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Abstract Electrocardiogram (ECG) is a non-invasive test

which is highly adopted as a primary diagnostic tool for

cardiovascular diseases. ECG recording appears as a non-

stationary and quasi-periodic electrical signal. This elec-

trical signal has important segments: P-wave, QRS-com-

plex, and T-wave. R-peak is an important component of

these segments. Computer-aided diagnosis is preferable as

manual diagnosis using naked eye may mislead the

detection. Therefore, in this paper, features extracted using

both Burg method of autoregressive (AR) modeling and

Hilbert transform are used for enabling efficient automated

R-peak detection in ECG signal. Burg method is consid-

ered for extracting features due to its better frequency

resolution, flexibility in selecting AR model orders and

faster convergence for short-time signals. Next, Hilbert

transform is used to find missed information in terms of the

spectral components. The proposed technique is validated

using Massachusetts Institute of Technology-Beth Israel

Hospital Arrhythmia database. K-nearest neighbor (KNN)

classifier is used for classification as it requires only few

parameters to be tuned (K and the distance metric). In this

paper K = 3 is selected to avoid any tie situation and

Euclidean distance metric is selected because it does not

require any weights for features. Also, KNN is more

effective for classifying three classes as compared to those

handled by other existing classifiers. The performance of

the proposed technique is evaluated on the basis of sensi-

tivity (Se), positive predictivity (PP), accuracy (Acc) and

duplicity (D). The proposed work yielded Se of 99.90%, PP

of 99.93%, Acc of 99.84%, and D of 0.006361%. These

results indicate improvement in heart diagnostic leading to

correct treatment of the subject (patient) over other existing

state-of-the-art methods.

Keywords Electrocardiogram � AR coefficients �
KNN classifier � Burg method � Hilbert transform �
Spectral components

Introduction

Electrocardiogram (ECG) is an important tool to know

exact status of health of the heart worldwide [1, 2]. The

clinical ECG signal is noisy due to deviations and artifacts

that creep in during its acquisition [3–5]. These deviations

and artifacts exist due to electromagnetic interference in

the current carrying cables, muscle artifacts, body move-

ments, and poor quality of electrodes [6]. ECG is graphical

recording of the electric potentials [7–9] that are produced

due to pumping action of the heart. Pumping action refers

to depolarization and repolarization of the sinoatrial (SA)

node followed by the depolarization and repolarization of

the atrioventricular (AV) node [10]. This heart activity is

captured using ECG machine through electrodes that are

pasted on the body of the subject at specific locations. ECG

signal usually consists of P-wave, QRS-complex, ST slope

and T-wave components which indicate atrial depolariza-

tion, ventricular depolarization, blood supply in the body

and ventricular repolarization, respectively [11, 12]. In

QRS-complex, R-wave has highest amplitude (i.e., 1 mV)

among all wave components of the ECG signal. Detection
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of R-wave amplitude (R-peak detection) is much useful for

extracting clinical information in terms of heart rate (HR)

[13–15] which is not possible by inspection with naked eye

[16]. Therefore, computer-aided diagnosis (CAD) is

required for efficient ECG signal interpretation [17–20].

Various methods have been proposed by researchers in the

past, such as heuristic methods [21, 22], adaptive filters [4],

chaos theory [23], short-time Fourier transform (STFT)

[24], Approximate Entropy (ApEn) [25], Frequency-based

methods [17], support vector machine (SVM) [9],

S-Transform [6], and higher-order spectra [17]. In [21, 22],

heuristic methods were proposed for classifying ECG sig-

nal, but outcome was highly dependent on proper selection

of the bandpass filter (3 dB frequencies). After few years,

wavelet transform (WT) [15] was proposed to overcome

such drawbacks, but its performance was dependent on the

choice of the mother wavelet [26]. In [4], adaptive filters

were used for QRS-complex detection, but an appropriate

reference signal was needed for its operation. In the pre-

viously published papers by same authors [23, 24], chaos

theory and STFT were adopted as feature extraction tools.

In STFT, the main limitation is its limited time–frequency

resolution. On the other hand, in chaos theory proper

selection of time delay dimension (embedding), correlation

dimension, Lyapunov exponent, and entropy are chal-

lenging tasks. In [17], higher-order spectra method was

presented as an emerging ECG signal analysis tool, but

there was difficulty in extracting natural frequencies. In

[25], automated identification of normal and diabetes heart

rate signals were proposed using Approximate Entropy

(ApEn), but it required knowledge of the previous ampli-

tude values. In [9], SVM was used for pattern recognition

in the ECG signal, but its operation was strongly dependent

on the selection of the kernel with necessary speed and size

parameters during both training and testing phase. There-

fore, these limitations motivated us to explore further the

effective processing of ECG signal for efficient R-peak

detection. In this paper, Burg method is considered for

extracting features using autoregressive (AR) coefficients

and associated power spectrum due to its better frequency

resolution, faster convergence for small signals and flexi-

bility of choosing different AR model orders. During fea-

ture extraction, some spectral components are missed out.

For that purpose, Hilbert transform is used to extract

spectral estimation of the selected Burg feature vectors.

Burg method extracts features by minimizing forward and

backward prediction errors [27, 28]. Next, K-nearest

neighbor (KNN) classifier discriminates query point (ex-

tracted Hilbert transform features) with considered refer-

ence vectors. Further, three nearest neighbors (K = 3) are

selected to avoid any tie situation and Euclidean distance

metric is selected because it does not require any weights

for features [29]. After estimating Euclidean distance

metric, a simple voting rule is adopted to classify the

particular class of an ECG signal. Finally, heart rate (HR)

and actual position of R-peaks in the ECG signal are

detected by capturing maximum peak amplitude within ±

20 samples of already identified locations.

The paper is organized in the following manner: first

section is devoted to literature survey, second section

explains the materials and proposed methodology, third

section covers results and discussion, and finally last sec-

tion gives the important findings (observations) followed

by conclusion at the end.

Literature Survey

Rai et al. [30] proposed Daubechies wavelet transform for

R-peak detection and radial basis function neural network

for the classification of ECG signals. They reported sen-

sitivity of 99.8%, positive predictivity of 99.60%, speci-

ficity of 99.90%, and classification error rate of 0.12%.

Haque et al. [31] proposed several adaptive filtering algo-

rithms for ECG signal. They have found that normalized

least mean square (NLMS) algorithm achieves high SNR.

Mortezaee et al. [32] have considered singular spectrum

analysis (SSA) to separate ECG signal from electromyo-

gram (EMG) noise. For validation, two sub-sets from

PhysioNet database [33] were considered. In [34], authors

have proposed chaos theory for interpreting ECG signal

which came out to be an essential approach for observing

right condition of the heart. Chaos examines irregular

attitude of the system and fits it into deterministic equations

of motion [35]. He et al. [36] have proposed a bandpass

filter to remove baseline wander and power-line interfer-

ence from ECG signal. After filtering operation, K-nearest

neighbor (KNN) and particle swarm optimization (PSO)

were combined for accurate QRS detection on MIT-BIH

arrhythmia database. They reported accuracy, sensitivity

and positive predictivity of 99.43%, 99.69%, and 99.72%,

respectively. Chakraborty and Ghosh [37] proposed Hurst

Rescaled Range Analysis in the assessment of arrhythmia.

The main aim of this research was to identify the severity

of the disease, monitoring of different medicine and their

doses, and also to assess the efficiency of different medi-

cines. For achieving arrhythmia time series, MIT-BIH

arrhythmia database was considered. In this research,

fractal dimension parameter was adopted and found its

values lower than normal. Van and Podmasteryev [38]

have proposed support vector machine (SVM) for accurate

detection of QRS-complexes on the MIT-BIH arrhythmia

database. They reported sensitivity of 98.32% and speci-

ficity of 95.46%.
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Materials and Methods

In this section, details of used ECG database, preprocessing

technique, feature extraction technique, classification

algorithm and performance evaluation parameters are

provided.

ECG Database

For validation and evaluation of reliability of the proposed

approach, Massachusetts Institute of Technology-Beth

Israel Hospital (MIT-BIH) arrhythmia database [39] is

used. This database includes 48 recordings sampled at

360 Hz using two-lead arrangement. The length of these 48

recordings is 30–60 min.

Feature Extraction
(using Burg 

Method and Hilbert 
transform)

Classification
using KNN 
Algorithm

Pre-processing
(using ICA and 

PCA)

Raw ECG Signal
(MIT-BIH

Arrhythmia
database)

I stage II stage III stage

R-
peak

Fig. 1 Block diagram of proposed R-peak detection approach

Baseline wander removed 
and filtered ECG signal

Select the model order

Estimate the PSD and 
Coefficients

Is Information up to the mark 
for getting Heart condition? 

Yes, then to proceed to get 
spectral content and R-peaks 

using KNN classifier

Fig. 2 Optimization of the AR model

Fig. 3 Visualisation of classification using KNN at K = 3

Set Tuning parameter 
(K and Distance metric)

Estimate Distance

Sort the distances

Select K-Nearest Neighbors 
and use simply majority rule

Class L

Fig. 4 Steps involved in KNN classification algorithm

Raw ECG Signal 

Dimensional Reduction using PCA

Noise Removal using ICA

Classification using KNN Algorithm

R-peak detection(by capturing 
maximum peak amplitude of ECG signal 

within ±20 samples )

Feature Extraction using 
AutoRegressive Burg Method and 

Hilbert transform

Fig. 5 Proposed R-peak detection methodology
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The whole process of signal classification is divided into

three stages: preprocessing, feature extraction and classi-

fication as shown in Fig. 1.

Preprocessing

ECG signals are mostly corrupted by baseline wander

(BLW) and power-line interference (PLI) noises [13]. This

noise changes its own characteristics and affects the diag-

nostic accuracy. In this paper, KNN classifier is proposed

for ECG signal classification whose classification perfor-

mance severely degrades by the presence of noise [29].

Therefore, independent component analysis (ICA) and

principal component analysis (PCA) are used for filtering

purpose and dimensional reduction, respectively; ICA is

performed on two-channel ECG signal using kurtosis

analysis. Filtration using ICA is accomplished in two steps.

In the first step, mixing matrix is obtained and in the sec-

ond step, independent components (ICs) are obtained that

indicate kurtosis value. Next, on the basis of kurtosis value,

ICs are differentiated as noise or useful component of the

ECG signal. Dimensionality reduction is done using PCA

on the basis of variance. PCA operation is performed in the

following sequence: (1) subtraction of mean from original

filtered ECG signal, (2) measurement of the covariance

matrix, (3) obtaining eigenvectors and eigenvalues of the

covariance matrix, and (4) dimensionality reduction of

ECG data in the form of a feature vector.
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Fig. 6 AR coefficients calculation and power spectrum for MIT-BIH_103 at model order: a 2, b corresponding coefficients, c 3, d corresponding

coefficients, e 4, f corresponding coefficients, g 5, h corresponding coefficients, i 6, j corresponding coefficients, k 7, l corresponding

coefficients, m 8, n corresponding coefficients, o 9, p corresponding coefficients, q 10, r corresponding coefficients, s 11, t corresponding
coefficients, u 12, v corresponding coefficients
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After preprocessing, features are extracted as illustrated

in next subsection.

Feature Extraction Using Burg Method and Hilbert

Transform

Based on forward and backward prediction errors, autore-

gressive estimation has been developed in [40]. Assuming

measurements which have data values such as q kð Þf g for

k ¼ 1; 2; 3; . . .;M.

Forward prediction error for nth order modes is

expressed as:

2̂F;n kð Þ ¼ q kð Þ þ
Xn

j¼1

an;jq k � jð Þ for k ¼ nþ 1; . . .M

ð1Þ

Backward prediction error for nth order modes is

expressed as:
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Fig. 7 AR coefficients calculation and power spectrum for MIT-BIH_107 at model order: a 2, b corresponding coefficients, c 3, d corresponding

coefficients, e 4, f corresponding coefficients, g 5, h corresponding coefficients, i 6, j corresponding coefficients, k 7, l corresponding

coefficients, m 8, n corresponding coefficients, o 9, p corresponding coefficients, q 10, r corresponding coefficients, s 11, t corresponding
coefficients, u 12, v corresponding coefficients
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2̂b;n kð Þ ¼ q k � nð Þ þ
Xn

j¼1

â�n;jq k � nþ jð Þ for

k ¼ nþ 1; . . .M

ð2Þ

The Burg’s method minimizes arithmetic mean of the

prediction errors.

The autoregressive (AR) model is parametric by nature.

In AR modeling, main aim is to choose the appropriate

model order that indicates number of poles existing in the

model. If model order is less, then more power of the

spectrum exists in dominant peaks and vice versa [41]. The

main challenge for analyzing ECG dataset exists when
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Fig. 8 AR coefficients calculation and power spectrum for MIT-BIH_113 at model order: a 2, b corresponding coefficients, c 3, d corresponding
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Fig. 9 Hilbert transform of normal ECG recording
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feature vectors are more in number. It makes the analysis

very complex, and higher level of memory and computa-

tional power is required. Thus, optimization of features in

such case is very important. To optimize these feature

vectors, power spectral density (PSD) and autoregressive

(AR) coefficients are used as shown in Fig. 2.

Some important information present in the underlying

ECG dataset is lost, when Burg method is used. Hence,

time–frequency Hilbert transform (HT) has been used for

extracting important spectral components present in the

ECG dataset. Therefore, Hilbert transform supplements the

feature extraction resulting in lesser false negatives and

false positives during R-peak detection. In signal process-

ing, Hilbert transform is defined as a linear operator given

by convolution with the function 1
pt [42]. Hilbert transform

of any signal f tð Þ is given by [24]

H fð Þ tð Þ ¼ 1

p

Z 1

�1

f sð Þ
t � s

ds ð3Þ

Hilbert transform gives the analytic view of a real-

valued signal (f tð Þ). The Hilbert transform of f tð Þ is its

harmonic conjugate g tð Þ. It gives the � p
2
phase shift in the

output. It also gives the important features for automated

ECG diagnostic system.

After completing feature extraction, classification of

ECG dataset has been done as described in next subsection.

K-Nearest Neighbor (KNN) Classifier

KNN classifier is an instance-based classifier that assigns

extracted feature vectors to a specific class according to

simple voting rule among its K-nearest neighbors [43].

Before voting, the reference signal is selected for a par-

ticular class. In KNN, appropriate selection of value of

K and type of distance metrics is very important. In Fig. 3,

two different classes [where circles with solid fill represent

instances in the dataset of normal subject and squares show

instances of the abnormal subject (patient)] are used. Here,

Fig. 10 Detected ECG beats in the normal ECG recording

Fig. 11 Hilbert transform of abnormal ECG recording

Fig. 12 Detected ECG beats in

the abnormal ECG recording

J. Inst. Eng. India Ser. B (February 2020) 101(1):23–34 29

123



L denotes query which is classified by its three nearest

neighbors (K = 3).

ECG dataset is divided into a test set and a training set

during classification process. Any tie situation leads to the

inclusion of majority of the data points. In the training

phase, feature vectors are stored predicting class label of

the unknown record by estimating majority vote. Here,

Euclidean distance metric is selected to measure distance

between records. Subsequently, three (K = 3) nearest

points are selected for classification. The test sample is

used as a reference sample, which belongs to particular

heart subject (patient) during the classification process.

Calculation of distances from stored vectors and new

vector is performed. The Euclidean distance metric for-

mula is given as

D x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

xi � yið Þ2
s

ð4Þ

Next, predicted value is obtained by weighted average

operation by inverse distance. KNN classifier does its

operation in two phases; in the first phase it is applied on

complete ECG dataset for computing D x; yð Þ. In this

manner, K points exist in the vicinity of x for training data.

Generally, odd value of the tuning parameter (K) is

considered to prevent tie situations. In the second phase,

conditional probability is calculated for every class and x is

associated with the class having largest probability. The

appropriate value of K gives low test error rates, but it may

enhance number of iterations. Thus, the main strategy is to

use test set as training set. Figure 4 indicates the steps

involved in KNN classification algorithm.

For validating the dataset, k-fold cross-validation is also

applied. In this approach, dataset is segregated into k

groups of the same length. The first group is considered as

validation set, and then it is applied to the rest k � 1 groups

(folds). The process is repeated and performed up to

k times. It gives test error of k-measures by taking aver-

aging of all kth measurement [44]. For achieving highest

accuracy, fivefold cross-validation is used in the present

paper that is similar to [29].

Finally after KNN classification, R-peak detection is

performed as explained in next subsection.

R-peak Detection

R-peaks in ECG signals are defined by the maximum peak

amplitude of QRS-complexes. So, actual positions of

R-peaks in an ECG signal are found by capturing maxi-

mum peak amplitude of ECG signal within ± 20 samples

of already identified locations as shown in Fig. 5. Maxi-

mum peak amplitudes are identified by determining the

shape of R-wave.

Heart rate (HR) is computed as

HR¼ 60

Average RR Interval RRAvg

� �beats per minute bpmð Þ

ð5Þ

Different performance parameters are considered for

evaluating performance of the proposed algorithm as

explained in next subsection.

Fig. 13 a R-peak detection in

MIT-BIH (103 m) database by

KNN classifier coupled with

Burg method and b R-peak

detection in MIT-BIH (107 m)

database by KNN classifier

coupled with Burg method
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Performance Evaluating Parameters

For evaluating performance of the proposed method, fol-

lowing parameters are considered [24, 35, 45]

Sensitivity SEð Þ ¼ TP

TPþ FN
ð6Þ

Positive Predictivity PPð Þ ¼ TP

TPþ FP
ð7Þ

Accuracy Accð Þ ¼ TP

TPþ FNþ FP
ð8Þ

Duplicity Dð Þ ¼ No:of TPþ FPþ FNð Þ � Actual beats

Actual beats

ð9Þ

where TP is the number of true positives (actual detected

R-peaks), FN is the number of false negatives, and FP is

the number of false positives (wrongly detected R-peaks).

Results and Discussion

Filtering using ICA results into kurtosis value which when

less than 4.3 indicates the noise component present in the

underlying ECG dataset [46]. MIT-BIH arrhythmia dataset

105 m yielded a kurtosis value of 2.77 and a variance value

of 89.78% (according to eigenvalues of the covariance

matrix). Most of the MIT-BIH arrhythmia dataset has

secured variance values between 92 and 97.77% and kur-

tosis value between 11.34 and 43.77. The power spectrum

information of short-time data records with estimated AR

coefficients is shown in Figs. 6, 7 and 8.

Hilbert transform is used to get exact spectral compo-

nents of the ECG signal as shown in Figs. 9, 10, 11 and 12.

Figure 9 shows that trajectory of a normal ECG recording

settles in a specific pattern. In Fig. 10, time–frequency

description of all R-peaks is clearly shown.

Figure 11 shows trajectory of abnormal ECG recording

obtained using Hilbert transform. It is random in nature due

to fast fluctuations in the heart rate. In Fig. 12, time–fre-

quency description is shown, but R-peaks are not visible in

the whole spectrum.

Finally, HR and real R-peak locations in the ECG signal

are obtained by capturing maximum peak amplitude

within ± 20 samples of already identified locations. KNN

classifier is applied to get R-peak detection as shown for

103 m in Fig. 13a and for 107 m in Fig. 13b.

After implementation, the proposed technique has

secured Se of 99.90%, PP of 99.93%, Acc of 99.84% and

D of 0.006361%. Table 1 shows TP, FP, FN, and the

detected ECG beats, and Table 2 indicates the effective-

ness of the proposed research on MIT-BIH arrhythmia

database.

Table 1 TP, FP and FN calculation after applying KNN classifier

coupled with Burg Method and Hilbert transform

ECG record (m) Actual R-peak Detected R-peak TP FN FP

100 2270 2270 2270 0 0

101 1867 1867 1867 0 1

102 2187 2186 2187 0 0

103 2081 2081 2081 0 0

104 2233 2233 2232 2 2

105 2589 2572 2572 15 8

106 2038 2038 2038 1 1

107 2144 2143 2143 1 0

108 1773 1772 1773 0 0

109 2535 2533 2532 1 1

111 2126 2124 2124 1 1

112 2539 2537 2538 0 0

113 1797 1794 1795 1 0

114 1885 1882 1883 1 0

115 1957 1954 1954 3 2

116 2413 2401 2400 6 5

117 1541 1539 1539 2 0

118 2276 2266 2267 6 5

119 1981 1977 1977 2 1

121 1871 1867 1868 3 2

122 2477 2476 2476 1 1

123 1532 1530 1530 3 1

124 1632 1631 1631 2 1

200 2611 2609 2608 2 1

201 1972 1971 1971 1 0

202 2137 2136 2136 1 0

203 2888 2885 2885 2 1

205 2651 2651 2650 0 1

207 2331 2330 2330 0 1

208 2955 2953 2954 2 0

209 3012 3010 3009 2 1

210 2652 2651 2651 1 2

212 2753 2751 2751 0 1

213 3258 3256 3256 2 1

214 2271 2269 2269 2 1

215 3377 3376 3376 1 1

217 2213 2213 2213 0 1

219 2159 2158 2158 1 1

220 2067 2066 2066 1 0

221 2426 2424 2424 1 1

222 2483 2481 2481 2 1

223 2604 2603 2603 1 1

228 2052 2001 2001 13 11

230 2255 2254 2254 1 2

231 1569 1567 1567 2 2

232 1777 1772 1772 4 3

233 3078 3075 3075 2 3

234 2748 2743 2743 4 2

48 Rec. 1,10,043 1,09,878 1,09,880 99 71
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In Table 3, total number of actual R-peak, total number of

(FN ? FP), and total number of (TP ? FN ? FP) have been

shown. On the basis of these, %D is calculated and it has been

found that the proposed technique outperforms existing state-

of-the-art techniques. In existing techniques, number of

(FN ? FP) is higher as compared to the proposed technique

except [30, 35] where small ECG records have been consid-

ered. For instance, not all the parameters are consistently up to

the desired mark in the existing approaches unlike the pro-

posed approach, where all are consistently up to the desired

mark (i.e., high Se, high PP, high Acc, and low D).

Conclusion

Burg method with Hilbert transform is shown to effectively

extract features of an ECG signal. Involvement of ICA and

PCA reduces the burden over KNN classifier. It has been

demonstrated that such projection increases the accuracy of

the KNN classifier for K = 3 and Euclidean distance met-

ric. The outcomes reveal that the proposed system is useful

in clinical implementation for the classification of

arrhythmias, for getting the correct status of heart muscle

tissue, and for identifying severe effects on pulmonary

chest pain.

In future, KNN classifier may be replaced by any

sophisticated classifier due to its laziness, which requires

attention to both data splitting and cross-validation for fast

and efficient output.
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