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Abstract The proposed work illustrates a simple research

approach to identify the type of fault in a three-phase

overhead single-end-fed long transmission line. Multi-

variate statistical methods like principal component anal-

ysis (PCA) alone, and in combination with probabilistic

neural network (PNN), have been applied here to classify

fault. An attempt has been made to use the PCA features

obtained from the analysis of electrical parameters for each

of the faults, in two ways. The first approach of fault

classification is based on analyzing the PCA features by a

modified ratio-based analysis. In the second method, an

attempt has been made to use the PCA features directly to a

structured PNN model. Electromagnetic Transient Program

simulation software has been used to simulate a transmis-

sion line model. Sending-end three-phase line currents

corresponding to various faults carried out at different

geometric distances along the transmission line have been

analyzed in MATLAB environment. The proposed algo-

rithms are tested with unknown and intermediate distant

faults with variable fault resistance to validate the same.

Finally, a comparative analysis of the proposed two

methods is illustrated, which shows 100% classifier accu-

racy of both the models.
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Introduction

Power transmission system, being one of the most expan-

ded overhead networks, is often subjected to various tran-

sient or permanent faults. Identification and hence earliest

removal of the fault is indispensible to restore system

stability. Relays and circuit breakers need to respond

immediately on occurrence of fault, to restrict possible

hazards, and more importantly, for the safety of the living

world. Environmental effects and frequent environmental

instability often cause minor to severe power system faults,

often posing threats. Hence, prompt identification, as well

as isolation of the faulty line, is most important.

Electrical faults disrupt the power flow in long overhead

transmission line, affecting the electrical parameters like

voltage, current, etc. These parameters are examined to

extract key features for fault analysis. The proposed work

attempts to apply multivariate statistical tool like principal

component analysis (PCA) in power system fault classifi-

cation [1–4]. PCA is very useful in reducing the dimension

of a large data set, retaining the principal directions of

variation in the descending order of importance [5, 6].

Hence, PCA has a vast application in power system anal-

ysis. Electrical power system is a large multivariate system

with several parameters like voltage, current, frequency,

power, etc. This multidimensionality of system increases
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computational burden. PCA helps in reducing the dimen-

sion of such a large data set, retaining the most vital fault

information in the form of key features [7]. These features

are processed directly by several mathematical analyses or

with the help of other analysis tools like wavelet transform,

fuzzy inference, artificial neural network (ANN), etc., to

develop fault classifier. ANN, on the other hand, is also

very useful in developing fault analysis algorithms [8–12].

ANN, as well as its major variant PNN, has immense

application in power system research. PNN is a special

structure of ANN which uses probability density function

(PDF) to identify the highest probability of the test case

with any one of the pattern classes using a neural network

structure. Thus, PNN is immensely useful in fault classi-

fication, especially due to its well-established capability of

accurate pattern recognition [13–15].

In this work, attempts have been made to develop two

robust fault classifier models. One of the models is devel-

oped using the PCA features, simple numerical ratio

analysis and nearest neighbor approach. Another model is

designed to analyze the fault features obtained from a

statistical method like PCA, with the help of supervised

learning tool like PNN. A 150-km three-phase single-end-

fed, single-circuit, overhead long transmission line has

been modeled in Electromagnetic Transient Programming

(EMTP) simulation software [16]. Among the various

electrical power system faults, unsymmetrical type of faults

includes single line to ground (SLG) faults: SLG-A, SLG-

B and SLG-C; double line (DL) faults: DL-AB, DL-BC

and DL-CA; and double line to ground (DLG) faults: DLG-

A, DLG-B and DLG-C. Symmetrical faults include triple

line fault (LLL). All these ten different types of faults

mentioned above are conducted at different locations along

the line. Fault resistances (Rf) are also varied. Sending-end

three-phase line currents are used as working data here.

Three intermediate equidistant locations have been selected

as the training points, and the rest are used for testing.

The proposed work is distributed into two segments. The

first part of the work is concerned with extracting key fault

features from the working data using PCA. These features

are further analyzed with a different method of ratio-based

analysis [3] to obtain modified PCA fault indices, which

are assigned as the fault signatures. The test data are pro-

cessed similarly to obtain test point on the same fault

signature plot. Nearest neighborhood analysis using least

geometric distance is applied between the test point and the

11 classes to identify the fault pattern. The second part of

the work is intended to design an algorithm for the fault

classification using combined approaches of PCA and PNN

[17]. PNN is used here with for its pattern recognition

features. The fault features in terms of training PCA scores

(PCS) are fed to a PNN-based classifier for training the

network. The test data are fed to the trained model to find

out the fault pattern. Finally, both the proposed schemes

are validated using test data taken at different locations

along the line with Rf other than training to authenticate the

algorithm. Finally, a comparative analysis has been carried

out between the two methods of classification.

Transmission Line Modeling

A 150-km 400 kV, 500 MVA three-phase, single-end-fed,

overhead, long transmission line has been modeled com-

bining 15 individual LCC blocks of 10 km each in EMTP.

EMTP-ATP software has been used to simulate ten dif-

ferent types of faults in the said transmission line at 15

intermediate locations, each 10 km apart at the junction of

two consecutive blocks, as is done in [3]. The corre-

sponding three-phase voltage and current waveforms are

collected. The faults are further modeled with variable Rf

and power system noise to impose more practicality of

modeling. The data so collected are further analyzed using

PCA and PNN classifier algorithms in MATLAB. White

Gaussian noise has been impregnated in the voltage and

current signals using MATLAB. The noise level is adjusted

to approximately 20 dB SNR [12]. This develops a more

practical transmission line signal with close resemblance to

practical signals. The single-line diagram of the simulated

model is shown in Fig. 1a, and Fig. 1b shows the line

model simulated in EMTP.

Principal Component Analysis

Principal component analysis, as mentioned earlier, is a

linear dimensionality reduction technique which broadly

highlights the similarities and differences between a set of

data and finds out the primary uncorrelated directions of

variation of data, called principal components (PCs), in the

chronological descending order of importance [1–5]. A

graphical representation is shown in Fig. 2 which repre-

sents a two-dimensional data set which are distributed in

the X–Y plane as pointed by the triangles. It is observed that

the data are distributed along a principal direction as given

by the U-axis and the second most important direction is

given by V-axis, which is orthogonal to U. If the U–V axis

system is now placed at the mean of the data, it gives a

bidirectional representation. Now, on transforming the X–

Y coordinate into U–V coordinate system, the data become

de-correlated. These directions as given by U, V, etc., are

called the principal components. For any given system,

PCA finds the set of axes along the principal directions of

variance.
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Development of PCA Algorithm

PCA uses the mean and standard deviation to form

covariance matrix of a multidirectional data set and, from

there, finds out eigenvalues and eigenvectors of the

covariance matrix. These eigenvalues along with eigen-

values are arranged in the decreasing order of importance

to form Feature Vector. The eigenvector with the highest

eigenvalues is assigned as the first Principal Component

(PC). Further, a new set of data is constructed using the

new feature vector and data adjust matrix. This new set of

data is the Principal Component Scores (PCS) which is the

most useful outcome of the PCA. It is needful to mention

here that if the original data are of n dimensions, n eigen-

vectors are obtained on PCA. Depending on the signifi-

cance of the eigenvalues, first m eigenvectors are normally

retained, and the rest are discarded. The proposed method

is illustrated here in the form of pseudocode in the fol-

lowing section.

PCA Algorithm

//A distributed data set is obtained with m variables and

n observations: [X]n9m;

//Find the mean (l) and variance (r) of X;

//Form data adjust matrix XA by normalizing (au-

toscaling) X matrix; scaling XA to zero mean and unit

variance:

XA½ �n�m¼ Xi�lið Þ=ri½ �;

//Calculate covariance matrix [A]m9m;

A ¼ 1

n� 1ð ÞX
TX

Calculate Eigenvectors and Eigenvalues of the

covariance matrix:

Method 1: Using singular value decomposition (SVD)

//A being symmetrical, it can be computed via the sin-

gular value decomposition (SVD):

A ¼ ETkE

with ET E = E ET = I

where I is the identity matrix, k = diag (k1, k 2, … k m)

is the eigenvalue matrix with elements in decreasing order

of magnitude, and E = (e1, e2, … em) is the eigenvector

matrix corresponding to eigenvalues k.
Method 2: using direct analysis

Eigenvalues: By finding the roots of the characteristic

equation (CE)

Determinant of A�kIð Þ ¼ 0

where I = m 9 m identity matrix and this CE has m roots,

Eigenvector: If k is an eigenvalue, there exists a vector e
such that:

Ae ¼ ke

where e is called an eigenvector associated with the

eigenvalue k
Formation of Feature Vector:

Arrange eigenvectors in the descending order of

eigenvalues

Fig. 1 Simulated transmission line: (a) single-line diagram, (b) simulation model in EMTP

Fig. 2 Distributed data set and direction of variation of data
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Feature Vector ¼ eigv1; eigv2; . . .; eigvmð Þ
i:e:; Feature Vector ¼ e1; e2; . . .; emð Þ

The principal components (PCs) are constructed as a

linear transformation of X by combining E as:

T ¼ ETX

where T = [t1, t2, …, tm]
T and t1, t2, …, tm are the PCs of

X in the descending order of variance.

//Row Feature Vector: Matrix with the eigenvectors in

the columns transposed

//Row Data Adjust: Mean-adjusted data transposed

//Final data or principal component scores (PCS)

PCS ¼ Row Feature Vector� Row Data Adjust

Artificial Neural Network

Artificial neural network (ANN) is one of the most

important tools of the artificial intelligence (AI) family

which bear tremendous capabilities of classification, and

hence has a huge application in power system studies.

ANN is intended for computation of a large number of data

sets, especially for pattern recognition and prediction pur-

pose. The ANN model is required to be trained extensively

with prototype fault signatures, based on which it can

predict the most similarity of the unknown type with one of

the target classes, thus classifying fault.

Probabilistic Neural Network (PNN)

PNN is a special variant of ANN, extensively used for

classification and pattern recognition. PNN is a feedfor-

ward neural network. PNN is as much as five orders of

magnitude faster than backpropagation [18]. PNN con-

verges to a Bayesian classifier with sufficient training data.

This multilayered feedforward network has four layers:

input layer, hidden layer, summation layer and output or

decision layer. The probability density functions or PDFs

are used to statistically estimate the activation function of

the neurons based on the training pattern [14]. Figure 3

describes a prototype PNN model used here for the pro-

posed work, and Fig. 4 shows an empirical two-class PNN

Gaussian PDF distribution approximated by a Parzen

window.

The first layer computes an error vector by computing

the distances between the input vector and the training

vector. This error vector is basically a measure of closeness

of the input vector and the training vector. The next layer

adds up these errors for each of the classes of the inputs to

produce its output as a vector of probabilities, obtained as a

continuous probability density function (PDF). In PNN, a

Gaussian PDF is approximated by a Parzen window PDF

estimator for each class i as:

Fa Xð Þ ¼ 1= 2pð Þp=2rp

¼ 1

Na

XNa

i¼1

1ffiffiffiffiffiffi
2p

p exp � X � Yaið Þt X � Yaið Þ=2r2
� �

where Fa(X) is the value of class A at point X, i is the

training vector number, p is the number of components in

the training vector, r is the smoothing variable, Na is the

number of training vectors in class A, X is the test vector to

be classified, Yai is the ith training vectors from class A

and t is the vector response [18].

This is done to obtain the class-conditional densities or

the ‘likelihoods’ of a class. These PDFs of each class are

used to compute the class probability of input data for each

of the classes. The class with the highest probability for the

new input is then decided employing Bayes’ rule. This is

done using a transfer function on the output of the second

layer which identifies the maximum probability among all

the class probabilities. In hidden layer, each weight has the

value of a component of that vector. Neurons of this layer

are grouped by the known classification of its associated

training vector. Each of these neurons sums the weighted

inputs from each of the input layer neurons. Next, it applies

the nonlinear PDF to that sum to estimate the output Zci

from this layer. The subscript c signifies the class, and

Fig. 3 PNN classifier mode

Fig. 4 A typical two-class PNN Gaussian PDF approximated by a

Parzen window
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i indicates the hidden layer neuron computing the class

[18].

The specific number of neurons in each layer is decided

by the number of samples representing a class or type in a

training set. The number of input neurons is equal to the

number of separable parameters required for describing the

classifier objects. The hidden layer contains one neuron for

each training class [13]. Each neuron of the summation

layer receives all the previous layer outputs of each given

class and is summed by a single summation layer neuron. It

produces 1 for the class with the highest probability and 0

for others.

PNN Adopted for the Proposed Work

In the present work, the input layer takes the feature vector,

i.e., principal component scores (PCS) as input. This layer

receives modified feature inputs of PCS from the input

layer. This layer is very important as it receives the

examples or the training patterns as input. In this work,

classification of ten different types of power transmission

line electrical faults is executed. These include three sin-

gle-line-to-ground faults (SLG-A, SLG-B and SLG-C),

three double-line faults (DL-AB, DL-BC and DL-CA),

three double-line-to-ground faults (DLG-AB, DLG-BC and

DLG-CA) and finally the three-phase fault (LLL). Along

with these ten fault classes, healthy or no-fault is added as

another class for initial identification, thus making the total

number of input classes as 11.

The input data set contains 1000 elements each for A, B

and C phase fault features for the proposed PNN fault clas-

sifier model. The model consists of two hidden layers

denoted as hidden layer and summation layer. The number

of neurons in the hidden layer is 3 9 11, where 3 represents

the three-phase input features (i.e., PCSA, PCSB and PCSC of

the three phases) and 11 represent the number of classes. The

activation function of this hidden layer is governed by the

PDF of each of the fault classes. The Gaussian probability

distribution function (PDF) of each of the 11 classes is cal-

culated from the Parzen window PDF estimator [13, 15, 18].

The output layer contains a total of 11 decision-making

nodes, each signifying one class. Hence, the size of the

summation or output layer is 1 9 11. The features obtained

from the PCA in terms of PCS of ten fault signals of each and

the no-fault condition has been used for training. As each of

the training set contains 1000 elements, the modeled PNN

network is designed with features for fault conducted at

three intermediate distances [12, 14].

Thus, the overall function of the proposed PNN network

is summarized as below:

Preparation of Data

Half cycle post-fault, three-phase sending-end noise-con-

taminated line current is used here as working data, followed

by normalization and scaling. Ten different types of faults

with variable Rf are conducted at intermediate locations of a

150-km-long transmission line. The Rf is varied in discrete

steps of 1 X, 5 X, 10 X, 20 X, 40 X, 60 X, 80 X, 100 X and

120 X for testing. The sampling frequency is 100 kHz, i.e.,

2000 samples/cycle. Hence, the working data vector for each

phase corresponds to 1000 samples.

Training Data Matrix

Three equidistant points at 30 km, 70 km and 110 km from

the sending end are chosen to collect the training data.

Hence, three-phase working data of each training location

for any particular fault class are 1000 9 3 matrix. PCA

algorithm compares each of the three-phase line current

vectors to that of the same under healthy condition, thus

finding out the extent of disturbance of each phase under

fault. Only one Rf of 10 X is used here for the purpose of

training for all the three locations. Hence, the phase-sepa-

rated training current matrix becomes as:

XaTR i ¼ XaH Xa30 i Xa70 i Xa110 i½ �1000�4;

XbTR i ¼ XbH Xb30 i Xb70 i Xb110 i½ �1000�4;

XcTR i ¼ XcH Xc30 i Xc70 i Xc110 i½ �1000�4;

whereXa30_i signifies the sending-end line A current vector at

30 km from sending end for Rf of 10 X for ith type of fault.

Test Data Matrix

The test data set is constructed in an identical way, cor-

responding to a fault conducted at any intermediate geo-

metric location with Rf other than that used for training.
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Hence, the test data matrix, for any unknown location and

unknown Rf, is formed as:

XTEST ¼ XaTEST XbTEST XcTEST½ �1000�3

Data Matrix for PCA Algorithm

PCA is carried out on per phase basis, i.e., each phase

current data are analyzed separately. Hence, the three

phases are analyzed independently to find out PCA scores

separately. The data are arranged accordingly to form

working data matrices (P):

Pai ¼ PCA of XaH Xa30 i Xa70 i Xa110 i XaTEST½ �1000�5;

Pbi ¼ PCA of XbH Xb30 i Xb70 i Xb110 i XbTEST½ �1000�5;

Pci ¼ PCA of XcH Xc30 i Xc70 i Xc110 i XcTEST½ �1000�5;

Hence, [PCSi] = [Pai Pbi Pai]1000915;

Data Matrix for PNN Algorithm

The proposed PNN model is trained and tested using the

principal component scores (PCS), which are the re-ori-

ented form of the working data along the directions of

highest importance and are obtained from the PCA analy-

sis. These data are rearranged to form the training set for

PNN model. The target class is the ten different fault

prototypes and the healthy condition. Hence, the target

class has been designed with numerical values from 1 to 11

in sequential order; each index defines each fault class

separately. The relationship between the target vector and

the target vector index takes the form:

So in the case of healthy condition, i.e., for fault index 1,

the [PCS] training matrix is written as:

Ph ¼ Pah Pbh Pch½ �1000�3;

The target class corresponding to this healthy set is:

Tg ¼ 1 0 0 0 0 0 0 0 0 0 0½ �1�11;

The input training matrix to the PNN model for other

faults is designed similarly. Training of the fault classes

has been carried out with data corresponding to three

locations, viz. 30 km, 70 km and 110 km, with fixed Rf of

10 X. The PCS obtained for one class of fault are arranged

sequentially in the same order. For example, the training

set for SLG-A, which is fault class 2, is formed using the

three-phase PCS of three training locations as:

P2 30 ¼ Pa2 30 Pb2 30 Pc2 30ð Þ½ �1000�3;

P2 70 ¼ Pa2 70 Pb2 70 Pc2 70ð Þ½ �1000�3;

P2 110 ¼ Pa2 110 Pb2 110 Pc2 110ð Þ½ �1000�3;

where 2 signifies fault class and 30, 70 or 110 define the

three training locations. These matrices are fed

sequentially to the PNN model for training. The target

class vector corresponding to this SLG-A for each training

set of this class remains constant as:

Tg ¼ 0 1 0 0 0 0 0 0 0 0 0½ �1�11;

which shows that the index of Tg will be 1 for the

corresponding fault, and all other indices will remain 0.

Thus, the generalized training matrix for ith fault class is:

Pi 30 ¼ Pai 30 Pbi 30 Pci 30ð Þ½ �1000�3;

Pi 70 ¼ Pai 70 Pbi 70 Pci 70ð Þ½ �1000�3;

Pi 110 ¼ Pai 110 Pbi 110 Pci 110ð Þ½ �1000�3;

where i is the target vector index mentioned above and

i = 1,2, …, 11. Hence, the target vector corresponding to

each such set is

Tg i½ � ¼ 1;

Tg j½ � ¼ 0; for j 6¼ i; where j ¼ 1; 2; . . .; 11:

So the output from the PNN classifier will be a number

among 1–11 showing fault class according to the target

vector index.

Algorithm Development: Two Methods of Feature
Extraction

For ground faults like SLG and DLG, the directly affected

phase(s) is disturbed maximum and the other line(s) re-

mains less disturbed, primarily due to the flow of zero

sequence currents through the faulted ground line and the

grounded neutral. This measure of disturbance of the un-

faulted line of ground faults is higher than the unaffected

line disturbance in the case of DL faults, but it is much

lesser than the disturbances of the directly affected

line(s) of ground faults. This is one of the key features for

distinguishing between DL and DLG faults, and hence the

classifier algorithm. The extent of disturbances measured

using PCA are used to develop fault features in both

Class name Healthy SLG-A SLG-B SLG-C DL-AB DL-BC DL-CA DLG-AB DLG-BC DLG-CA LLL

Class no (i). 1 2 3 4 5 6 7 8 9 10 11
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methods of classification. In one scheme, the three-phase

PCS are found which are actually the re-oriented working

data along the directions of maximum variability, i.e., the

principal components (PCs). These are fed to the proposed

PNN structure to predict fault class. In the other method,

three-phase principal component indices (PCI) are found

for each fault class. These PCS are the measures of dis-

turbance of any fault data from the healthy condition. The

three PCs are arranged in descending order of importance.

The Euclidian distance between the three-dimensional (3D)

PCI of 11 training and test cases is arranged to form [P],

thus forming PCI. These PCI denote the vector distance of

each class from that of the healthy condition. These are

further processed using a modified ratio analysis algorithm.

The proposed classifier is tested with different faults con-

ducted at varying geometric locations along the 150-km-

long transmission line with Rf varying between 1 and

120 X. The proposed algorithm is represented schemati-

cally in the form of a flowchart as shown in Fig. 5.

Results and Discussion

Case Study and Analysis

The proposed work is done using noise-corrupted current

signals to incorporate practicality of system. Figure 6

shows a noisy waveform line A current under healthy

condition. The same is filtered, normalized and scaled to

obtain final working signal. A DL-AC fault is considered

here as a test case for analysis of the schemes. The three-

phase line currents for faults carried out at the intermediate

training locations are shown in Fig. 7. It is observed from

Fig. 7 that A and C lines are disturbed most and B is least

affected for DL-AC fault. The variation of sending-end line

currents with the variation in fault location for line A and C

is prominent. It is evident that as the fault point moves

away from source, the magnitude of fault current reduces.

Line B current does not produce any significant conclusion

due to the non-involvement of line B and the power line

noise. Other fault classes too show similar observations.

Variation in Rf causes further complications to the signals.

Figure 8 shows that decreasing Rf causes increased fault

current nonlinearly. Fault signal at certain location with a

particular Rf sometimes becomes largely identical with the

same fault conducted at a different location, with a dif-

ferent Rf. Here lies the complexity of our work. The pro-

posed algorithms are designed to classify faults with

variation in both of these two factors. Figure 8 represents

the current signals for variation of Rf for fixed location.

PCI Ratio (PCIM)-Based Classifier

In the first phase of the experiment, the PCI are formed by

the proposed PCA-based feature extractor algorithm. Fig-

ure 9 shows a graphical representation of the training set of

three-phase PCI values for SLG, DL, DLG and LLL faults

and healthy condition at three distinct training locations.

It is observed in common for all that the three-phase PCI

follow a particular pattern for each fault type. To further

emphasize these features, the PCI are further processed and

scaled with respect to the PCI column with any of the

near minimum magnitude. Hence, the modified PC indices

(PCIM) are formed as represented in Table 1 as well as

represented in Fig. 10. This modified ratio analysis

scheme emphasized the interrelationship of the three-phase

PCI more 7effectively than [3].

It is observed from Fig. 9b that for DL faults, the third

and unaffected line are disturbed the least, even in com-

parison with the DLG faults as shown in Fig. 9c. The only

disturbance caused in the unaffected line is due to theFig. 5 Flowchart of the proposed two methods of fault classification

Fig. 6 Noise-contaminated sending-end line A current under healthy

condition
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Fig. 7 Sending-end three-phase line currents for healthy condition and DL-AC fault carried out at three training locations at 30 km, 70 km and

110 km distance from the sending end with Rf 10 X, waveforms are shown for a A line, b B line and c C line

Fig. 8 Sending-end three-phase line currents for healthy condition and DL-AC fault carried out at 30 km distance from sending end with

variable fault resistances; waveforms are shown for a A line, b B line and c C line
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power system noise. Hence, for DL faults, classification is

initially done by observing the three PCI directly. For

example, for DL-AB fault, PCI-A and PCI-B have higher

values, but PCI-C has values less than unity. It is further

observed from Fig. 10b that the affected line PCIM, for the

same DL faults, are much larger in comparison with the

unaffected lines. These are even much larger compared to

the closest DLG faults, which are shown in Fig. 10c.

Hence, DL faults are detected by observing both PCI and

PCIM simultaneously in connection with Figs. 9b and 10b.

Healthy condition is also identified directly in a similar

way by observing the PCI values directly governed by

Fig. 9e, where all three PCI are very low due to the pres-

ence of only power system noise.

Fig. 9 Three-phase principal component indices (PCI) for faults conducted at three training locations of 30 km, 70 km and 110 km for a SLG

faults, b DL faults, c DLG faults, d LLL faults and e healthy condition
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Fig. 10 Three-phase modified PCI (PCIM) at three training locations of 30 km, 70 km and 110 km values for a SLG faults, b DL faults, c DLG
faults and d LLL faults

Table 1 Three-phase modified principal component indices (PCIM) for all fault classes carried out at three training locations of 30 km, 70 km

and 110 km with fault resistance of 10 X

Fault type Distance (km) PCIM-A PCIM-B PCIM-C Fault type Distance (km) PCIM-A PCIM-B PCIM-C

SLG-A 30 10.289433 1 1.0228064 DL-CA 30 54.069639 1 54.05679

70 9.5468173 1 0.9843173 70 32.76837 1 32.711796

110 9.9037122 1 1.0204846 110 24.307848 1 24.268405

SLG-B 30 1.0216996 10.111902 1 DLG-AB 30 8.9535829 8.9738904 1

70 0.9516882 9.6352475 1 70 10.149714 10.159026 1

110 1.0169252 10.338203 1 110 10.191412 10.245629 1

SLG-C 30 1 0.9971775 10.156263 DLG-BC 30 1 8.951217 9.0168953

70 1 0.9922316 9.9950359 70 1 10.589885 10.420406

110 1 1.0618178 10.550588 110 1 9.977577 9.9090408

DL-AB 30 59.361019 59.216916 1 DLG-CA 30 10.078836 1 10.083623

70 34.086511 33.91578 1 70 10.01056 1 10.005201

110 23.806191 23.720466 1 110 10.328736 1 10.34948

DL-BC 30 1 54.675741 54.98773 LLL 30 1 1.0245534 1.0320709

70 1 31.886501 32.694947 70 1 1.0007323 0.9847167

110 1 22.206232 21.906392 110 1 1.0108958 1.003952
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Other fault classes like SLG, DLG and LLL are done

using the PCIM. It is noted from Fig. 10a, c and d that

three PCIM follow uniformity irrespective of the fault

location. Similar trend is also observed for variation of Rf.

This feature is investigated and is key for developing the

classifier model. The three training PCIM for three training

locations are shown in a clustered form in a three-dimen-

sional plot in Fig. 11.

It is observed from Fig. 11 that the three PCIM in each

cluster are close to each other. Hence, the centroid of each

cluster is found mathematically from the 3D fault signa-

ture. These centroids for the three classes are plotted in

PCIM centroid map of Fig. 12 in the form of a bar diagram

and in a three-dimensional plot in Fig. 13a. Figure 13a is

treated as the fault signature map for the PCIM-based

classifier. This is used to estimate the distance proximity of

the test case and the three fault categories.

The unknown fault is first tested for healthy and the DL

fault classes from the combined analysis using three PCI

and PCIM. If the fault class does not match with these two

categories, the PCIM of the unknown fault are analyzed

using fault signature map of Fig. 13a with the other fault

classes. The minimum vector distance between the test data

PCIM and each of the fault class centroids of Fig. 13a are

computed. This is shown in Fig. 13b. It is observed that the

vector distance between the test PCIM, shown as a triangle

in Fig. 13b, and fault class PCIM is least for DLG-CA

fault. Hence, for this test case, the classifier assigns the

fault as DLG-CA.

Analysis of the PCS-PNN-Based Classifier

The PCS-PNN-based classifier uses the three PCS. The

designed PNN network is trained using PCS of ten faults

classes and healthy condition. The model is further trained

using several PCS corresponding to faults conducted at

three different locations at 30 km, 70 km and 110 km from

the sending end with Rf as 10X. Testing of the algorithm is

carried out using PCS of faults conducted at intermediate

locations.

Classifier Results

Both the fault classifiers are tested with 12 noise-contam-

inated test data of each fault class. These faults are carried

out at different geometric distances from the sending end

along the 150-km line. Rf is also varied simultaneously.

Both the algorithms produce same and 100% accurate

result as shown in Tables 2, 3 and 4. Totally, 120 different

test faults and 10 healthy condition data are used for testing

the proposed algorithms. These test faults are carried out

with different combinations of Rf and fault locations, other

than those which are used for training the algorithms.

Comparative Analysis of Two Classifiers

It is found from Tables 2, 3 and 4 that both the classifiers

are 100% accurate in classifying power system faults in

overhead transmission lines within half cycle of the

occurrence of fault. The PCIM-based classifier is modeled

based on a single fault signature generated from fault data

taken at three equidistant points. The PCA–PNN model is

trained using all the three training location fault data

sequentially. Rf is kept as 10 X in all the training cases. Rf

and fault location are varied largely to validate the

robustness of the system. Both the algorithms produce

100% correct results as seen from these tables.

Conclusion

The proposed work discusses the development and analysis

of two power system fault classifier models for a 150-km-

long single-end-fed overhead transmission line. The first

method discusses about a modified principal component

indices (PCIM) and ratio analysis-based fault classifier

Fig. 11 Three-dimensional cluster plot of the three-phase modified

PCI (PCIM) values for SLG, DLG and LLL faults at three training

locations

Fig. 12 Fault signatures, formed as the centroid of three training

location modified PCI (PCIM) values for SLG, DLG and LLL faults
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Fig. 13 a Three-dimensional plot of the fault signatures for SLG, DLG and LLL faults. b Three-dimensional distance between the test fault

PCIM and the fault signature PCIM

Table 2 Results of fault class prediction of both fault classifiers

Fault type H AG BG CG AB BC CA ABG BCG CAG ABC

H 10 0 0 0 0 0 0 0 0 0 0

AG 0 12 0 0 0 0 0 0 0 0 0

BG 0 0 12 0 0 0 0 0 0 0 0

CG 0 0 0 12 0 0 0 0 0 0 0

AB 0 0 0 0 12 0 0 0 0 0 0

BC 0 0 0 0 0 12 0 0 0 0 0

CA 0 0 0 0 0 0 12 0 0 0 0

ABG 0 0 0 0 0 0 0 12 0 0 0

BCG 0 0 0 0 0 0 0 0 12 0 0

CAG 0 0 0 0 0 0 0 0 0 12 0

ABC 0 0 0 0 0 0 0 0 0 0 12

Overall classifier accuracy: 100%

Table 3 Results of fault class prediction of both fault classifiers with varying fault location

Fault location (km) Total number of observations Success Failure % Accuracy

10 10 10 0 100

20 10 10 0 100

30a 0 0 0 –

40 10 10 0 100

50 10 10 0 100

60 10 10 0 100

70a 0 0 0 –

80 10 10 0 100

90 10 10 0 100

100 10 10 0 100

110a 0 0 0 –

120 10 10 0 100

130 10 10 0 100

140 10 10 0 100

150 10 10 0 100

Overall classifier accuracy: 100%

aThese locations are used to form the training data set, hence not considered in results
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model, and the second scheme analyzes a combined

approach of principal component analysis (PCA) and

probabilistic neural network (PNN). Both the classifiers use

sending-end three-phase currents as the working data. Fault

data of three intermediate locations are fed to PCA model

to extract essential features. The PCIM ratio-based classi-

fier scheme uses the PCA features corresponding to these

three locations to develop a single training fault signature.

The PCA–PNN model uses these features directly to train

the fault classifier structure. Both the schemes are 100%

accurate in fault classification, even considering practical

uncertainties like power system noise and variable fault

resistance. Training time of the PNN-based scheme is

marginally higher than the ratio-based classifier since PNN

is required to be trained using a large number of data. The

proposed classifiers are validated using diverse test data

containing variable Rf, different locations and noise. The

success rate in all the cases is found 100% using either of

the methods.
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Table 4 Results of fault class prediction of both fault classifiers with

varying fault resistance

Fault resistance

(X)
Total number of

observations

Success Failure %

Accuracy

1 15 15 0 100

5 15 15 0 100

10a 0 0 0 –

20 15 15 0 100

40 15 15 0 100

60 15 15 0 100

80 15 15 0 100

100 15 15 0 100

120 15 15 0 100

Overall classifier accuracy: 100%

aThese fault resistances are used to form the training data set, hence

not considered in results
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