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Abstract Short-term load forecasting is a powerful tool for

improvement of operation, energy efficiency and reliability

of power systems. Researchers are continuously working to

improve outcomes of short-term load forecasting (STLF).

In this paper, three different ANFIS models are developed

for STLF. The proposed models are tested for prediction of

load demand of Rajasthan region of India, from fifteen

minutes to one week ahead for particular time of the day of

year 2015. Rajasthan region has a typical load curve as it

has a land area of 342,239 km2 and population of 68 mil-

lion, with acute climatic conditions. The outcomes

obtained from proposed models are compared with out-

comes of significant strategies available in literature based

on ANN. This comparison reveals that the proposed RR

(Rajasthan Region) model is a competitive technique

among all other strategies. The results are compared on the

basis of MAE, APE and MAPE for fifteen forecasting

samples.

Keywords Load forecasting � Artificial neural network �
Fuzzy logic � ANFIS

Introduction

Electrical load forecasting plays a powerful role in capacity

planning, scheduling, and the operation of power systems

[1]. It provides very important information for generation,

control, power dispatch, maintenance, and expansion of

power facility with fewer problems to their consumers

[2, 3]. Decisions related to unit commitment, economic

dispatch, automatic generation control, security assess-

ment, maintenance planning, and energy exchange depend

on the trends of upcoming load demand [4]. Accurate

STLF results in economic and trouble free operations,

improves efficiency with accurate load scheduling and

reduces power system reserves and enhances reliability of

power grid with reduction in possibility of overloading and

blackouts [5, 6]. It decides accurate load demand, with lead

times, from a few minutes to several days and schedules

spinning reserve for effective control on load flow

parameters [7]. Electric load prediction is difficult as it

always depends on different unstable factors, like weather

variables, social activities, dynamic electricity prices and

nonlinear behavior of consumer demand [8].

Many techniques using different methods including

artificial neural networks have been used for STLF. ANN-

based models are generally used as they perform better

with continuously changing environmental parameters,

take short time in development and are simple and flexible

in design [9]. These are efficient for online implementation

in energy control centers but require large training time and

pose problem of convergence for complex function

approximations [10]. ANNs are unstable, depend on data,

and can easily fall into a local minimum and there is no

definite rule to determine number of hidden neurons;

therefore it is difficult to logically determine network

structure [11, 12].

Fuzzy logics are successfully used for load forecasting

problems due to their capability to minimize model errors

[13, 14]. But fuzzy systems also have drawbacks of

determination of fuzzy rules and membership functions

when the system complexity increases.
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To overcome drawbacks of ANNs and fuzzy logics and

to get advantages of both, these two techniques are com-

bined together. The combination of neural networks and

fuzzy logics are known as adaptive neural network-based

fuzzy inference system (ANFIS). It represents a powerful

tool to model system behavior and is very effective to get

solutions of those problems which have random data

sequences with highly irregular dynamics [15, 16]. Using

expert knowledge of fuzzy system and capability of

handling complicated relationship between social, weather

parameters and hourly load pattern in an area, ANFIS deals

better with load forecasting problems, which is difficult in

ANNs only [17]. ANFIS shows significant improved

forecasting accuracy.

In this paper, we proposed three ANFIS models for load

forecasting and applied on Rajasthan region of India. This

region is biggest in land area in India, having area of

342,239 km2. Its population is approximate 68 million.

Fig. 1 Structure of ANFIS

Table 1 Details of FIS1, FIS2 and FIS3

Structure of FIS

FIS Generation Function Variable parameters Data

FIS1 genfis1 Number of membership function = 2

Type of membership function = Gauss

Training and Testing Data

FIS2 genfis2 Cluster Radius = 0.2

FIS3 genfis3 Number of clusters = 04

System anfis: 3 inputs, 1 outputs, 8 rules

input1 (2)

input2 (2)

input3 (2)

f(u)

output (8)

anfis

(sugeno)

8 rules

Fig. 2 Structure of ANFIS

Model 1
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Beside this, Rajasthan have large geological and social

diversities as it has desert Thar, Arawali hills, rivers

Chambl, Banas and Kalisindh. Approximate half of the

region suffer from lack of rain and face a temperature

variation from -2 to 50 �C. Electrical load demand of

Rajasthan mainly depends upon agricultural load (type of

crops and cultivated area), domestic load, and load of

small-scale industries. All these particularities create a

System sug31: 3 inputs, 1 outputs, 7 rules

in1 (7)

in2 (7)

in3 (7)

f(u)

out1 (7)

sug31

(sugeno)

7 rules

Fig. 3 Structure of ANFIS

Model 2

System sugeno31: 3 inputs, 1 outputs, 4 rules

in1 (4)

in2 (4)

in3 (4)

f(u)

out1 (4)

sugeno31

(sugeno)

4 rules

Fig. 4 Structure of ANFIS

Model RR

Table 2 Structure of ANFIS

ANFIS parameters

Structure parameters Training parameters

S.N. Name Number Name Number

1 Nodes 34 Iterations 500

2 Linear parameters 32 Error goal 1e-5

3 Nonlinear parameters 18 Initial step size 0.01

4 Training data pairs 1 Step size decrease rate 0.9

5 Fuzzy rules 8 Step size increase rate 1.1
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typical load curve, having changing day to day load profile.

Due to suddenly changing weather and other parameters, it

is very difficult to predict upcoming trend of electrical load

demand. In this research paper, such typical load demand

profile has been considered for prediction and new tech-

niques are developed.

Adaptive Neuro-Fuzzy Inference System (ANFIS)
and Its Structure

Neuro-fuzzy approach combines two powerful computing

techniques, first is adaptive neural networks and second

one is fuzzy set theory. Neural networks have ability to

learn and adapt to changing environment to achieve better

performance. Fuzzy set theory is very effective to deal with

imprecision and uncertainty, by using linguistic informa-

tion with incorporating human knowledge, and develops

the relation between input and output variables [18]. The

fuzzy neural network (FNN) system is fuzzy inference

system in neural network structure [19]. It is easy to design

to achieve high accuracy by setting parameters of the

network structure and learning algorithm of the FNN.

ANFIS uses the self-learning ability of ANN with the

linguistic expression function of fuzzy inference, whose

membership functions and fuzzy rules are acquired from a

large number of existing data rather than experience [20].

ANFIS automatically tunes its parameters with use of

Fig. 5 Structure of ANN

Model

Fig. 6 Flowchart for training of proposed forecasting models
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adaptation procedure, possesses fast convergence, is more

efficient than back-propagation (BP) neural network and

can learn from the input data obtained in experiments,

which is the feature of a controlled system [21]. ANFIS

uses fuzzy decision rules as membership functions (MF)

and learns the best fitting parameters of the MFs and

applies hybrid learning rule which is much faster and

reliable than the simple gradient descent learning. Basi-

cally it is a fuzzy-Sugeno model of adaptive systems whose

learning and adaptation are systematic and less dependent

on expert knowledge [22]. In a neuro-fuzzy system, NNs

automatically extract fuzzy rules from the numerical data

and through the training process, and the parameters of the

membership functions are adaptively attuned [23].

Table 3 Design of input signal to proposed models

Fig. 7 Comparison of actual load and output of different models for load trend of 2:00 a.m.
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In this section, ANFIS architecture and its learning

algorithm for the Sugeno fuzzy model have been explained.

FIS has two inputs (x and y) and one output f and a com-

mon rule set with two fuzzy if then rules is as follows:

f1 ¼ P1xþ Q1yþ c1 ð1Þ
f2 ¼ P2xþ Q2yþ c2 ð2Þ

Rule 1: If (x is L1) and (y is M1) then

f1= P1x ? Q1y ? c1
Rule 2: If (x is L2) and (y is M2) then

f2 = P2x ? Q2y ? c2

Here, P1, P2, Q1, Q2, c1 and c2 are linear parameters and L1,

L2, M1 and M2 are nonlinear parameters. ANFIS structure

according to above equations is as shown in Fig. 1. This

structure consists of five layers, namely a fuzzy layer, a

product layer, a normalized layer, a de-fuzzy layer and a

total output layer. The relation between output and input of

each layer in the ANFIS has been explained further.

First layer is fuzzy layer, in which X and Y are the input

of nodes P1, P2, Q1 and Q2, respectively. P1, P2, Q1 and Q2

are the linguistic labels used in the fuzzy theory for

dividing the membership functions. The membership

Fig. 8 Comparison of forecasting error for load trend of 2:00 a.m.

Apr,29 Apr,30 May,01 May,02 May,03 May,04 May,05
7300
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7500
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7700

7800

7900

Date
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)

Load Forecasting by ANFIS and ANN models (April 29 to May 05, 2015,Time:07:30 am)

Actual Load
Load Forecasted by ANFIS1
Load Forecasted by ANFIS2
Load Forecasted by ANFISRR
Load Forecasted by ANN

Fig. 9 Comparison of actual load and output of different models for load trend of 07:30 a.m.
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relationship between the output and input functions of this

layer can be expressed as:

O1i ¼ mPi xð Þ; i ¼ 1; 2; ð3Þ
O2j ¼ mQj yð Þ; j ¼ 1; 2; ð4Þ

where O1i and O2j denote the output functions and mPi and

mQj denote the membership functions.

Layer 2 is the product layer that consists of two nodes

labeled g. The output of this layer is the product of the

input signal, which is defined as follows:

Output of layer 2

O2i ¼ mPi x1ð Þ � mQi x2ð Þi ¼ 1; 2; ð5Þ

The third layer is the normalized layer, it normalizes

weight functions and its nodes are labeled N. Here, w1 and

w2 are the weight functions of the third layer.

O3i ¼ �w ¼ wi

w1 þ w2

; i ¼ 1; 2 ð6Þ

Layer fourth is the de-fuzzy layer, and its nodes are

adaptive.

Output of fourth layer is

O4i¼wifi ¼ wiðai þ bi þ ciÞ ð7Þ

Fig. 10 Comparison of forecasting error for load trend of 07:30 a.m.

Fig. 11 Comparison of actual load and output of different models for load trend of 01:30 p.m.
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where wi is the output of layer 3, and ðai þ bi þ ciÞ are

consequent parameters.

The fifth layer is the total output layer, and its node is

labeled R. Output of this layer is the summation of the

incoming signals to this layer.

The output of this layer is

O5i ¼
X

�wifi ¼
P

wif iP
wi

ð8Þ

Implementation of Proposed Forecasting Models

In this research, we used two basic techniques: one is based

on ANN and second is based on ANFIS.

Structure of Proposed Models of ANFIS

The FIS structure can be built with three different tech-

niques. These are grid partition (GP), subtractive clustering

(SC) and fuzzy c-means clustering (FCMC). GP uses

Fig. 12 Comparison of forecasting error for load trend of 01:30 p.m.

Fig. 13 Comparison of actual load and output of different models for load trend of 05:30 p.m.
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different type and number of membership functions, SC is

a quick, one-pass algorithm for estimating the number of

clusters and the cluster centers in a set of data varying the

cluster radius and FCMC is a clustering methods which

generates different number of clusters [24].The genfis1,

genfis2 and genfis3 functions found in MATLAB are used

to generate different FIS structures which describe the GP,

SC and FCMC methods, respectively.

FIS1 = genfis1 (Data, Number of membership functions,

Type of membership function)

FIS2 = genfis2 (Data, Cluster Radius)

FIS3 = genfis3 (Data, Number of Clusters)

Arguments used in different functions in this case are as

shown in Table 1.

FIS1, FIS2, and FIS3 are ‘sugeno’ type and used for

ANFIS model1, ANFIS model2 and ANFIS model RR

(Rajasthan Region), respectively. After training, all three

models are used to predict electrical load. Figures 2, 3 and

4 explain the structure of different models. These three

figures are generated during simulation and directly

imported from MATLAB. ANFIS structure and its

parameters used for training are shown in Table 2.

Fig. 14 Comparison of forecasting error for load trend of 05:30 p.m.

Apr,29 Apr,30 May,01 May,02 May,03 May,04 May,05
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Load Forecasting by ANFIS and ANN models (April 29 to May 05, 2015,Time:10:00 pm)

Actual Load
Load Forecasted by ANFIS1
Load Forecasted by ANFIS2
Load Forecasted by ANFISRR
Load Forecasted by ANN

Fig. 15 Comparison of actual load and output of different models for load trend of 10:00 p.m

J. Inst. Eng. India Ser. B (October 2020) 101(5):475–495 483

123



Structure of ANN Model

A feed-forward neural network is used as shown in Fig. 5.

This figure directly taken from MATLAB, generated dur-

ing simulation. It is two-layer network. In hidden layer 24

neurons and in output layer single neuron is used. Tan

Sigmoid and pure line are used as transfer function. Three

set of parameters are used as input. The output of ANN is

one set having seven data (load of one week of particular

time).

Collection of Load and Weather Parameters

Daily electrical load (with 15 min interval) of year 2015 of

Rajasthan state of India collected from department of

Rajasthan Rajya Vidyut Prasaran Nigam Limited

(RRVPNL). Maximum, average and minimum temperature

and humidity of Kota, Jaipur and Jodhpur are collected as

weather variables from department of meteorology.
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Per Error by ANFISRR
Per Error by ANN

Fig. 16 Comparison of forecasting error for load trend of 10:00 p.m.
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Load Forecasted by ANN

Fig. 17 Comparison of actual load and output of different models for load trend of 1:00 a.m
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Data Preparation

To ensure convergence within specified limits the original

data are normalized. There is a strong correlation between

power consumption and weather variables. In our case only

temperature and humidity (maximum, average and mini-

mum) of three stations are considered as weather variables

as other weather parameters have weak effect on electric

power consumption. In proposed models, three types of

variables are used as inputs for training: (a) day indicator,

i.e., date, month and day code, (b) weather-related inputs,

i.e., maximum, average and minimum temperature and

humidity of the day, and (c) previous load. Previous load is

the load of each fifteen minutes for daily (i.e.,

4 9 24 = 96) and for 365 days. For each day, total 117

nos. of parameters are given as input signal to the network.

First and second data is the date, third data is day code,

next 18 parameters are max., average and minimum tem-

perature and humidity of Kota, Jaipur and Jodhpur, i.e.,

three main cities of Rajasthan. Remaining 96 data are fif-

teen minutes load of each day. Preparation of data to give

as input to the models is shown in Table 2.
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Fig. 18 Comparison of forecasting error for load trend of 1:00 a.m.
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Fig. 19 Comparison of actual load and output of different models for load trend of 7:00 a.m.
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Training of ANN and Proposed ANFIS Models

In our research work, most important point is that proposed

forecasting models are designed to forecast the load of

desired time of desired day and same time of previous six

days. To train ANN and ANFIS models, three sets of

parameters as input and one set as target are given to the

models as explained below.

Input Signal = date, day code, weather parameters of

three main cities (total 18 parameters) and Ldðtf �
45Þ; Ld tf � 30

� �
; Ldðtf � 15Þ; where Ldðtf � 45Þ; Ldðtf �

30Þ and Ldðtf � 15Þ are the loads before 45 min, 30 min

and 15 min, respectively, from required forecast time tf.

Target Signal = date, day code, weather parameters of

three main cities (total 18 parameters) and Ld tf
� �

where

Ld tf
� �

is load at particular time on forecast day.

Training Inputs = Input signal parameters up to seven

days before forecast day.

Training Targets = Target signal parameters up to seven

days before forecast day.

To train the forecasting models, Training Inputs and

Training Targets are given to ANN and ANFIS models and

training programs are run till training error goal is

achieved.

Training flowchart for all the four models is shown

below (Fig. 6).
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Fig. 20 comparison of forecasting error for load trend of 7:00 a.m.
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Fig. 21 Comparison of actual load and output of different models for load trend of 1:00 p.m.
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Forecasting

All the models trained according to designed training

parameters shown in Table 3. When a set of input data is

given to the trained network, it predicts the target, and

provides forecasted output. Data of one week are given as

Test Input (in same pattern as in training) for prediction of

load of this week at specified time tf. The predicted output

is compared to Test Targets (actual data) to check fore-

casting error.

Performance Metrics

The accuracy of the forecasting is measured according the

following Performance Metrics

Absolute Percentage Error (APE)

APE ¼ Lj � Yj
Lj

� �
� 100 ð9Þ

Lj is the jth actual value and yj is jth forecasted value.
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Fig. 22 Comparison of forecasting error for load trend of 1:00 p.m.
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Fig. 23 Comparison of actual load and output of different models for load trend of 5:00 p.m.
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Mean Absolute Error (MAE)

MAE ¼ 1

n

Xn

j

Lj � Yj
�� �� ð10Þ

where n is the total number of data points.

Mean Absolute Percentage Error (MAPE)

MAPE is a common indicator in forecasting problems [25].

MAPE ¼ 1

n

Xn

j

Lj � Yj
Lj

����

����� 100 ð11Þ

The MAE criterion penalizes all errors equally, whereas

MAPE criterion accepts industry standard for measuring

load forecast quality of all models of forecasting including

ANFIS, which is considered as an effective technique and

have better pridiction performance [26–30].
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Fig. 24 Comparison of forecasting error for load trend of 5:00 p.m.
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Fig. 25 Comparison of actual load and output of different models for load trend of 9:00 p.m.
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Results and Discussion

ANN and ANFIS models have been tested for load data of

year 2015 of Rajasthan region of India. Load forecasting of

three main seasons considering days of weeks from 29

April to 05 May 2015, July 2 to July 08, 2015 and from

November 19 to November 25, 2015 has been done and

shown in graphical form. Time of forecasting is chosen in

such a way that it covers different types of load pattern.

Actual load, forecasted load and percentage forecast error

for ANN and ANFIS models are also shown with help of

Figs. 7 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 and 36

and tabular form in Table 4.

Total fifteen samples are used for forecasting purpose. It

is clear from graphical presentation and error comparison

in Table 4 that all three ANFIS models give better per-

formance than ANN model. Although all three ANFIS
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Fig. 26 Comparison of forecasting error for load trend of 9:00 p.m.
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Fig. 27 Comparison of actual load and output of different models for load trend of 03:00 a.m.
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models working better but model RR is more efficient as

it gives smallest value of MAE, Maximum APE and

MAPE for most of the times. These values are shown in

bold font.

Highlights

During research, following points are noticed:

• Load profile of Rajasthan region mostly depends upon

weather variables, rain, agriculture, type of crop,

demand of domestic consumers and, small-scale indus-

tries; therefore it is changing in nature.

• ANFIS models have fewer values of MAE, APE and

MAPE as compared to ANN model. It means ANFIS

has better ability to forecast electric load.

• RR model is easy to design and implementation in

comparison of other proposed models and has better

prediction efficiency.
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Fig. 28 Comparison of forecasting error for load trend of 03:00 a.m.
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Fig. 29 Comparison of actual load and output of different models for load trend of 05:30 a.m.
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• ANFIS-based forecasting techniques have been used for

first time for this region.

• ANFIS model RR performs better than other ANFIS

and ANN models as most of the time MAE, APE and

MAPE are minimum for used samples.

• It is observed during case study that ANN model

changes its results when it is repeated for forecasting of

a sample, while results of ANFIS models remain

unchanged. It shows that ANFIS models are more

reliable and consistent than ANN model.
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Fig. 30 Comparison of forecasting error for load trend of 05:30 a.m.
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Fig. 31 Comparison of actual load and output of different models for load trend of 10:30 a.m.
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Conclusion

In the recent years, many approaches for the load fore-

casting are developed. However, the load pattern of a

particular region is different from the other, and therefore,

there is no general tool is available for the forecasting.

That’s why, a specific technique based on ANFIS has been

described in this manuscript which gives better results of

load forecasting for Rajasthan state of India. It is valuable

to analyze the effect of weather and other parameters such

as day and date on the load consumption of Rajasthan for

first time. In this paper three ANFIS models are proposed

and compared with ANN model for short-term load fore-

casting. Proposed ANFIS models have different fuzzy
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Fig. 32 Comparison of forecasting error for load trend of 10:30 a.m.
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Fig. 33 Comparison of actual load and output of different models for load trend of 02:30 p.m.
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structures. Model1 is based on number and type of mem-

bership function, model2 is based on radius of cluster while

third model is RR model which is based on number of

clusters. RR model is robust, easy to design and implement

in comparison of other proposed models and has better

prediction efficiency. Average values of MAE, Maximum

APE and MAPE provided by RR model for fifteen testing

samples are 40.5633, 1.2160% and 0.5589%, respectively,

which are less than other models. The forecasting results

reveal that proposed RR model for STLF provides best
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Fig. 35 Comparison of actual load and output of different models for load trend of 7:30 p.m.
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results so far for Rajasthan region and its performance is

acceptable. Further, it is found that this model is more

accurate as compared to other state-of-the-art techniques.
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