated diagrammatically in Fig. 3.

Fault Classifier Algorithm

The two thresholds are selected from the above analysis as

well as from the diagram of Fig. 3. DH, the higher

threshold or the direct fault threshold, indicates that if a

line has PCI more than DH, the line may be treated as

directly faulted. DL, the lower threshold or the no-fault

threshold, indicates that if a line has PCI below DL, that
line may be treated as no-fault line or the indirectly

affected line of DL fault. Finally, a line with PCI in

between DL and DH is treated as the un-faulted line of any

ground fault. In case of SLG faults, only a single line is

affected directly which produces maximum disturbance,

and the other two lines are affected in minor amount, which

lies in the intermediate level of disturbance. For DLG

faults, similar conditions prevail, only the number of

directly affected lines becomes 2 and the intermediate

disturbance class becomes 1. For DL faults, only difference

from DLG faults arises in the fact that instead of 1 number

of intermediate disturbance class, DL faults have a single

almost un-faulted line, and there are 2 directly affected

lines similar to DLG faults. Finally, for LLL fault, all the

lines are affected directly. Based on the above propositions,

Table 5 is constructed which defines some rule bases for

classifying the faults. This is denoted as fault classifier

Table 6 Overall classification accuracy of the proposed classifier

Fault class SLG DL DLG LLL Overall Accuracy

No. of observations 252 252 252 84 840

Correct prediction 252 249 250 84 835

Wrong prediction 0 3 2 0 5

Classifier accuracy 100 98.81 99.21 100 99.41

Table 7 Detailed analysis of classifier results for each class of fault

True class Predicted class

No fault AG BG CG AB BC CA ABG BCG CAG ABC

No fault 20

AG 84

BG 84

CG 84

AB 83 1

BC 82 2

CA 84

ABG 1 83

BCG 84

CAG 1 83

ABC 84
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table. This shows the inroads to the development of the

complete fault classifier with broader classes. The subse-

quent narrow classes for each broad class are found using

the flowchart of Fig. 4, which describes the complete

analysis of the three-phase PCI values used for the devel-

opment of the proposed transmission line fault classifier

model.

Results and Discussion

The proposed PCA-based classifier is tested for all the ten

classes of faults at fourteen intermediate locations. Faults

have been carried out at locations starting from the 10 km

and extending up to 140 km, each 10 km apart. Noise often

causes randomness to the results; hence, the classifier is

tested twice at each location for each set of fault signal. As

mentioned before, each class of fault is tested at all the 14

locations, with 2 repetitions at each fault location. Besides,

at each intermediate location, each fault class is conducted

with three random set of fault inception angle ranging in

between 0� and 90�. Thus, the set of test data comprises of

(14 location 9 3 FIA 9 2 repetitions), i.e., 84 fault signals

for each fault class. Thus, total test data set contains 840 set

of signals considering all ten fault classes. The accuracy of

the proposed classifier is given in Table 6 categorically.

Only 5 observations among the 840 results are found

wrong, producing an overall efficiency of 99.41%. Three

observations from DL class and two observations from

DLG class of fault are found to be predicted wrongly. The

detailed distribution of the classifier results as per the fault

classes is shown in Table 7.

It is observed from Table 7 that in case of each of the

wrong results, the DL fault has been wrongly classified as

the corresponding DLG fault and vice versa. For example,

a BC fault is misclassified as BCG and a ABG fault is

misclassified as AB, as shown in red in Table 5. But most

importantly, in both of these cases, the same sets of circuit

breakers are required to be operated instantly, irrespective

of the DLG or DL fault. The ground involvement doesn’t

majorly affect the lines to be isolated. Hence, this mis-

classification is less significant in respect to classification

error.

Conclusion

An effective fault classifier model is developed in this work

using Principal Component Analysis. The sending end

three-phase line currents are analyzed using PCA to

develop the Principal Component Indices (PCIs) of each

line and each fault class. Fault locations are varied along

the whole span along with the fault inception angle. These

PCIs of individual phases are analyzed to develop a fault

classifier table, from which the unknown fault is classified

directly.

This proposed classifier uses only PCA to develop the

algorithm. PCA is very effective in reducing the dimension

of the large data set associated with fault. This PCA brings

out only the major directions, which are the fault features

for the proposed work. Supervised learning methods

require large time for training and wavelet transform

becomes progressively complicated with an increase in the

level of decomposition. Hence, PCA becomes an effective

choice for the purpose with less complexity of analysis.

The highlights of our work are described as follows:

a) The proposed method is very simple, computationally

light, yet very effective for fault classification.

b) Two major parameters of fault: fault location and fault

inception angle, are varied.

c) Fault location is varied from 10 to 140 km of the line

span at an interval of 10 km.

d) Fault inception angle (FIA) is also varied in the range

0�–90�, which constitute one symmetrical quarter of a

sinusoidal current signal.

e) Practical power line noise of 30 dB is incorporated in

simulated signals to introduce practicality to the

analysis and develops robustness in the algorithm.

f) The present work requires only half-cycles of post-fault

current transient signal, which is comparable or even

better than many of the existing methods.

g) The proposed method uses differential-based signal

modulation. This method is found to highlight the

transient fault features more prominently, which on

analysis using PCA produces PCIs which are more

distinctly identifiable, especially for segmenting the

same into major three-level disturbance classes:

directly affected, indirectly affected for ground faults

and indirectly affected for line faults. Based on it, a

simple classifier topology is developed; hence, reduced

analysis is achieved with enhanced distinct fault

features.

h) In this work, the proposed PCA algorithm considers

only the two most important directions of variation,

i.e., principal components (PC), and thus reduces the

dimension of the fault current data to unified PCI

values, thus further reducing the memory requirement.

i) The overall classifier accuracy achieved is 99.41%

considering all the above factors, which is considerably

high in accuracy.

Besides, the method is very effective to suit practical

environment by extracting fault features from the noisy

fault signals post-filtering, which indicates the practical

acceptability of the method. Thence, the proposed method
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shows a simple as well as practical and effective way for

transmission line fault classification.
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