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Abstract Design of a robust controller for any control

system is of paramount importance in the field of control

system design. Despite parameter variations, the controller

has to generate signals to enable satisfactory performance

of the system. One of the recent developments of the robust

controller design methods is the coefficient diagram

method (CDM), which is an algebraic approach, wherein

the characteristic polynomial along with the controller is

simultaneously obtained from the design. A graph on semi-

log axis, known as coefficient diagram, is a single tool used

to analyze the key features of the system performance

namely speed of response, stability and robustness.

Although controller design using CDM has been used in

many control applications, the method needs to be explored

in the field of power system control problems. One of the

crucial systems is the automatic voltage regulator (AVR)

system. In this paper, a controller based on CDM has been

designed for an AVR system and its robustness is analyzed

in the presence of parameter variations. Also, the func-

tioning of the system with conventional PID controller is

contrasted with the performance of CDM-based controller.

The results of the CDM-based controller are found to be

better as compared to the former.

Keywords Coefficient diagram method �
Equivalent time constant � Robustness � Stability indices �
Automatic voltage regulator

Introduction

The robust controller design for an AVR system is among

the significant interests of the researchers in the area of

power system control. It is of paramount importance to

maintain a constant voltage level to avoid equipment

damage and poor voltage levels. If the voltage of a device

violates the limits, the equipment may be unable to operate

properly and may get damaged. The PID controller design

has been one of the common methods used for controlling

the AVR system. Tuning methods involving the Ziegler–

Nichols method, soft computing techniques[1], optimiza-

tion techniques are available in the literature [2–4]. In [5], a

PID controller was tuned using particle swarm optimiza-

tion for AVR system. Using a teaching and learning-based

optimization algorithm, PID controller design was pro-

posed in [6, 7] for the AVR system. A novel design method

using coefficient diagram method (CDM) for controller

design of an AVR system is presented in this paper. The

CDM is an algebraic method which gives a robust con-

troller so that the desired system performance is exhibited

despite parameter variations [8–11]. A systematic con-

troller design approach using CDM has been described in

[12–14].

AVR Schematic

The block diagram of an AVR system [15]can be repre-

sented as shown in Fig. 1. The excitation system controls

the generator terminal voltage to maintain the flow of the

reactive power. The field circuit may be energized using dc

generator positioned on the same rotor shaft of the syn-

chronous machine. Advanced equipment utilize rotating

rectifiers and the system is known as brush-less excitation
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system. The predominant means of control of reactive

power is by controlling the excitation of a generator by

means of AVR system. The basic operation of the AVR

system is described as follows: Using a potential trans-

former the voltage magnitude of one phase is obtained,

rectified and the disparity with the DC reference signal is

assessed. The resulting error is amplified in order to reg-

ulate the field current of the exciter to further affect the

exciter terminal voltage. Thus, if there is drop in the output

voltage sensed by PT, the generator field current is

increased that increases the generated EMF.

The transfer function for the open loop of the schematic

shown in Fig. 1 is given by

AVRopenloopðsÞ ¼
KAKEKGKR

ð1þ sAsÞð1þ sGsÞð1þ sEsÞð1þ sRsÞ
ð1Þ

and the ratio of terminal voltage to the reference voltage is

given by the transfer function

VtðsÞ
VrefðsÞ

¼ KAKEKGð1þ sRsÞ
ð1þ sAsÞð1þ sGsÞð1þ sEsÞð1þ sRsÞ þ KAKEKGKR

:

ð2Þ

From (2), it is clear that the transfer function is a type 0

system.

AVR System with PID Controller

One of the widely used, popular and commercially used

controllers is the PID controller. The PID controller is

represented by

GCðsÞ ¼ Kp þ
KI

s
þ KDs : ð3Þ

The transient response is improved by the zero added due

to the derivative term and the integral control is used to

improve or reduce steady-state error. In an example from

[15] existing literature, the parameters involved in an AVR

system are as given in Table 1.

The transfer function GclðsÞ of the closed-loop system is

given by

GclðsÞ ¼
KAKEKGðKPsþ KI þ KDs

2Þð1þ sRsÞ
sðKPsþ KI þ KDs2Þð1þ sAsÞð1þ sEsÞð1þ sGsÞð1þ sRsÞ þ KAKEKGKR

:

ð4Þ

A Brief Overview of Coefficient Diagram Method

There are mainly three approaches of control design the-

ories, namely classical control approach, algebraic

approach and modern control approach. The mathematical

expression used are the transfer function, polynomials and

the state space matrices, respectively. The transfer function

becomes inaccurate when pole–zero cancelations occur.

The state space involves extensive machine computations.

In the polynomial approach, the numerator and denomi-

nator polynomials are handled independently; hence, there

is no problem of pole–zero cancelations and also preserves

the rigor of state space with the polynomial expression

being equivalent to controllable or observable canonical

form of state space [8]. Coefficient diagram method

belongs to the polynomial approach. In this method, as the

controller together with transfer function for the closed-

loop system is partly specified, this is known as simulta-

neous approach and rest of the variables are obtained by

design [8, 12]. In CDM, the design parameters are equiv-

alent time constant, stability index and stability limit rep-

resented, respectively, as

– s
– ci and
– c�i
In CDM, the performance specifications are rewritten in

terms of stability indices ci and equivalent time constants.
Thus, the target characteristic equation is represented in

terms of the aforesaid quantities that satisfies stability,

performance and are co-related algebraically to controller

parameters. A semi-log line diagram known as coefficient

diagram is plotted using which the variation in coefficients

of the characteristic polynomial can be observed and

modified to obtain the desired system response.

Conditions for Stability and Instability in CDM

The schematic block diagram representation for CDM [8]

is described as follows:

– Reference input, r

– Plant output, y

– Control input to the plant, u

– Disturbance signal, d

– Numerator polynomial of the plant transfer function,

BpðsÞ

Fig. 1 Block diagram representation of automatic voltage regulator
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– Denominator polynomial of the plant transfer function,

ApðsÞ
– Reference polynomial in the numerator of the con-

troller, F(s)

– Feedback polynomial in the numerator of the controller,

BcðsÞ
– Forward polynomial in the denominator of the con-

troller, AcðsÞ
BcðsÞ and AcðsÞ are designed to satisfy the desired transient

response and F(s) is used to take care of the steady-state

error. The output of the whole system is

y ¼ BpðsÞFðsÞ
AclðsÞ

r þ AcðsÞBpðsÞ
AclðsÞ

d ð5Þ

where AclðsÞ is the characteristic equation of the system

and is given by

AclðsÞ ¼ ApðsÞAcðsÞ þ BpðsÞBcðsÞ ¼
Xn

i¼0

ais
i ð6Þ

Xn

i¼0

ais
i ¼ ans

n þ � � � þ a1sþ a0: ð7Þ

The definitions of s, ci and c�i are detailed as in[8]; the

characteristic equation can be represented as [8, 12, 13]

AclðsÞ ¼ a0
Xn

i¼2

Yi�1

j¼1

1

c ji�j

 !
ssð Þi

( )
þ ssþ 1

" #
: ð8Þ

The conditions used in CDM for determining stability are

as follows [8, 9, 16];

The stability condition for third-order and fourth-order

systems is derived from Routh–Hurwitz criterion

ci [ c�i , i ¼ 1; 2; . . .; ðn� 1Þ: ð9Þ

The sufficient condition of stability for higher-order

systems is stated by Lipatov [9] and is given by

ci [ 1:12c�i , for any i, where i ¼ 1; 2; . . .; ðn� 1Þ: ð10Þ

For instability, the sufficient condition is given by

ðciþ1ciÞ
0:5\1, for some i, where i ¼ 1; 2; . . .; ðn� 2Þ :

ð11Þ

Selection of Stability Index ci

The selection of ci is very important in the design using

CDM. The following properties suggested by Lipatov sta-

bility conditions [7, 9, 16] are helpful in the selection of ci:

– The ratio
ci
c�i
may be used as a good measure to indicate

degree of stability.

– If all the cis are greater than 1.5, the system is stable.

– If all the cis are greater than 4, all the roots of

characteristic equation are real, negative and distinct.

– Thus, value of stability index ci is usually selected in

the interval of 1:5� 4.

– In actual practice, a standard form discussed in the next

section is recommended for the choice of ci in CDM

which gives sufficiently robust and stable design in

most of the cases.

– The choice of stability indices can be relaxed as

ci [ 1:5 c�i in order to impart more robustness by

making some compromise on the stability and

performance.

The standard form of CDM stated by Manabe is given by

[17]

c1 ¼ 2:5; cn�1 ¼ cn�1 ¼ � � � ¼ c2 ¼ 2: ð12Þ

Controller Design Using CDM

The design steps [8] are summarized as follows:

– Represent the numerator and denominator of the plant

transfer function in polynomial form.

– Reframe the given performance specifications in terms

of design specifications of CDM.

– Express assumed controller configuration in the poly-

nomial form.

– Determine the unknown parameters using Diophantine

equation.

– Plot coefficient diagram, cross-check the values of

apposite coefficients apt to satisfy the performance

specifications and make modifications in their values

accordingly.

ITAE-Based Optimal Design of PID Controller

There are many performance indices used for optimal

design namely ISE (Integral Square Error), IAE (Integral of

Absolute Error), ITAE (Integral Time Absolute Error) and

ITSE (Integral Time Square Error). It is known that ITAE

has good selectivity, reduces weightage on large initial

error and penalizes small errors that occur later in time

response heavily [18]. Using ITAE as performance index

Table 1 Parameters of an AVR System

Gain Time constant

Amplifier 10 0.1

Exciter 1 0.4

Generator 1 1

Sensor 1 0.05
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the controller parameters of PID controller with nominal

plant parameters have been obtained using MATLAB. The

values obtained are

KP KI KD

1.7789 1.9872 0.3836

ITAE-Based Optimal CDM Controller Design
for AVR

For designing a CDM-based controller for AVR system,

the controller structure has been chosen similar to the PID

controller as

GCDMðsÞ ¼
k2s

2 þ k1sþ k0
l1s

: ð13Þ

In CDM-based controller design, there is additional

advantage that the steady-state error can be independently

taken care of and settling time specification can also be

incorporated to fix up s. To get the initial values for opti-

mization, settling time 5 secs (thus s ¼ 2), a0 ¼ 1 have

been used, using (8) and standard Manabe form the initial

values were deduced. Further according to the steady-state

error requirement, k0 is evaluated as 0.1. The parameters

tuned using ITAE are k2, k1 and l1. Using ITAE as per-

formance index, the controller parameters of CDM con-

troller with nominal plant parameters have been obtained

using MATLAB. The values obtained are

Fig. 2 Nominal plant step responses

Fig. 3 Perturbed plant step responses

Fig. 4 Coefficient diagrams of the perturbed plant PID and CDM

system
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k2 k1 l1

0.1088 0.4222 0.3748

The step responses of the nominal plant with PID and

CDM-based controllers are shown in Fig. 2.

To investigate robustness of the two controller systems

� 5% variation is applied to each of the plant parameters

and step responses are obtained in each case. The responses

of the sixteen cases of the perturbed plant are shown in

Fig. 3, respectively, for PID-based and CDM-based AVR

systems. The step responses depict that CDM-based system

is more robust than PID system. Also, as the PID con-

troller-based structure is devoid of pre-filter, the responses

show steady-state error. However, the pre-filter of the

CDM-based control structure resolves the steady-state

error.

The coefficient diagrams were obtained for 16 plants

only for variations � 5 percent in the 4 gains namely

KA;KE;KG and KR of the perturbed plant family in both the

controller systems as shown in Fig. 4.

For comparison of stability in both the cases, the ratio of

stability index and stability limit in each case can be

considered (Tables 2, 3).

The comparison of the ratios of the stability index to

stability limit in each case of the two systems depicts that

the value of the ratios is larger for the CDM controller

system than PID controlled AVR system. This indicates

that the system with CDM controller is more stable as

compared to the AVR system regulated by the PID

controller.

Robustness Analysis Using Mikhailov’s Theorem

Mikhailov’s Stability Criterion

Another simple method to determine robust stability is

applying Mikhailov’s stability criterion to the overbound-

ing polynomial of the uncertain system.

Mikhailov’s stability criterion: A polynomial

Pðs; qÞ ¼ q0 þ q1sþ � � � þ qns
n , qn [ 0

is said to be stable if and only if its frequency plot Pðjx; qÞ
begins on the positive real axis, excludes and makes

counterclockwise encirclement of the origin with a phase

increment of np=2 as x varies from 0 to 1.

The construction of overbounding polynomial that uses

the monotonicity property of polynomials has been pro-

posed by Kawamura and Shima [19]. The steps involved in

determining robust stability using overbounding polyno-

mial and Mikhailov’s theorem are

1. Check the monotonicity of the coefficient of P(s, q).

Table 2 Ratio of stability index and stability limit PID system

Sixteen plants of the perturbed plant and the ratio of stability index to limit in the case of PIC controller system

c1
c�
1

c2
c�
2

c3
c�
3

c4
c�
4

Plant1 4.4075 1.701 2.0061 7.2736

Plant2 4.1178 1.6305 2.0011 7.7375

Plant3 4.1178 1.6305 2.0011 7.7375

Plant4 3.8388 1.5623 1.9969 8.2532

Plant5 4.1178 1.6305 2.0011 7.7375

Plant6 3.8388 1.5623 1.9969 8.2532

Plant7 3.8388 1.5623 1.9969 8.2532

Plant8 3.5715 1.4962 1.9934 8.8259

Plant9 4.1178 1.6305 2.0011 7.7375

Plant10 3.8388 1.5623 1.9969 8.2532

Plant11 3.8388 1.5623 1.9969 8.2532

Plant12 3.5715 1.4962 1.9934 8.8259

Plant13 3.8388 1.5623 1.9969 8.2532

Plant14 3.5715 1.4962 1.9934 8.8259

Plant15 3.5715 1.4962 1.9934 8.8259

Plant16 3.3162 1.4321 1.9905 9.4613
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2. If coefficients contribute to form monotone polynomi-

als of q then calculate maximum value and minimum

value of each coefficient.

3. Construct the overbounding polynomial.

4. Obtain Mikhailov plot, of the image set of overbound-

ing interval polynomial and determine robust stability

according to Mikhailov’s stability criterion.

The characteristic polynomial in the PID controller-based

AVR system is given by

APIDðsÞ ¼ sð1þ sAsÞð1þ sGsÞð1þ sEsÞð1þ sRsÞ
þ ðKPsþ KI þ KDs

2ÞKAKEKGKR

ð14Þ

and in the case of CDM controller-based AVR system, it is

given by

ACDMðsÞ ¼ l1sð1þ sAsÞð1þ sGsÞð1þ sEsÞ
ð1þ sRsÞ þ ðk1sþ k0 þ k2s

2Þ
KAKGKEKR:

ð15Þ

Simplifying (14), the characteristic polynomial in the PID

controller-based AVR system is represented as

APIDðsÞ ¼ ½a�0 ; aþ0 � þ ½a�1 ; aþ1 �sþ ½a�2 ; aþ2 �s2

þ ½a�3 ; aþ3 �s3 þ ½a�4 ; aþ4 �s4 þ ½a�5 ; aþ5 �s5;
ð16Þ

where the following definitions hold good

a0 ¼ 1:9872½K� Kþ�
a1 ¼ 1:7789½K� Kþ� þ 1

a2 ¼ ð0:3836½K� Kþ� þ ½s�A þ s�G þ s�R þ s�E sþA þ sþG þ sþR þ sþE �Þ
a3 ¼ ð½s�AE þ s�GR þ s�AGR þ s�EGR

sþAE þ sþGR þ sþAGR þ sþEGR
�Þ

a4 ¼ ð½s�AEGR
þ s�EGR þ s�AGR sþAEGR

þ sþEGR þ sþAGR�Þ
a5 ¼ ½s�AEGR sþAEGR�:

ð17Þ

The characteristic polynomial in the CDM controller-based

AVR system is represented as

ACDMðsÞ ¼ ½b�0 ; bþ0 � þ ½b�1 ; bþ1 �sþ ½b�2 ; bþ2 �s2 þ ½b�3 ; bþ3 �s3

þ½b�4 ; bþ4 �s4 þ ½b�5 ; bþ5 �s5;
ð18Þ

where the following definitions hold good

b0 ¼ 0:1½K� Kþ�
b1 ¼ 0:4222½K� Kþ� þ 0:3748

b2 ¼ ð0:1088½K� Kþ� þ 0:3748½s�A þ s�G þ s�R þ s�E sþA þ sþG þ sþR þ sþE �Þ
b3 ¼ ð0:3748½s�AE þ s�GR þ s�AGR þ s�EGR

sþAE þ sþGR þ sþAGR þ sþEGR
�Þ

b4 ¼ ð0:3748½s�AEGR
þ s�EGR þ s�AGR sþAEGR

þ sþEGR þ sþAGR�Þ
b5 ¼ 0:3748½s�AEGR sþAEGR�;

ð19Þ

where the parameters have been defined as

Table 3 Ratio of stability index and stability limit CDM system

Sixteen plants of the perturbed plant and the ratio of stability index to limit in the case of CDM controller system

c1
c�
1

c2
c�
2

c3
c�
3

c4
c�
4

Plant1 5.2632 2.1133 3.1571 29.8015

Plant2 4.9486 2.0259 3.0924 31.3996

Plant3 4.9486 2.0259 3.0924 31.3996

Plant4 4.6419 1.9414 3.0322 33.1882

Plant5 4.9486 2.0259 3.0924 31.3996

Plant6 4.6419 1.9414 3.0322 33.1882

Plant7 4.6419 1.9414 3.0322 33.1882

Plant8 4.3443 1.8596 2.9764 35.185

Plant9 4.9486 2.0259 3.0924 31.3996

Plant10 4.6419 1.9414 3.0322 33.1882

Plant11 4.6419 1.9414 3.0322 33.1882

Plant12 4.3443 1.8596 2.9764 35.185

Plant13 4.6419 1.9414 3.0322 33.1882

Plant14 4.3443 1.8596 2.9764 35.185

Plant15 4.3443 1.8596 2.9764 35.185

Plant16 4.0568 1.7804 2.9248 37.4102
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K ¼ KAKEKGKR

sAEGR ¼ sAsEsGsR
sAEGR

¼ sAsEðsG þ sRÞ
sEGR

¼ sEðsG þ sRÞ
sEGR ¼ sEsGsR
sAGR ¼ sAsGsR
sAE ¼ sAsE
sGR ¼ sGsR:

ð20Þ

The coefficients of the overbounding characteristic

polynomials in both the cases are calculated and

compiled in Table 4. Also, Mikhailov’s plot in each case

for overbounding characteristic polynomial has been

obtained to investigate robustness. The plot shown in

Fig. 5 corresponds to AVR system with PID controller and

CDM controller. The image set plot of PID system

embraces the origin whereas for the same perturbation

the CDM-based system clearly excludes the origin. It is

clearly observed that CDM-based system is robustly

stable as compared to PID controller-based system.

Conclusions

In this paper, a robust controller has been designed for an

AVR using coefficient diagram method. The controller

parameters have been obtained by minimizing ITAE. The

results of AVR system controlled by the optimal CDM-

based controller have been compared with the results of

AVR system with a PID controller whose parameters also

have been tuned using ITAE criterion. The step responses

and the coefficient diagrams in both the cases have been

plotted, the ratios of stability index to stability limit have

been listed for each plant of the perturbed family of plants

in both the cases. Also, to compare robust stability, over-

bounding interval polynomial has been constructed and the

corresponding Mikhailov’s plot of the image set of the

overbounding polynomial in each case has been obtained.

The results depict superior performance of CDM con-

troller-based AVR system than the conventional PID con-

troller system.
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