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Abstract Economic dispatch (ED) ensures that the genera-

tion allocation to the power units is carried out such that the

total fuel cost is minimized and all the operating equality/

inequality constraints are satisfied. Classical ED does not take

transmission constraints into consideration, but in the present

restructured power systems the tie-line limits play a very

important role in deciding operational policies. ED is a

dynamic problem which is performed on-line in the central

load dispatch centre with changing load scenarios. The

dynamic multi-area ED (MAED) problem is more complex

due to the additional tie-line, ramp-rate and area-wise power

balance constraints. Nature inspired (NI) heuristic optimization

methods are gaining popularity over the traditionalmethods for

complex problems. This work presents the modified particle

swarm optimization (PSO) based techniques where parameter

automation is effectively used for improving the search effi-

ciency by avoiding stagnation to a sub-optimal result. This

work validates the performance of the PSO variants with tra-

ditional solverGAMSfor single aswell asmulti-area economic

dispatch (MAED) on three test cases of a large 140-unit stan-

dard test system having complex constraints.
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Introduction

Power utilities have acquired a highly competitive status,

particularly in generation and in the marketing of elec-

tricity. The ED aims to dispatch the committed generating

units, such that, the operating cost if minimized while all

the operating constraints are satisfied. In multi-area power

systems the fuel cost of a pool can be decreased by

importing power from areas having cheaper generating

units. In such cases, the cost will depend on area-exchange

agreements, characteristics of a pool, the policies adopted

by utilities, types of interconnections, tie-line limits and

load demands in individual areas. Transmission limits have

a very significant role in deciding the cost of operation and

in maintaining reliability. The traditional economic dis-

patch problem is normally solved without including the tie-

line limits. The added tie-line constraints and area power

balance requirements make the MAED problem more dif-

ficult to solve as compared to the conventional ED prob-

lem. This paper aims to formulate the ED problem with tie-

line constraints and to analyze the effect of area loads and

tie-line limits on the optimal operating cost for large multi-

area power systems.

A complete formulation of multi-area generation was

presented [1]. Desell, et al. [2] proposed an application of

LP and Farmer, et al. [3] presented a probabilistic method.

Hopfield neural network based approach was also proposed

to solve the MAED problem [4]. MAED problem by using

spatial dynamic programming with linear losses has been

solved [5]. Linear programming [6] and decomposi-

tion approach by Shahidehpour [7] also addressed this

problem.

These days nature inspired (NI) optimization methods

are becoming very popular due to their ability to solve

discontinuous and non-convex optimization problems in a
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very simple manner. The other advantages of NI techniques

as compared to the traditional solvers are (i) non-depen-

dence on nature of objective function, (ii) effective con-

straint handling, and (iii) population based powerful

parallel search capability. Over the last few years many

new NI methods like PSO [8, 9], differential evolution

(DE) [10], bacterial foraging (BF) [11, 12], biogeography

based optimization (BBO) [13], and artificial bee colony

optimization (ABC) [14] have been proposed for solving

complex economic load dispatch problems.

Recently and group search optimizer [15] and hybrid

methods [16, 17] which combine evolutionary and swarm

intelligence based techniques are also proposed. A series

hybrid of PSO and DE can be found [17]. DE based on

Lévy-flights has been proposed to improve convergence

[18]. Multiobjective evolutionary approaches for optimiz-

ing cost and emission simultaneously are also available

[19–22].

Many improved techniques based on parameter

automation [8–10, 12] and hybridization of two methods

[11, 16–18] are seen to enhance the performance. Iterative

tuning of parameters and randomization of velocity vector

[8] and introduction of additional operators [9] are used in

PSO to prevent stagnation. In [10] a comparison of DE

strategies for the MAED problem is carried out and some

time-varying DE variants are proposed. Hybridization of

BF with Nelder-Mead method [11] and an improved BF

algorithm [12] with crossover and chaotic variation of step

size is proposed to improve performance.

A traditional method General Algebraic Modeling Sys-

tem (GAMS) has been effectively used for large scale ED

problems without considering practical multi-area opera-

tion [23]. For large dimensional problems the nature

inspired optimization techniques may sometimes converge

to near-global solutions due to saturation and premature

convergence. The present paper proposes some modified

PSO variants where a tuning of cognitive and social

coefficient is carried out to improve global search.

Static/dynamic MAED is solved for three test systems

having different complexity levels. The performance is

validated using NLP solver in GAMS and some recently

published results from literature.

Multi-area Static/Dynamic Economic Dispatch

The objective of the economic dispatch problem is to

determine the generated powers Pi of units for a total load

of PD so that the total fuel cost, FT for the N number of

generating units is minimized subject to the power balance

constraint and unit upper and lower operating limits. The

objective is to minimize
PM

q

PNq
i FiqðPiqÞ subject to the

following equality and in equality constraints given below.

Here Fiq is the total fuel cost for the ith generator in qth

area defined by [8–10],

Fiq Piq

� �
¼ aiqP

2
iq þ biqPiq þ ciq

þ eiq � sin fiq � Pmin
iq � Piq

� �� ��
�
�

�
�
� ð1Þ

where aiq, biq, ciq, eiq and fiq are the fuel-cost coefficients.

Equality Constraints

Area-Wise Power Balance Constraint

In MAED problem the power balance constraints need to

be satisfied for each area. The power balance constraints

for area q can be given as [10]

XNq

i¼1

Piq � PDq þ
XMq

j

Tjq � PqL

 !

¼ 0; such that j 6¼ q

ð2Þ

For the qth area, PDq is the load; PqL, the power loss; Tjq,

the tie-line flows from other areas; Nq, the number of

generating units; and Mq is the count of tie-lines connected

to the qth area.

Transmission Losses

The transmission losses using the B-loss coefficients is

expressed as [24]

PqL ¼
XN

i¼1

XN

j¼1

PiqBijPjq þ
XN

i¼1

BoiPiq þ Boo ð3Þ

Inequality Constraints

Unit Operating Limits Constraint

The output of the ith generating unit should lie within the

minimum and maximum operating limits as given by

Pmin
iq �Piq �Pmax

iq ; i ¼ 1; 2; . . .;Nq; for all q ð4Þ

Unit Ramp-Rate Limit Constraints

When the generator ramp rate limits are considered, the

operating limits are modified as follows:

max Pmin
iq ;Po

iq � DRiq

� �
�Piq �min Pmax

iq ;Po
iq þ URiq

� �

ð5Þ

The previous operating point of ith generator in qth area

is Po
iq and DRiq and URiq are the down and up ramp-rate

limits, respectively.
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Dynamic Economic Dispatch

Dynamic economic dispatch deals with sharing the system

load including system losses among the available genera-

tors in such a way that all equality and inequality con-

straints are met and the cost of operation is minimized for

each time interval ‘t’ in a time period T such that
P

t = T.

In order to solve dynamic load dispatch problem, ramp-rate

limit must be considered. The dynamic economic dispatch

(DED) model can be described as follows:

minF ¼
PT

t

PM

q

PNq

i¼1

Fiq PiqðtÞ
� �

PNq

i¼1

Piq tð Þ ¼ PDq tð Þ þ PLq tð Þ

Piqmin �Piq tð Þ�Piqmax

�DRiq �Piq tð Þ � Piq t � 1ð Þ�URiq

8
>>>>>>>><

>>>>>>>>:

ð6Þ

PSO Variants

A number of different PSO strategies are being applied by

researchers for solving the ED and other power system

problems. Here, a short review of the PSO variants is

presented.

Classical PSO

The PSO [25] is a population based NI method inspired by

the movement of a flock of birds searching for food. It is a

simple and powerful optimization tool which scatters ran-

dom particles into the problem space. The particles repre-

sent the various random solutions of the optimization

problem. The position and velocity vectors of the ith par-

ticle of a d-dimensional search space can be represented as

Xi ¼ ðxi1; xi2; . . .; xidÞ; Vi ¼ ðvi1; vi2; . . .; vidÞ ð7Þ

The best prior location of a particle is stored as

pbesti ¼ ðpi1; pi2; . . .; pidÞ. If the gth particle is the best

among all particles in the group so far, it is represented as

pbestg ¼ gbest ¼ ðpg1; pg2; . . .; pgdÞ. The updated velocity

and location of each particle for fitness evaluation in the

next, that is, (k ? 1)th iteration are calculated using the

following equations [25]:

vkþ1
id ¼ ½w� vkid þ c1 � rand1 � ðpbestid � xidÞ þ c2

� rand2 � ðgbestgd � xidÞ�
ð8Þ

xkþ1
id ¼ xid þ vkþ1

id ð9Þ

The global and local search capabilities of the particle

are controlled by w, the inertia weight parameter,

constriction factor is C, the cognitive and social

coefficients are c1; c2, respectively, and rand1; rand2 are

random numbers between 0 and 1. The inertia weight w is

modified with time as given by

w ¼ wmax � wminð Þ � itermax � iterð Þ
itermax

þ wmin ð10Þ

where itermax is the maximum number of iterations. Con-

stant c1 pulls the particles towards local best position

whereas c2 pulls it towards the global best position.

PSO with Chaotic Inertia Weight (PSO_CIW)

The weight w (11) is changed iteratively in chaotic fashion

by making use of the logistic map as given by

wðtÞ ¼ l� wðt � 1Þ � 1� wðt � 1Þ½ � ð11Þ

Here l is a control parameter between 0–4. A very small

difference in w(0) causes significant difference in its vari-

ation pattern. The system at Eq. (11) displays chaotic

behavior when l = 4 and wð0Þ 62 0; 0:25; 0:5; 0:75; 1:0f g.

PSO with Chaotic Acceleration Coefficients

(PSO_CAC)

In the proposed PSO_CAC approach the cognitive coeffi-

cient c1 is reduced from an initial value c1i to a final value

c1f while the social coefficient c2 is increased chaotically

from an initial value c2i to c2f using the following

dynamics:

cx1ðtÞ ¼ l� cx1ðt � 1Þ � ½1� cx1ðt � 1Þ� ð12Þ

c1ðtÞ ¼ c1f � c1i
� � iter

itermax

þ c1i

� �

cx1ðtÞ ð13Þ

cx2ðtÞ ¼ l� cx2ðt � 1Þ � 1� cx2ðt � 1Þ½ � ð14Þ

c2ðtÞ ¼ c2f � c2i
� � iter

itermax

þ c2i

� �

cx2ðtÞ ð15Þ

Time Varying PSO (PSO_TVAC)

In population-based optimization methods, the policy is to

encourage exploration during initial search and exploita-

tion as the solution approaches convergence. In PSO_T-

VAC the cognitive component is decreased and the social

component is increased as shown in Fig. 1. The accelera-

tion coefficients are expressed as [8, 26]:

c1 ¼ c1f � c1i
� � iter

itermax

þ c1i ð16Þ

c2 ¼ c2f � c2i
� � iter

itermax

þ c2i ð17Þ

where c1i, c1f, c2i and c2f are initial and final values of

cognitive and social acceleration factors, respectively.
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Improved Search through Parameter Automation

The above PSO variants are designed to improve search

by better control of the swarm as compared to classical

PSO which has fixed value of w, c1 and c2. In PSO_CIW

the inertia weight which reflects the previous position of

the swarm is varied chaotically to increase population

diversity. In PSO_CAC and PSO_TVAC, during the ini-

tial search, exploration of the swarm is encouraged; as

solution trajectory nears convergence, exploitation is

strengthened.

Static/Dynamic MAED Solution using Modified

PSO Variants

The flow chart of the proposed PSO variants for solving

static/dynamic MAED problem is given in Fig. 2.

Generation of the Initial Population

A population of feasible solutions is randomly generated

between the lower/upper bounds.

Evaluation of Swarm Population

A fitness function is used to judge the merit of each pop-

ulation. This function converts the constrained problem

into unconstrained problem by using penalty function

method. This approach minimizes cost and achieves con-

straint satisfaction as shown.

min
XT

t

XM

q

XNq

i¼1

Fiq PiqðtÞ
� �

þ
XM

q¼1

aq
XNq

i¼1

PiqðtÞ � PDqðtÞ þ
XMq

j

TjqðtÞ
 !" #2

ð18Þ

For the static dispatch consists of solution of any one

time period, that is, for fixed t.

Results and Discussion

Simulations were carried out using MATLAB 7.0.1 on a

Pentium IV processor, 2.8 GHz. with 1 GB RAM.

Fig. 1 Cognitive and social coefficients in PSO_CAC for l = 3, c1,

c2 (t = 0) = 0.48

Create a random initial population of feasible Pj values between 
generator limits using (4) read initial schedule PO, modify 

generation limits taking ramp rate limits using. (5) 

Update iteration count 

Update velocity and position using Eq. (8) and (9); Use appropriate 
expressions for coef�icients w and c1, c2 according to selected 

Check for Pmin and Pmax, apply correction if needed  
evaluate penalized cost using (18) 

Update pbest and  gbest 

Iteration count 
< max. Iteration 

count 

Yes 

No 

Set the best solution as Po

END 

Evaluate initial �itness using (18); Initialize pbest, gbest, velocity, 
iteration count, set initial and �inal acceleration coef�icients

Update hour count and load 

Apply velocity limits 

Fig. 2 Flow chart of proposed PSO variants for static/dynamic

MAED solution
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Details of the Test Cases

The large dimensional test cases are described below. For

the sake of comparison with available results, transmission

losses and cost of tie-line power flow are neglected.

(i) Test Case I: This is a large 140-unit system taken from

[9] with ramp rate limits supplying a load of

49342 MW. The best cost reported is $1655685/h.

The PSO variants have obtained slightly lower cost

which is reported in Table 1. The results are compared

Table 1 Performance comparison of PSO variants for Test Case I

Variant Classical PSO PSO_CIW PSO_CAC PSO_TVAC GAMS IPSO [9] HEE [17]

Best Cost, $/h 1666442.1002 1655679.9621 1655679.80621 1655677.8509 1655677.8509 1655685.00 1655679.4116

Bold values indicate the best results

Table 2 Best result of PSO_TVAC method (Test Case I)

Unit Output, MW Unit Output, MW Unit Output, MW Unit Output, MW

P1 119.000 P36 500.000 P71 141.585 P106 880.900

P2 164.000 P37 241.000 P72 365.908 P107 873.700

P3 190.000 P38 241.000 P73 195.000 P108 877.400

P4 190.000 P39 774.000 P74 217.549 P109 871.700

P5 190.000 P40 769.000 P75 217.549 P110 864.800

P6 190.000 P41 003.000 P76 258.663 P111 882.000

P7 490.000 P42 003.000 P77 403.245 P112 094.000

P8 490.000 P43 250.000 P78 330.000 P113 094.000

P9 496.000 P44 250.000 P79 531.000 P114 094.000

P10 496.000 P45 250.000 P80 531.000 P115 244.000

P11 496.000 P46 250.000 P81 542.000 P116 244.000

P12 496.000 P47 250.000 P82 056.000 P117 244.000

P13 506.000 P48 250.000 P83 115.000 P118 095.000

P14 509.000 P49 250.000 P84 115.000 P119 095.000

P15 506.000 P50 250.000 P85 115.000 P120 116.000

P16 505.000 P51 165.000 P86 207.000 P121 175.000

P17 506.000 P52 165.000 P87 207.000 P122 002.000

p18 506.000 P53 165.000 P88 175.000 P123 004.000

P19 505.000 P54 165.000 P89 175.000 P124 015.000

P20 505.000 P55 180.000 P90 180.424 P125 009.000

P21 505.000 P56 180.000 P91 175.000 P126 012.000

P22 505.000 P57 103.000 P92 575.400 P127 010.000

P23 505.000 P58 198.000 P93 547.500 P128 112.000

P24 505.000 P59 312.000 P94 836.800 P129 004.000

P25 537.000 P60 308.589 P95 837.500 P130 005.000

P26 537.000 P61 163.000 P96 682.000 P131 005.000

P27 549.000 P62 095.000 P97 720.000 P132 050.000

P28 549.000 P63 511.000 P98 718.000 P133 005.000

P29 501.000 P64 511.000 P99 720.000 P134 042.000

P30 499.000 P65 490.000 P100 964.000 P135 042.000

P31 506.000 P66 256.826 P101 958.000 P136 041.000

P32 506.000 P67 490.000 P102 947.900 P137 017.000

P33 506.000 P68 490.000 P103 934.000 P138 007.000

p34 506.000 P69 130.000 P104 935.000 P139 007.000

P35 500.000 P70 294.562 P105 876.500 P140 026.000

Power balance violation 0.0000

Cost, $/h 1655677.8509

Bold values indicate the best results
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with [9, 17]. For the non-convex case the PSO_TVAC

obtained $1657962.7130 whereas [18] the reported

cost is $1657962.7166 which are very close.

The optimal dispatch results for all 140-units are given

in Table 2.

(ii) Test Case II: For multi-area operation the above

140-unit system is divided into two areas having 70

generators in each area. The block diagram of this

system is given in Fig. 3. Optimal cost is computed

for (i) different area load demands and (ii) different

tie-line limits using the proposed PSO variants.

(iii) Test Case III: Dynamic economic dispatch is carried

out for 24-h load schedule for the 140-unit single-

area system, that is, Test Case I.

Parameter Setup for PSO Variants

For all PSO variants the population size was taken as 100

and number of iterations was set at 1000 for all test cases.

For classical PSO both c1 and c2 were fixed at 2, for

variants the initial and final acceleration coefficients were

taken as 2.5 and 0.5, respectively. The best results are taken

out of 50 trials, each with different initial populations. This

is because PSO family comes under random search meth-

ods which converge to near global solutions in every run.

Figure 4 shows the final convergence for Test Case I.

All there PSO variants can be seen to converge fast but the

performance of PSO_TVAC was found to be the best as it

produces a better solution closely followed by PSO_CAC.

The performance of PSO_CIW is inferior to these two

variants because the acceleration coefficients c1 and c2 play

a more significant role in locating the new position of the

swarm as compared to the inertia weigh w. Therefore

effective control of these parameters gives an improved

solution.

Effect of Tie-Line Limits and Load Variation

on Optimal Cost in MAED

The performance of best performing variant PSO_TVAC is

given in Tables 3 to 5. Traditional GAMS method also

produced the same costs for the different cases. For the

Test Case II, that is, two-area, 140-unit large system (total

load PD = 49342 MW) three different load variation cases

are taken.

Case (i) PD1 = 32072 (65 %), PD2 = 17270 (35 %)

AREA 1 AREA 2

PD1
PD2

P1
P2

P70

P71

P72

P140

Fig. 3 Block diagram of large

two-area 140 unit system
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Fig. 4 Comparison of convergence characteristics of PSO variants

for Case I

Table 3 Performance of PSO_TVAC with tie-limit variation for Test

Case II; load Case (i)

Tie-line, MW Tie-line flow, MW Total cost, $ Violation

7000 -6397.023 1655677.8509 0.0000

6500 -6397.023 1655677.8509 0.0000

6000 -6000.00 1655941.6841 0.0010

5500 -5500.00 1657796.9981 -0.0020

5000 -5000.00 1672916.8956 -0.0010

4000 -4000.00 1735193.2735 0.000

\4000 Infeasible solution/non convergence

Bold values indicate the best results

226 J. Inst. Eng. India Ser. B (April 2017) 98(2):221–229

123



The results for this study are given in Table 3. For tie-

line limit less than 4000 MW the system did not converge.

Then, with increase in tie-line capacity the cost reduced as

cheaper area 2 units transfer power to area 1 having costlier

generators. The optimal tie-line flow was found to be

6397.023 MW. The convergence characteristics of the

three PSO variants are compared in Fig. 5. The conver-

gence behavior of PSO_TVAC is found to be superior but

the other two variants also depict a stable convergence.

Case (ii) PD1 = 34539 (70 %), PD2 = 14803 (30 %)

Table 4 gives the results where area 1 load is increased

to 70 % and tie-line limit is changed from 6000 to

9000 MW. For tie-line limit less than 6000 MW the system

did not converge. For tie-line capacity 9000 MW and

beyond, there is no reduction in cost as the optimal tie-line

between area 1 and area 2 was found to be 8864.023 MW.

The optimal cost of generation matched with the cost of

operation for single area case for this tie-line limit.

Case (iii) PD1 = 39474 (80 %), PD2 = 9868 (20 %)

Table 5 presents the results for this case where tie-line

limit is changed from 11000 to 14000 MW. The effect of

variation of area load and tie-line on the optimal cost of the

140-unit multi-area system is summarized in Fig. 6.

Dynamic Economic Dispatch

In practical economic dispatch problems the generator

ramp rate limits (up limits and down limits) play a very

important role in finding the optimal schedule because

practical generators have to follow these constraints while

increasing/decreasing their power output. The results are

tabulated in Table 6 for Test Case III.

Comparison of PSO Variants

For validation, the results are compared to GAMS for

convex functions. The time taken by the three PSO variants

is almost comparable as shown in Table 7. However,

GAMS is faster, as it is a gradient based approach. But

PSO is a random search method capable of optimizing non-

differentiable objective functions also, whereas GAMS is

unable to solve such cases [9, 17]. Due to their non

dependence on nature of objective function, the nature

inspired optimization methods such as PSO have an edge

over traditional solvers like GAMS which are incapable for

discontinuous or non-convex objective functions.
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PSO  C I W 

PSO TVAC 

Fig. 5 Comparison of convergence characteristics of PSO variants

for Case II

Table 4 Performance of PSO_TVAC with tie-limit variation for Test

Case II; load Case (ii)

Tie-line limit, MW Tie-line flow, MW Optimal cost, $ Violation

9000 -8864.023 1655677.8509 0.0000

8500 -8500 1655915.2398 -0.0020

8000 -8000 1657468.0112 -0.0010

7000 -7000 1694565.6463 -0.0010

6000 -6000 1772418.7348 0.0000

\6000 Infeasible solution/non convergence

Bold values indicate the best results

Table 5 Performance of PSO_TVAC with tie limit variation for Test

Case II; load Case (iii)

Tie-line, MW Tie-line flow, MW Total cost, $ Violation

14000 -13800 1655677.8509 0.0000

13500 -13500 1655865.1388 0.0000

13000 13000 1657046.0525 0.0010

12000 -12000 1689872.8249 -0.0020

11000 -11000 1767121.4149 -0.0010

\11000 Infeasible solution/non convergence

Bold values indicate the best results
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Fig. 6 Effect of load and tie-limit variation on optimal generation

cost for multi-area system
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Conclusions

Generally the PSO algorithms experience the problem of

untimely stagnation and early convergence which prohibits

them in locating the global optimum solution. The pro-

posed PSO variants employ powerful parameter automa-

tion strategies which prevent early convergence to local

optimal results. The performance of these variants is tested

on a large system under both static/dynamic conditions and

validated using traditional solver GAMS. The test results

clearly show that

• All three proposed variants achieve significantly better

results as compared to the classical PSO for a large

single as well as multi-area power system.

• The PSO variants are able to handle complex equality/

inequality constraints like generation limits, area-wise

power balance and ramp rate limits effectively under all

static as well as dynamic test conditions.

• The variation of optimal tie line capacity with changing

load demands was also computed and analyzed. By

increasing the tie-line flow limit cost can be signifi-

cantly reduced.

• The three PSO variants were capable of handling ramp

rate constraints also for computing optimal dynamic

dispatch solution.

• All three variants are shown to have a stable conver-

gence characteristic. On comparison, PSO_TVAC is

found to have better performance consistently for all

cases.
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