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Abstract In recent trends, grid computing is one of the

emerging areas in computing platform which supports

parallel and distributed environments. The main problem

for grid computing is scheduling of workflows in terms of

user specifications is a stimulating task and it also impacts

the performance. This paper proposes a hybrid GAACO

approach, which is a combination of Genetic Algorithm

and Ant Colony Optimization Algorithm. The GAACO

approach proposes different types of scheduling heuristics

for the grid environment. The main objective of this

approach is to satisfy all the defined constraints and user

parameters.

Keywords Workflows � Genetic algorithm �
Ant colony optimization (ACO) algorithm � Pheromone �
Scheduling

Introduction

Grid computing is a huge accumulation of heterogeneous

autonomous systems, which is globally distributed over

different locations and connected by heterogeneous net-

works. The major challenge faced by the computational

grid is to share the resources. Foster et al. [1, 2] had

introduced the grid computing, at the time itself the

researchers paid attention over the problem of resource

allocation due to its flexible behavior for solving the

complex problems in the fields like scientific simulation,

bio-informatics, drug discovery etc. Unlike compared with

the scheduling issues in traditional distributed systems, it

seems much more complexes to solve the scheduling issue

in grid computing, due to its dynamic behavior and

heterogeneous jobs and resources. The major problem for

the grid environment is to minimize the makespan [3] and

cost [4] of the model.

This paper deals with a hybrid mechanism called as

genetic algorithm and ant colony optimization (GAACO)

for scheduling of workflows in grid environment, which is

a combination of genetic algorithm (GA) and ant colony

optimization (ACO). The model has been tested by using

the grid simulator and the results of the proposed approach

is compared with stand alone GA and ACO algorithms. For

the evaluation of GAACO approach, the model considered

different sizes of grids. Based on the market-driven struc-

ture of global computation grids which is explained in

[5, 6], the architectural design of workflow management

(WfM) can be illustrated in Fig. 1.

Problem Formulation

Here the problem by using direct acyclic graph (DAG) is

being modelled; where G = (V, A). Assume that the

number of tasks we consider as n, set of nodes in a graph

V = {T1, T2, …, Tn} related to the tasks of the abstract

workflow and relation between tasks is denoted by using a

set of arcs A.

Let {Ti, Tj} represents the structure of the arc, where the

parent task is represented by Ti and the child task is rep-

resented by Tj. Here the condition is, the child tasks exe-

cutes after the parent tasks completes its execution. P (Ti)

is denoted as set of parents and C (Tj) is denoted as set of

child tasks.
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Every task Ti has an associated domain Di ¼
d1i ; d

2
i ; . . .; dmi

� �
where d

j
i 1� j�mð Þ denotes a service

request carried by the grid service provider and m repre-

sents the total number service requests available for the

task Ti. The d
j
i � t and d

j
i � c represents the two properties

called as the time and cost of a related domain in the grid

service provider.

This model deals with the precedence constraints iden-

tified as a functioning mechanism in DAG. The tasks order

of execution is specified by the precedence constraints to

achieve the optimal solution. In this paper two kinds of

constraints have been considered.

Time/Makespan Constraints

The makespan value of the scheduling workflow will not

exceed when compared to the user specified deadline.

Otherwise, it satisfies the following condition.

S �makespan�DL ð1Þ

where S makespan denotes the execution time of S and DL

denotes the deadline which is specified by the user.

Cost Constraints

For a given schedule S (S1, S2… Sn), it satisfies the fol-

lowing condition.

S cos t ¼
Xn

i¼1

dsii c�BD ð2Þ

where S cost denotes the total cost of S; and BD represents

the variable budget which is specified by the user. The total

cost is less than the user specified budget.

A Hybrid GAACO Algorithm for Scheduling
Problem

This section deals with the hybridization of GAACO which

is hybridizing of two meta-heuristics approaches. The

GAACO approach is a loosely coupled method which runs

GA as the first heuristic and then followed by the ACO

which is shown in Fig. 2. GA initializes the population and

generates the new population by selection, crossover and

mutation process. Then GA is activated, which produces an

Fig. 1 The architecture of workflow management in grid [7]
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optimal scheduling output [7] as a solution upon reaching

the convergence criteria. The optimal solution which is

generated by GA is carried as input to the ACO approach.

The GAACO approach iterates this procedure until the

algorithm reaches to the convergence criteria.

Genetic Algorithm for SchedulingMechanism in Grid

Genetic algorithm is treated as a class of adaptive, evolu-

tionary and stochastic algorithms which is involved in both

searching and optimization. The idea behind the GA is

evolved from the natural process in order to create simu-

lated process for an effective algorithm to find the solution

for the scheduling mechanism in grid computing [8–10].

Makespan

The main objective of the GA is to reduce the makespan

and to calculate the maximum completion time of a task

among the overall scheduling workflows.

Smakespan ¼ Li

SPj
ð3Þ

where Li denotes the size of the current task i; and SPj
denotes the processing speed of the scheduling workflow j.

Based on this, the equation is formulated in Eq. (3).

Minimum Cost

The next objective of GA is to reduce the total cost of the

scheduling process. The unit price of the scheduling

workflow is denoted by Pj. Therefore, the scheduling cost is

calculated by using the Eq. (4).

S cos tði; jÞ ¼ Smakespanði; jÞPj ð4Þ

The total cost of the chromosome is calculated by Eq. (5).

S cos tðaÞ ¼
Xm

j¼1

S cos tðjÞ; f1� j�mg ð5Þ

Fig. 2 Flow diagram for hybrid GAACO algorithm
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where Scos t(a) represents the overall chromosome cost

resulting in the population.

Implementing a Fitness Function

While introducing the tasks, the concentration of users are

at the completion time and costs of executing jobs [11]. For

this reason the weight factor is calculated by the user for

both time and cost (Wt and Wc). The value of weights lie in

the range of [0 and 1] and the summation of weights is

equal to 1.

F ¼ Wt �
S cos t

BD
þWc �

S makespan

DL
ð6Þ

For example, user is concentrated on completion time as

60 and 40 % for financial cost. Wt and Wc will give more

freedom to the user to place their jobs into the grid.

Therefore, the Eq. (6) specifies the fitness function of a

chromosome [12, 13].

Ant Colony Optimization for Scheduling

Mechanism in Grid

This paper combines GA with ACO to find the best optimal

solution. The ACO is treated as best algorithm for finding

the solution for the scheduling problem.

Representation of Pheromone and Heuristic Function

Pheromone and heuristic function is treated as the major

factor in ACO algorithm.In general, pheromone is a

mechanism which uses the past searching behaviour and

predicts the future search. On the other side, the heuristic

information contains the details about the searching beha-

viour of ants. Let us consider, d
j
i represents the service

instance which is mapped by the pheromone to task Ti as

lij where 1 B i B n, 1 B j B m and the mapping value of

heuristic function is given as gij.

Initially all pheromone values are set to l0

lij ¼ l0; ð7Þ

(i) Time Heuristic (TH)

Time heuristic preferences the scheduling instances

which having the minimum execution time and allocate

these scheduling instances to the ants. Consider that, the

heuristic type of ant is TH and the value of heuristic

mapping function gij is calculated as follows.

gij ¼ THij ¼
max ti � d

j
i � tþ 1

max ti �min ti þ 1
ð8Þ

where max ti ¼ max1� j�m d
j
it

n o
and min ti ¼ min1� j

�m d
j
it

n o
. By evaluating the Eq. (8), TH contains the

greater heuristic value and gij €{0,1}.

(ii) Cost Heuristic (CH)

Cost heuristic preferences the scheduling instances

which having the minimum cost and allocate these

scheduling instances to the ants. Consider that, the heuristic

type of ant is CH and the value of heuristic mapping

function gij is calculated as follows.

gij ¼ CHij ¼
max ci � d

j
itþ 1

max ci �min ci þ 1
ð9Þ

where max ci ¼ max1� j�m d
j
ic

n o
and min ci ¼ min1� j

�m d
j
ic

n o
.

By evaluating the Eq. (9), CH contains the greater

heuristic value and gij €{0,1}.

(iii) Suggested Deadline Heuristic (SDH)

The Suggested Deadline Heuristic preferences the newly

generated service instances to the ants. The model allocates

SDH to each task based on the user defined deadline. The

following mechanism illustrates how to compute SDH for

each task.

• Task Ti Earliest Start Time (ESTi) and Backward

Earliest Start Time (BESTi)

To compute earliest start time, the service instances with

minimum execution time is mapped with the task Ti. Then

the model rotates the DAG into reverse system by con-

sidering the beginning node as the finishing node and the

other way around, and treating the all directed routing arcs.

For each task Ti, the ESTi in reverse system is treated as

BESTi. BY considering both mechanisms the model can

estimate the avg_min_ti of task Ti from both ahead navi-

gate and in reverse navigate which is given in Eq. (10).

avg min ti

¼
ðmin8 Tj2PredðTiÞfBESTjg � BESTiÞ þ ðmin8 Tj2sucðTiÞfESTjg � ESTiÞ

2

ð10Þ

On a scale of deadline the avg_min_t is expanded with

min_makespan, then the model calculates the value of

SDHi as

SDHi ¼ avg min ti
DL

min makespan
ð11Þ

Consider that, the heuristic type of ant is SDHand the value

of heuristic mapping function gij is calculated as follows.

gij¼
maxfjmaxti�SDHij;jSDHi�mintijg�jdji:t�SDHijþ1

maxfjmaxti�SDHij;jSDHi�mintijgþ1

ð12Þ
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Based on the Eq. (12), the service instance of a task and

the execution time is almost equal to the SDHi, which is

related with a greater heuristic value and gij € {0,1}.

(iv) Budget Heuristic (BH)

It is similar to SDH, the BH preferences the newly

generated service instances to the ants. The model allocates

suggested budget to each task based on the user defined

budget cost. The following mechanism illustrates how to

compute BH for each task. one can obtain the min_c of the

whole work by evaluating Eq. (13).

BHi ¼ min ci
BD

min c
ð13Þ

Consider that, the heuristic type of ant is BH and the

value of heuristic mapping function gij is calculated as

follows.

gij ¼
maxfjmax ci � BHij; jBHi �min cijg � jdji:c� BHij þ 1

maxfjmax ci � BHij; jBHi �min cijg
ð14Þ

Based on the Eq. (14), the service instance of a task and

the budget cost is almost equal to the BHi, which is related

with a greater heuristic value and gij € {0,1}.

(v) Time/Cost Heuristic (TCH)

The TCH combines the efficiency of both time and cost

heuristics of service instances. Consider that, the heuristic

type of ant is TCH and the value of heuristic mapping

function gij is calculated as follows.

gij ¼
1

2
ðTHij þ CHijÞ ð15Þ

Based on the Eq. (15), the service instance of a task with

minimum execution time and cost, which is related with a

greater heuristic value and gij € {0,1}.

Construction of Solution

In this method, the number of ants is directly proportional

to the number of solutions. Each ant manages their con-

struction process and simultaneously all ants would con-

struct their solutions. Firstly,based on their pheromone

values ants selects their heuristic information. The roulette

wheel selection scheme is used for selecting the heuristics.

After selection, ants will start finding solution schedules to

the problem. In each step, ants chooses the service instance

according to the heuristic information which is selected and

the pheromone values is mapped to unmapped tasks. The

Eq. (16) explains about the selection rule.

d
j
i¼ apply the Roulette wheel schemef g ð16Þ

In every iteration, each service instance is mapped with

a task. This process will continue until it reaches to

convergence criteria.

Management of Pheromone

(i) Initialization of Pheromone

As per the ACO algorithm the pheromone values is set to

l0, l0 is the least value of the pheromone [14, 15]. In

Eq. (17), the l0 is calculated by mapping the tasks to

service instances.

l0 ¼
min makespan
max makespan

min cos t
max cos t

(

ð17Þ

(ii) Local Pheromone

In the ACO algorithm, the immediate process after

mapping the tasks to the service instance is local pher-

omone updating. The local pheromone updating is given as

lij ¼ ð1� qÞlij þ ql0 ð18Þ

In Eq. (18), q € (0, 1) is a parameter, the main behaviour

of the local updating pheromone rule is to minimize the lij
to extend diversity of the approach.

(iii) Global Pheromone

The global pheromone update takes place when all ants

find their solutions. First the solutions in the iteration is

compared by the algorithm and the solution schedule S is

computed by the following Eqs. (19) and (20).

In Eq. (19), the S score in the case of optimising

makespan is given as

Sscore ¼ BD

S cos t

1þmin makespan

Smakespan
; if S cos t�BD

8
>>>>>>><

>>>>>>>:

þ min makespan

max makespan
; if S cos t�BD ð19Þ
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In Eq. (20), the S score in the case of optimising cost is

given as

The components which has the best solution so for, there

only we can apply this global pheromone updating rule.

The solution has the highest score value. Let us consider S

(S1, S2, …, Sn) is the best solution so for, (S1, S2, …, Sn)

means Ti task is associated with the service instance d
j
i, the

updating global pheromone rule is given in Eq. (21).

liSi ¼ ð1�qÞliSiþSscore; where i¼ 1;2; . . .;n ð21Þ

The results of the global pheromone update rule

improves the pheromone values which is related with the

best solutions obtained so for. So that, it can increase the

efficiency of mapping in later iterations.

(iv) Experimental Analysis

(a) Simulation Setup

The GridSim toolkit is used to evaluate the performance

of proposed GAACO approach. Three grid environments

with different specifications are considered, small grid with

32 hosts/521 machines, medium grid with 64 hosts/1024

machines, and large grid with 128 hosts/2048 machines

respectively.

(b) Parameters of the GAACO Algorithm

GA is evaluated by using the parameters which are

denoted as generation size, crossover rate, muataion rate,

maximum iteration and convergence criteria. Generation

size represents how many chromosomes are presented in

the population, the value is taken as 250, that is, 250

chromosomes are present in the generation. Crossover rate

represents how frequently the crossover is applied, if

there is no crossover, the children are exacty copy of

parents. If there is a crossover, some parts of the parent

chromosome is taken for child chromosome generation.

Here the crossover rate is taken as 0.8, that is, 80 % of

the child is made up of crossover. The mutation rate

represents how frequently the parts of the chromosomes is

mutate, here the value is taken as 0.2, that is, 20 % of the

chromosome is mutated. Maximum iteration restricts the

count of the crossover and mutation process which is

applied to the generation, here the value is taken as 500

and finally the convergence criteria which is also called as

stopping criteria, the value is taken as 20, that is, after 20

generations the genetic algorithm will automatically quits.

The brief representation of parameters is shown in

Table 1.

The ACO is evaluate by using the parameters which

are given as a pheromone update rule, selection method,

random selection proportion rule, budget, deadline. The

value for the pheromone update rule is given as 0.1,

which is an optimal value, that is, one ant performs the

global update after all ants finishes their tour to the

problem. The random selection proportion rule is denoted

by q and b, initially all ants will be initiated at the same

node. Therfore, the q value is taken as 0 and after that

ants converges to the global solution b which is given as

1. The model allocates the suggested budget to each task

based on the user defined budget cost. The value for the

user define budget is taken as 25,000. The model allocate

suggested deadline to each task in based on the user

defined deadline. The value for the user define deadline is

taken as 1600. The brief representation of parameters is

discussed in Table 2.

Table 1 Parameter values of GA

Generation size 256

Crossover rate 0.80

Mutation rate 0.20

Maximum iteration 500

Convergence criteria 20 generations

Table 2 Parameter values of ACO

Pheromone update rule (q) 0.1

Selection method Roulettee wheel scheme

Random selection proportion rule (q) 0

Random selection proportion rule (b) 1

Budget 25,000

Deadline 1600

Sscore =
DL

Smakespan

1þmin cos t

S: cos t
; if Smakespan�DL

8
>>>>>><

>>>>>>:

þ min cos t

max cos t
; if Smakespan�DL ð20Þ
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(c) Results Evaluation of Static Grid

The computational results for makespan and cost are

averaged for each scenario which is iterated for 30 times.

The results of makespan and cost is reported in Figs. 3 and

4, respectively. The results for min–min, GA, ACO and

hybrid GAACO algorithm are been compared. The hybrid

GAACO runs the ACO as a main algorithm and receives

inputs from GA for optimizing the solution.

(d) Results Evaluation for Dynamic Grid

The computational results for makespan and cost are

averaged for each scenario which is iterated for 30 times.

The results of makespan and cost is reported in Figs. 5 and

6, respectively. it is observed that GAACO perform better

in cost utilization compared to min–min, GA and ACO for

small size instances.

The proposed GAACO approach provides computa-

tional economy for organizations because of the ideal

allocation of the resources based on the budget and dead-

line constraints provided by organizations. This method

allows resource providers to earn money by allocating the

resources to users for solving their problems. This method

also considers the time and cost heuristics for the efficient

usage of resources, it would ultimately help the users to

choose the appropriate resources.

Conclusion

The GAACO algorithm is proposed for efficient scheduling

mechanism in computational grids. This algorithm

improves the heuristic behaviour of scheduling mechanism.

Different parameters are considered in designing of algo-

rithm like time and cost heuristics.The quality of schedule

is improved by permitting the user to set the constraints.
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Fig. 3 Average makespan values of small, medium and large grids in
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Fig. 6 Average scheduling cost in dynamic scenario
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Different heuristics based on the user constraints are pro-

posed. The algorithm in small, medium and large grids

were examined for both environments.
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