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Abstract Application of series compensation in extra

high voltage (EHV) transmission line makes the protection

job difficult for engineers, due to alteration in system

parameters and measurements. The problem amplifies with

inclusion of electronically controlled compensation like

thyristor controlled series compensation (TCSC) as it

produce harmonics and rapid change in system parameters

during fault associated with TCSC control. This paper

presents a pattern recognition based fault type identifica-

tion approach with support vector machine. The scheme

uses only half cycle post fault data of three phase currents

to accomplish the task. The change in current signal fea-

tures during fault has been considered as discriminatory

measure. The developed scheme in this paper is tested over

a large set of fault data with variation in system and fault

parameters. These fault cases have been generated with

PSCAD/EMTDC on a 400 kV, 300 km transmission line

model. The developed algorithm has proved better for

implementation on TCSC compensated line with its

improved accuracy and speed.
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Introduction

The continuously increasing power market demands

increase in power transmission capacity. This force the

power engineers to transmit maximum possible power

through transmission lines (up to thermal limits). This leads

power sector for installation of series compensation in

transmission lines. With increase in power transfer capac-

ity, the series compensation facilitates control of power

flow and improves transient and steady state stability also.

Two main types of series compensators are found in

practice, fixed series compensator and controllable series

compensator [1], each with its own advantages and disad-

vantages. The controllable compensator utilizes power

electronics control to regulate power flow by changing the

conduction of the power electronic devices. Thyristor

controlled series compensation (TCSC) is one of the main

controllable compensation techniques.

Besides the advantages gained by series compensation,

it makes the protection requirement altered from regular

non-compensated transmission line protection. This is due

to non-linear changes introduced in system with imple-

mentation of TCSC. The TCSC produce harmonics, rapid

changes associated to TCSC control actions in primary

system parameters such as line impedances and load cur-

rents. In the event of fault, quick changes would be reg-

istered by TCSC’s control system for protective measures.

To reduce the fault current, the firing angle will be change

to take TCSC into inductive mode. The normal practice is

to provide an over-voltage protection to the capacitor in the

TCSC circuit with help of MOV and a circuit breaker. The

conduction of the MOV depends on severity of the fault

current, this leads towards two different impedances during

fault according to the MOV conduction. All these changes

make the protection of the TCSC implemented
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transmission line complicated. The conventionally used

series compensated transmission line protective algorithm

uses impedance measurement approach. This is used for

identification of the phases involved in the fault and posi-

tion of fault with respect to the compensator. This paper

describes a newly designed fault type identification system

for TCSC compensated transmission line.

Many efforts are registered for series compensated and

controllable compensated transmission line protections in

literature. Digital signal processing has emerged as a

potential tool for protection relaying. The use of wavelet

transform (WT) [2], discrete wavelet transform (DWT) [3],

S-transform [4] can be seen in literature.

Many of reported methods employs DSP tool as a

spectrum analyzer with the Artificial Intelligence (AI)

technique. The application of Fourier transform (FT) with

artificial neural network (ANN) for controllable compen-

sated transmission line has been demonstrated in [5].

However, the input requirement of more than one cycle

post fault data makes it slow. The application of versatile

processing tool Wavelet Transform with Extreme Learning

Machine has been shown in [6] and with Neuro-Fuzzy

system in [7]. However, two step methods require cascaded

implementation of DSP and AI technique. This makes the

system slow in consideration of digital protection system.

One of the better solutions for fast processing protective

requirement is implementation of AI technique as a pattern

recognition tool for protection relaying. The ANN finds its

implementation for pattern recognition in an article pro-

posed by authors of [8]. However, authors fail to prove

efficacy of the method in the absence of sufficient testing

for varying system conditions. Authors of [9] presented

ANN based scheme for fault classification with the delta-

bar-delta algorithm based training. However, the algorithm

is developed for end-line compensation configuration. The

algorithm developed for end-line compensation can suffer

when used with mid-line configuration as need to adapt to

two dissimilar conditions of impedances. In the absence of

neural design governing mechanism, the ANN involves

higher designing efforts and heavier network size. More-

over, ANN require an extensive training, for which it

requires a large training data set and time. The ANN is also

sensitive to power system parameter variation like fre-

quency. These limitations of ANN, leads to Support Vector

Machine (SVM), that render its own structure during

training. The SVM is a classifier that expands its input into

higher dimension plane to generate better classification

boundary. The SVM is a potential classifier for protection

requirements; therefore, it has been studied for fault clas-

sification and its performance has been compared with

traditional ANN for same training and testing fault cases.

As discussed earlier, the DSP based scheme requires

numbers of filters for relaying applications that makes it

slow for practical implementation. The two-staged DSP and

AI based scheme require additional implementation of AI

classifier after DSP. In this scenario, the AI based pattern

recognition techniques held an edge for development. The

algorithm proposed in this paper uses Support Vector

Machine (SVM) as a pattern recognition tool for fault

classification of the transmission line equipped with TCSC.

The proposed algorithm utilizes only half cycle post fault

data at relaying end to conclude on fault type. This makes

the algorithm fast and practical. The developed algorithm

has been tested for a large fault data set encircling various

system conditions. These faults have been generated in bulk

by the real time power system simulation software PSCAD/

EMTDC [10]. The SVM has been implemented with

LibSVM [11] software on windows platform.

Support Vector Machine

SVMs have emerged as a very powerful AI technique for

classification and regression. It is a binary classifier based

on statistical theory of generalization and Kernel expansion

[12]. For classification problems, the SVMs try to find out a

hyper-plane to separate the data points according to their

classes such that the separation between the classes is

maximum. In that case, the hyper-plane is said to be the

optimal hyper-plane. The SVM expands its input into a

higher dimensional dot product space for classification.

This process makes SVM a classifier that can handle many

classification features simultaneously to obtain optimal

hyper-lane for classification.

Considering a two-class training data set {xi,yi}i=1
N con-

sisted of N data points. xi is ith real valued input vector and

yi is the corresponding class of xi with value of either ?1 or

-1. A hyper-plane, separating these points according to

their classes, can be given by equation: wTxi ? b = 0 as

shown in Fig. 1. The ‘w’ and ‘b’ represents weight vector

and bias term respectively and determine the position of the

separating hyperplane. The training is performed to find out

the value of w and b such that the separation between the

classes is maximum. It can be shown that the separation

margin (m) is given by [13]:

m ¼ 2

wk k ð1Þ

For better separation, maximum value of ‘m’ should be

increased with training with, reducing value of kwk to its

minimum value. Hence, for linearly separable data, the

SVM can be constructed by minimizing v(w) where

vðwÞ ¼ 1

2
wTw ð2Þ

The non-linear classification problem can also be dealt with

SVMs. This can be done by mapping of classified data onto
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a high-dimensional feature space where the linear

classification is possible using nonlinear vector function,

yi w
Txi þ b

� �
� 1 where; m�n ð3Þ

By expanding the non-linear function, the non-linear

function can become separable. In practice, the nonlinear

data transformation is accomplished indirectly by using so

called kernel functions [14], which is defined by

Kðxi; xjÞ ¼ UðxiÞTUðxjÞ ð4Þ

This expansion generates a higher dimensional space; the

SVM can be trained to find out maximum margin between

the classes by Eq. (2). However, there is a possibility that,

the expanded data is still not linearly separable. In that case

it will be impossible to separate out the data and satisfy

condition in Eq. (3). Hence, instead function v(w) a new

function v(w, e) can be used, and given by:

vðw; eÞ ¼ 1

2
wTwþ C

XN

i¼1

ei ð5Þ

Subject to,

yi wTU xið Þ þ b
� �

� 1� ei where; ei [ 0 ð6Þ

where ei = 1, 2, …, N are slack variables. C[ 0 and

known as regularization parameter. The vectors v(w, e) are
known as support vectors and are used to determine deci-

sion surface of the classifier. The classification accuracy

largely depends on selection of Kernel function and value

of C for classification.

Fault Case Studies

Figure 2 shows a two area system considered for study in

this research. The system consists of a 300 km, 50 Hz,

3-phase, 400 kV EHV transmission line connected with

two generators on either end. The generators (G1 and G2)

represent two areas of a power system, the variation in

system areas are simulated with variation in generator

impedances. The transmission line is equipped with an

advanced series compensator TCSC at the middle of the

line. The TCSC is aided with a series compensator (SCf1).

The TCSC and the fixed series compensator are protected

against over voltage by Metal Oxide Varistor (MOV) as

shown in Fig. 2. The transmission line parameters used for

this simulation are provided in Table 1.

The fixed series compensator is providing 30 % com-

pensation to the total line length. The TCSC provides a

variable compensation of 0–15 % with variation of the firing

angle (a) from 180� to 144�. The MOV used with TCSC and

fixed compensator is set to conduct at 2.5 times the normal

operating current. The generators are working with following

impedance values: positive sequence resistance = 1.31 X;
zero sequence resistance = 2.33 X; positive sequence reac-

tance = 15.0 X; zero sequence reactance = 26.6 X.
Considering these values as unit values ZG1 and ZG2,

system variations are considered with variation in ZG1 and

ZG2 in a combination of (ZG1-ZG2), (0.75ZG1-ZG2),

(1.25ZG1-ZG2), (ZG1-0.75ZG2) and (ZG1-1.25ZG2).

To examine the accuracy of the proposed algorithm, it

has been evaluated with a large fault data set with a wide

variation of system and fault parameters. To generate data

in bulk, all system components are dynamically simulated

using PSCAD/EMTDC, an established simulator for power

system studies. The transmission line is modeled with the

distributed parameter model in PSCAD/EMTDC. To

encircle maximum fault conditions fault are created under

wide variation in system parameters. These variations are

created by varying system parameters like source impe-

dance (given above), TCSC firing angle (a) and generator

loading angle (d) as given in Table 2.

Combination of these variations creates 45-various

system conditions. Faults are created under these system

conditions with variation in fault parameters like:

(a) Fault Inception Angle (FIA): 0�, 45�, 115�.
(b) Fault Resistance (Rf): 0 X, 5 X, 25 X, 50 X.
(c) Fault Length: 20, 40, 49, 51, 60, 80 % of the total line

length.

(d) Type of Faults: L–g, L–L–g, L–L, L–L–L (all ten

types of faults).

WTXi + b = 1

WTXi + b = -1
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w
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Fig. 1 Support vector machine classifier
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For a specific system condition, combination of these

fault parameters creates 720 distinct fault cases. Therefore,

for 45 system conditions a sum total of 32,400 fault cases

have been generated with PSCAD.

The SVM used for fault type identification demands

training. For this purpose, a set of 2400 fault patterns are

separated out for training of the SVM as given in Table 3.

It is worth to note here that, only few of the parameters are

used for training case generation. All the cases separated

out are a small bunch of fault patterns from 144� of the

TCSC firing angle, other are used exclusively for testing.

The remaining 30,000 fault patterns are used for testing

of the algorithm. It can be easily seen from the above

discussion that, the each test fault patterns carries different

system and fault conditions than every training pattern.

Fault Classification

The magnitude and spectra of the measured current chan-

ged with inception of fault in the transmission line. These

changes are because of a sudden change in impedance at

the time of fault and also due to inclusion of transient

frequencies and TCSC control related harmonics. The

proposed algorithm is based on recognition of these

changes with SVM as the pattern recognition tool. The

algorithm has been developed with measurements at

relaying end (bus-A) of the considered system shown in

Fig. 2. The three-phase currents measured at this end are

considered for pattern recognition with a cluster of four

Support Vector Machines (SVMs).

Figure 3 shows current waveforms for all three phase for a

A-G fault at 180 km fault distance with 5 X fault resistance

and 45� fault inception angle. The fault has been simulated

with line loading angle of 20� with TCSC operating at firing

angle (a) = 160�. Figure 4 shows A–B–G fault with same

system and fault conditions for fault in Fig. 3.

The three-phase currents measured at the relaying end

are sampled with suggested sampling frequency of 4 kHz

in this research. A half cycle post fault data (40 samples)

from each phase is supplied to three SVMs identifying

involvement of each phase in the event of fault. These

make a classification vector (Vphase) for each phase clas-

sifier SVMs of 120 samples as shown in Fig. 5.

Vphase ¼ fCA;CB;Ccg ð7Þ

Table 1 System parameters used for simulation

Transmission line Value

Length of the transmission line 300 km

Positive sequence resistance 8.25 X

Positive sequence reactance j 94.5 X

System voltage 400 kV

System frequency 50 Hz

Table 2 Variation in system parameters

System parameter Variation in value

Source impedance (ZG1-ZG2), (0.75ZG1-ZG2),

(1.25ZG1-ZG2), (ZG1-0.75ZG2)

and (ZG1-1.25ZG2)

TCSC firing angle (a) 180�,160�,144� (0 % to 15 %

compensation)

Generator loading angle (d) 10�, 20�, 30�

Table 3 Parameters used for training fault data generation

Fault/system parameter Value used for training

TCSC firing angle (a) 144�
Fault resistance (Rf) 5 X, 50 X

Load angle (d) 10�, 30�
Fault inception angle 0�, 45�,115�
Fault location 60 km, 120 km, 180 km, 240 km

Total test cases 2400
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where, CA, CB, CC are sample vector of the respective

phase. To recognize the involvement of ground in fault the

fourth SVM has been supplied with a ground vector

(Vground) representing summation of all three current

samples (40 samples).

Vground ¼ fCA þ CB þ Ccg ð8Þ

The input vectors are cycled through the SVMs to give

output ‘?1’, if the respective phase/ground is involved in

fault, otherwise ‘-1’. The LibSVM 3.11 software has been

used for implementation of SVMs [11, 15]. The training of

each SVM has been performed with same data set of 2400

cases depicted in Table 2. The Gaussian Kernel has found

suitable for all four SVMs in this work. The literature

reveals that in absence of classification parameters (cost

function ‘C’ and ‘c’) governing mechanism, they are

supposed to be finely adjusted for each SVM separately

for appropriate classification. In this work, common values

of these parameters are determined from implementation

experiences for all four SVMs for fault type classification.

The value of C = 10,000 and c = 0.0000042 are chosen for

all four SVMs and used successfully. The trained SVM with

these variables and Gaussian Kernel carries [10, 47, 39, and

09] support vectors for Phase-A, Phase-B, Phase-C and

ground respectively, with training accomplished in [100,

412, 549, and 47] iteration for respective SVMs.

To demonstrate the ability of the proposed SVM based

system, it has been compared with implementation with a

cluster of four ANNs. A typical feed-forward neural net-

work with a single hidden layer has been considered for

this evaluation. The numbers of hidden layer neurons, in

the absence of the decisive algorithm for the architecture,

are chosen based on application performance. After

checking performance with different architecture of neural

nets, a structure of [(40-14-1) for A-Phase ANN, (40-18-1)

for B-Phase ANN, (40-20-1) got C-Phase ANN and (40-4-

1) for Ground ANN have been chosen for their better

performance accuracy.

The same classification vectors of Vphase and Vground

generated in (7) and (8) are used for classification with

ANNs. The set of all four ANNs are trained with same

training set of Table 3, which is used for training of the

SVMs. The detailed results of this comparison are given in

following section.

Results and Discussion

The algorithm has been tested with a large data set of

30,000 fault cases with all of the system and fault data

variations discussed in the section of fault case studies.

These variations included are different TCSC firing angles,

fault inception angles, fault resistances, and system loading

angles with different system conditions of the fault group

set with all ten types of faults. Fault type identification

accuracy for SVM and ANN based schemes are given in

Tables 4 and 5. As can be seen in Tables 4 and 5, accuracy

of the both proposed methods are quite satisfactory at

various levels of compensation with different firing angles.

The performance of SVM with proposed method for dif-

ferent firing angles can be seen in Table 4.
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The accuracy of the proposed method with SVM is

consistent for different firing angles (level of compensa-

tions). The SVM is trained to take intuitive shape in the

multi-dimensional classification plane to give same level of

accuracy for various TCSC firing angles; however it has

been trained with TCSC angle of 160� only. The highest

accuracy level obtained at TCSC firing angle of 160� and a

bit inferior for 144� due to higher percentage changes in

spectral components. This is the potential of the SVM to

handle large feature spaces for classification. The training

of SVM is carried out so that the dimension of classified

vectors does not have distinct influence on the performance

of SVM. This makes SVM efficient in large classification

problems. The fault waveforms carries number of features

that can be used for fault classification, and use of SVM in

this case becomes advantageous.

It can be observed form Table 5 that, the accuracy of the

ANN based scheme is comparable with SVM based

scheme for firing angle of 160�, for which its training had

been performed. However, a decline in accuracy is

observed with change in TCSC firing angle. This hints over

fitting of the ANN to training. This limitation of the ANN

Table 4 Performance of SVM for fault classification

TCSC fining angle (a) Number of test cases Misclassification Successful classification Accuracy (%)

144� 10,800 14 10,786 99.87

160� 8400 05 8395 99.94

180� 10,800 10 10,790 99.90

Total 30,000 29 29,971 99.90

Table 5 Performance of ANN for fault classification

TCSC fining angle (a) Number of test cases Misclassification Successful classification Accuracy (%)

144� 10,800 97 10,703 99.10

160� 8400 32 8368 99.61

180� 10,800 54 10,746 99.50

Total 30,000 183 29,817 99.39

Table 6 Performance comparison for SVM and ANN for different types of faults

Type of fault Numbers of test cases ANN SVM

Fault type identification errors Accuracy (%) Fault type identification errors Accuracy

L–g 9000 29 99.68 6 99.93

L–L–g 9000 53 99.41 7 99.92

L–L 9000 14 99.84 5 99.94

L–L–L–g 3000 87 97.10 11 99.63

60 120 138 147 153 162 180 240
90

92

94

96

98

100

Fault location (km)

A
cc

ur
ac

y 
(%

)

ANN
SVM

Fig. 6 Comparison of fault

classification accuracies of

SVM and ANN at various fault
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can be overcome by inclusion of fault cases with different

firing angle; however, this option has not been used in this

work.

From this discussion, it can easily be noticed that, non-

linear capability of the SVM is higher than ANN and this

hints advantage of SVM over the ANN for fault type

classification.

Table 6 shows level of accuracies for all possible fault

types on transmission line. The results establish SVM as a

better trained classifier and is able to produce same level of

accuracy for various types of faults for different fault

conditions. This owes to the better generalization capacity

of SVM compare to conventional ANN.

The overall accuracies obtained in this method

(99.91 %) shows improvement in performance compare to

fault classification problems depicted with accuracies of

99.11 % in [6] and 99.30 % in [7].

The performance of the ANN and SVM based scheme at

various fault distance is shown in Fig. 6. Further, breakup

of these accuracies at various fault distances for different

TCSC firing angles have been shown in Table 7. It is

observed from the table that, the fault classification accu-

racy of SVM is consistent for all the fault lengths.

It is worth to notice here that, the fault lengths of

147 km (49 % of total line length) and 153 km (51 % of

total line length) are in most critical region for transmission

line fault analysis with TCSC at the middle of the line. No

fault cases around this line zone are included in the training

cases. However, SVM produce same level of accuracy for

this region also. This proves adaptability of the SVM

training for better classification.

An advancement gained by SVM over ANN in fault

classification problem for TCSC compensated transmission

line can be seen in Fig. 7 in graphical format.

Critical Comparison Between ANN and SVM

In case of non-linear classification, both SVMs and ANNs

apply non-linear projection into higher-dimensional space.

These projections are achieved by introduction of addi-

tional hidden layer neuron in case of ANN. These hidden

layer neurons are defined by the user with implementation

experimentation. On other side, the SVM uses a Kernel

function to the same effect with automatically defining

support vector during training.

Moreover, the ANN training is based on minimization of

the mean square error, while SVM trained with mini-

mization of both training errors and ‘hypothesis complex-

ity’ simultaneously. This leads the SVM towards more

global and unique solutions compare to ANN which suffers

from problem of local minima.

Another parameter to be watched for is memory

requirement. With addition of the hidden layer the ANN T
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produces (40 9 14 9 1=) 560 interconnections for Phase-

A and 720, 800 and 160 for Phase-B, C and ground

respectively. The SVM marks 10, 47, 39, and 09 support

vector for implementation. Moreover, with increased

structure size, ANN require higher computation during

training and require more time and epochs compare to

SVM. The SVM uses kernel based expansion to transform

inputs into multi-dimensional space; the training procedure

is comparatively easy and quick. The final vector structures

(support vector) are very less compared to ANN and within

very less number of epochs. This improves response time

in real time and makes SVM a better classifier for imple-

mentation. The performance of the proposed method in

comparison to the recent methods is given in Table 8.

Conclusion

This paper establishes a new fault type identification

scheme for TCSC compensated transmission line protec-

tion. The scheme has been developed with application of

Artificial Intelligence (AI) method of Support Vector

Machine (SVM) as a pattern recognition tool. With com-

parison to ANN based scheme, the SVM has proved a

better classifier for protection system. Requirement of only

half cycle post fault data for proper identification of the

fault types makes the scheme faster. As the classification

has performed with three phase currents data only, it

eliminates voltage measurements and related computations.

Moreover, the need for setting of classification parameters

of each SVM separately has been negated by establishing

their value usable equally for each SVM in this algorithm.

The performance of the scheme has been examined with

a large data set of 30,000 fault patterns with wide variation

of system and fault parameter variations. The results

indicate improvement in classification accuracy compare to

many established methods.
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