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Abstract The majority of the vibration-based structural 
health monitoring techniques require modal parameter 
estimation. Recently, modal identification using indirect 
measurements is being developed and investigated as it 
avoids elaborate and laborious tasks associated with plac-
ing sensors on the structure and data acquisition systems 
and thereby reducing initial as well as recurring costs. Apart 
from this, multiple bridges can be scanned using the instru-
mented vehicle in a shorter time, saving considerable time 
in the modal parameter estimation of bridges. However, 
it is extremely challenging to estimate the modal param-
eters using the vibration responses from the vehicle moving 
over the bridge. The measured dynamic responses from the 
instrumented vehicle include components associated with 
the bridge, vehicle as well as driving frequencies apart from 
the disturbances associated with the bridge surface rough-
ness. Therefore, isolating the bridge frequencies from the 
mix of all these frequency components is rather difficult. In 
this paper, efforts are made to devise a new modal parameter 
estimation technique using the combination of variational 
mode decomposition with the Teager–Kaiser energy opera-
tor. The vehicle-bridge interaction system employed in the 
present investigations idealizes the vehicle as a quarter car 
and the bridge as a beam. Parametric studies have been car-
ried out to test the sensitivity of the proposed algorithm to 
the measurement noise, vehicle speed, and road surface 
roughness during signal decomposition as well as modal 
identification. The studies presented in this paper confirm 
that the proposed method can identify bridge mode shapes 

and frequencies with good accuracy by extracting bridge-
related components from the instrumented vehicle body 
responses.

Keywords Vehicle bridge interaction · Drive-by vehicle · 
Modal identification · Structural health monitoring · 
Variational mode decomposition (VMD) · Teager–Kaiser 
energy operator (TKEO)

Introduction

Vibration-based techniques are extensively been used for 
developing structural health monitoring (SHM) techniques 
for bridges [1]. Modal parameter identification is one of the 
most popular steps among the majority of vibration-based 
SHM techniques developed so far. In the earlier literature, 
modal parameter estimation of bridges is carried out popu-
larly using operational modal analysis or experimental modal 
analysis by instrumenting the entire bridge and measuring 
the time history responses. Instrumenting the entire bridge 
is in fact laborious, expensive, and also very tedious to oper-
ate. As a cost-effective alternative, Yang et al.[2] have pro-
posed modal frequency parameter estimation using indirect 
measurements from an instrumented vehicle moving over 
the bridge. Modal parameter estimation using these indirect 
measurements has many advantages over the more conven-
tional direct approach with a fully instrumented bridge. The 
indirect approach is cost-effective, we can do away with tedi-
ous and expensive instrumentation, and it is more convenient 
and also portable. Apart from this it also helps in scanning 
more bridges in a short time using the instrumented vehicle 
for modal identification. Even though only a single sensor is 
used to collect the time history data in the indirect approach, 
the mode shapes evaluated offer much higher resolution than 
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the traditional direct approach. The reason behind this is that 
in the indirect approach, the instrumented moving vehicle 
can act as a moving sensor and therefore can measure the 
responses at each point on the bridge while traversing. On 
the other hand, in the traditional approach, limited sensors 
are spatially distributed along the bridge and the resolution 
is relatively low [3, 4].

However, it is difficult to estimate modal parameters using 
the indirect approach. The frequencies associated with the 
structure (bridge), the vehicle passing over it and the driv-
ing frequency make up the measured acceleration response 
of sensors mounted on an instrumented vehicle’s axle or 
body during its transit over the deck. Earlier research efforts 
related to modal parameter estimation of bridges using the 
responses from an instrumented moving vehicle are reported 
in the literature [3–14]. Zhang et  al. [5] used a shaker 
mounted on a moving vehicle and recorded the applied 
forces to estimate the frequencies as well as mode shapes of 
a bridge. Oshima et al. [6] use a multi-axle truck-trailer sys-
tem for modal parameter estimation through indirect meas-
urements. In his experiments, the vehicle simultaneously 
carries out two tasks namely exciting the bridge and measur-
ing the resulting vibration responses at three or more moving 
places on the structure. Vibration responses are measured 
at various spatial locations on the bridge simultaneously 
by using N trailers for N different segments of the bridge. 
Each mode shape vector that contains N components cor-
responding to N different parts of the bridge is constructed 
by employing Singular Value Decomposition (SVD) on 
the measured vibration responses. Bridge stiffness param-
eters as well as the fundamental frequency are identified 
successfully using a generalized pattern search algorithm 
from the responses of the moving vehicle [7]. Bridge modal 
identification from measured moving vehicle responses on 
the bridge is attempted by Yang and Chen, [8] employing a 
modified stochastic subspace identification technique. Kong 
et al. [9, 10] have employed a customized vehicle consisting 
of a tractor and two trailers for bridge modal identification. 
It is reported that the customized vehicle employed in their 
work has eliminated the influence related to road surface 
roughness as well as the driving frequencies from the meas-
ured moving vehicle responses. Modal parameter estimation 
of bridges using the moving vehicle vibration responses is 
carried out by Malekjafarian and Obrien [11, 12]. They have 
employed a short-time frequency domain decomposition-
based algorithm for modal identification. Similarly, Hilbert 
Transform (HT) is employed by Tan et al. [13] for bridge 
modal parameter estimation by using responses obtained 
from a moving vehicle, with a Vehicle Bridge Interaction 
(VBI) model. Modal parameter identification with indi-
rect measurements has been carried out recently using 
hybrid methods [14–16]. Chen et al. [17] have proposed a 

classification framework for bridge structural health moni-
toring using indirect measurements.

A blind modal identification method is employed in a 
separate investigation by Li et al. [18] to determine bridge 
modal frequencies. Sitton et al. [19] have evaluated the use-
fulness of crowdsourcing for bridge monitoring through 
numerical simulations and lab-level experiments. It is dem-
onstrated through analytical and experimental studies that 
the multi-vehicle technique can successfully determine the 
bridge frequency. The crowdsourcing approach demon-
strated that indirect SHM may be carried out without the 
knowledge of the vehicle’s mass and stiffness. Eshkevari 
et al. [20] employed a network of moving vehicles to deter-
mine bridge system parameters. The noise caused by the 
suspension system of the car is eliminated from the meas-
ured vehicle response through deconvolution in the fre-
quency domain. Ensemble EMD, as well as vehicle transfer 
functions, are utilized in this work. The confounding effects 
associated with bridge surface roughness are eliminated by 
employing the second-order blind identification method.

Mei et al. [21] proposed a novel two-step method for 
bridge modal identification using the measurements from 
moving vehicles. In the first step, a sparse matrix is formed 
by mapping the data collected from moving measurement 
points to virtual fixed locations. The sparse matrix is subse-
quently filled using a soft computing tool. In the second step, 
SVD is employed to extract the bridge mode shapes. Using 
the dynamic response of a vehicle moving even at higher 
speeds, Jin et al. [22] employed a Short-Time Stochastic 
Subspace Identification (ST-SSI) technique to identify the 
natural frequencies of the bridge with a rough road profile. 
A novel three-step approach is proposed by Li et al. [23] for 
modal parameter identification from the dynamic responses 
of a moving vehicle by combining singular spectrum anal-
ysis and a dual Kalman filter. A subtraction technique is 
applied to the derived contact point (CP) responses of the 
two instrumented vehicles to minimize the influence of the 
road surface roughness.

Singh and Sandhu [24] proposed a hybrid time–fre-
quency method combining wavelet packet transformation 
(WPT) with synchro-extracting transform (SET) for modal 
identification of 220 m long box-girder bridge under vari-
ous operational challenges. Yang and Wang [25] proposed 
efficient modal identification procedures using an improved 
vehicle scanning method. Peng et al. [26] proposed a mode 
shape identification method using sparse drive-by measure-
ments from a mobile crowdsensing framework. Demirlioglu 
et al. [27] assess the efficacy of three new vehicle scanning 
methods for the modal identification of bridges supported by 
elastic supports. The first two methods use the signal decom-
position technique to extract mode shapes from the derived 
CP response. The third one uses operational modal analy-
sis to predict the mode shapes on each segmented signal 
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by accordingly partitioning the measured signals along the 
bridge deck. To enhance the quality of the extracted modal 
parameters, He et al. [28] have derived two residual CP 
responses from the dynamic measurements of three con-
nected vehicles moving on the bridge. Fast Fourier transform 
spectrum analysis is used to identify the bridge frequencies 
from the residual contact responses. Free decay components 
are extracted from the decomposed modal responses using 
the random decrement technique. The damping ratios are 
identified from these free decay components through curve 
fitting. Yang et al. [29], have used the dynamic responses 
from a single-axle scanning vehicle equipped with several 
sensors to accurately identify the modal characteristics of 
bridges, including the closely spaced modes. They have 
used a hybrid time–frequency method that combines wave-
let transform and singular value decomposition for modal 
identification. Additional literature on modal parameter esti-
mation using indirect measurements can be found in recent 
review papers by Wang et al. [30] and Singh et al. [31].

In this paper, efforts are made to extract the bridge’s 
natural frequencies and mode shapes using the vibration 
measurements of an instrumented moving vehicle passing 
over a bridge, using an advanced signal processing tech-
nique called variational mode decomposition (VMD). Even 
though empirical mode decomposition (EMD) or ensemble 
empirical mode decomposition (EEMD) and their variants 
are being popularly employed for modal identification as 
well as structural health monitoring applications in the liter-
ature, it is preferred to employ VMD for generating intrinsic 
mode functions (IMFs) from the measured vibration signal. 
Solid theoretical foundations of VMD, lesser mode mixing 
during signal decomposition, and immunity to measurement 
noise are some of the main reasons for the selection of VMD 
as a signal decomposition tool in this paper. Teager–Kai-
ser energy operator (TKEO) along with the discrete energy 
separation algorithm (DESA), is employed for evaluating 
the instantaneous amplitude from the IMFS generated using 
VMD to estimate the mode shapes. Numerical simulation 
studies have been carried out by a VBI model where the 
bridge is idealized with an Euler–Bernoulli beam and the 
vehicle passes over the bridge as a quarter-car model. Para-
metric investigations are carried out to understand the influ-
ence of vehicle speed, the roughness of the road surface, 
and measurement noise on the extracted modal parameters.

The rest of the paper is organized as follows: The numeri-
cal model for VBI using the quarter-car model is presented 
in the next section. Later the VMD and the TKEO algo-
rithms are briefly discussed. Numerical simulation studies 
carried out in this paper for modal parameter estimation are 
presented in the next section. Finally, conclusions are drawn 
based on the investigations carried out and presented in this 
paper.

Formulation Details

In the VBI model employed in this paper, the bridge is ide-
alized as Euler–Bernoulli beam elements with two degrees 
of freedom (DOF) at each node (vertical translation and 
rotation). The vehicle is idealized as a quarter-car with two 
DOFs. Figure 1 gives the details of the present model. The 
vehicle is at a constant speed while passing over the bridge. 
Both vehicle as well as bridge vibrates as the vehicle passes 
over the bridge and there will be a dynamic interaction 
between them. As a consequence, bridge vibration responses 
are influenced by vehicle vibrations.

The dynamic equilibrium equation of the structure is 
given in Eq. (1)

where [Mb] , [Cb] , and [Kb] are the mass, damping, and stiff-
ness matrices of the bridge (of size n × n) respectively.ÿb
,ẏb and yb are respectively the acceleration, velocity, and 
displacement vectors. The vector fb is the interaction forces 
of the vehicle and bridge at each CP. These interaction forces 
are evaluated using the bridge displacement under each 
vehicle axle and the road surface profile.[Nb] is the location 
matrix. Similarly, the dynamic equilibrium equation of the 
quarter car model shown in Fig. 1, is given in Eqs. (2) and 
(3)

The quarter-car model has two degrees of freedom i.e., 
vehicle axle displacement yu and vehicle body displace-
ment, ys . The ‘.’ and ‘..’ over yu , ys represent velocity and 

(1)[Mb]{ÿb} + [Cb]{ẏb} + [Kb]{yb} = [Nb]{fb}

(2)

Mvÿv + Cvẏv+Kvyv = fv ; where

{

yv
}

=

{

yu
ys

}

;
{

fv
}

=

{

cusẏc + kusyc
0

}

(3)

[

Mv

]

=

[

mus 0

0 ms

]

;
[

Cv

]

=

[

cs + cus −cs
−cs cs

]

;
[

Kv

]

=

[

ks + kus −ks
−ks ks

]

Fig. 1  Quarter car model expressed in spring-mass system
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acceleration terms respectively.[Mv],[Cv], and [Kv] represent 
the vehicle mass, damping, and stiffness matrices respec-
tively. The vector fv represents the dynamic interaction 
force on the vehicle due to the rough profile of the road 
surface and the bridge displacements. While ms and mus 
represent the vehicle sprung mass (vehicle body) and the 
unsprung mass (vehicle axle) respectively. Similarly, ks 
and kus are the suspension and tyre stiffness terms and the 
corresponding damping terms are cs and cus . The displace-
ment response at the point of contact between the bridge 
surface and the wheel of the vehicle is defined in Eq. (4)

where xc represent the spatial location of the bridge and it 
varies with time as the CP varies with respect to the vehicle 
position on the bridge. yb and r are the displacement and 
surface profile of the bridge respectively.

The coupled system of dynamic equilibrium equations 
defined in Eq. (5) is obtained by combining Eqs. (1) and 
(2).

where [Mc], [Cc], and [Kc] represent the mass, damping, 
and stiffness matrices of the coupled system and are of size 
(n + 2 × n + 2). Equation (5) can be solved using the New-
mark constant average acceleration technique to evaluate the 
time history responses.

To make the VBI simulations more realistic, the rough-
ness of the road surface must be considered. As per the 
ISO 8608(1995), there are eight classes of road profiles 
available. Accordingly, the smoothest road profile is class 
A, and the worst road profile is class H. For the speci-
fied class of roughness profile and spatial frequency ni , 
the power spectral density (PSD), Gd

(

ni
)

 can be evaluated 
using Eq. (6), as

where n0 = 0.1  cycle/m. The ISO 8608(1995) Standard 
provides the values of Gd(n0) for all the eight classes of 
road profiles Accordingly, the Gd(n0) values for the first 
three classes i.e., class A, class B, and class C road pro-
files are given as 16e−06  m3/cycle, 64e−06  m3/cycle, and 
256e−06  m3/cycle, respectively. Knowing Gd(n0) values, 
the surface roughness profile of the bridge [32] can be con-
structed using Eq. (7).

(4)yc(t) = yb(xc, t) + r(xc, t)

(5)[Mc]{ÿc} + [Cc]{ẏc} + [Kc]{yc} = {F}

(6)Gd

(

ni
)

= Gd

(

n0
)

(

ni

n0

)−2

(7)

r(x) =

M
∑

i=1

d
i
cos

(

2�n
i
x + Θ

i

)

where d
i
=

√

2G
d

(

n
i

)

Δn

where M is the number of harmonic waves, used to deter-
mine the surface profile of the bridge and varies between 100 
and 10,000. Θi is the random phase angle uniformly distrib-
uted between 0 and 2� , di is the amplitude, and ni = iΔn is 
the spatial frequency (cycles/m). Δn = (nU − nL)∕M , where 
nL and nU are the lower and upper bounds of the spatial fre-
quencies used to define the surface profile. The subscript, i 
refers to the harmonic wave number.

Determination of CP Response from the Measured 
Vehicle Response

In field investigations, it is only possible to measure the 
acceleration time history responses by mounting accelerom-
eters on the body of a moving vehicle during indirect SHM. 
It is however challenging to identify the natural frequen-
cies of the bridge, in particular the higher modes, from the 
measured vibration responses. All bridge modal frequencies 
above the fundamental frequency of the vehicle are sup-
pressed by the low-pass filter applied to the bridge dynam-
ics by the vehicle suspension system. This practical chal-
lenge can be overcome by deriving the CP response, (i.e., 
the time history response at the vehicle’s point of contact 
with the bridge surface) from the measured vehicle vibration 
response and using it for bridge modal parameter extraction.

The vehicle equation of motion is used by Yang et al. 
[33] to offer a closed-form solution for calculating the CP 
acceleration time history response from the vehicle body 
vibration measurements. It is outlined below.

Considering the vehicle as a simple mass (mv) supported 
by a stiffness spring (kv) , and neglecting the damping effect, 
the equation of motion for the vehicle can be expressed using 
Eq. (8) as

It should be mentioned here that the vehicle damping 
effects are less pronounced at low speeds when compared to 
higher speeds. Therefore, the contribution of vehicle damp-
ing to the overall response may be minimal, and neglect-
ing it may have negligible effects. Using Eq. (8) yc can be 
expressed in the form of Eq. (9) as

where �
v
 is the vehicle frequency. The contact point accel-

eration response can be obtained by twice differentiating 
Eq. (9) with respect to t. Accordingly, Eq. (10) can be writ-
ten as

(8)mv ÿv + kv(yv − yc) = 0

(9)yc = yv +
mvÿv

kv
= yv +

ÿv

𝜔2
v

where𝜔2
v
=

kv

mv
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where ÿ is the acceleration. The subscripts c and v refer to 
the CP and vehicle respectively. Since the vehicle vibration 
measurements will be in the discrete form, the central dif-
ference method can be used to evaluate d

2 ÿv

dt2
. Accordingly, 

the CP acceleration response can be expressed in the form 
of Eq. (11) as

where Δt is the time step length and the vehicle body accel-
eration response. ÿv is taken as ÿs in the 2-DOF quarter car 
vehicle model described in Sect. “Formulation Details”. 
Superscripts (t + 1), (t), and (t − 1) refer to the values of 
vehicle body accelerations at time (t + 1), (t), and (t − 1) 
respectively. The vehicle frequency �v can be evaluated 
by considering vehicle stiffness, kv = ks.kus∕(ks + kus) and 
vehicle mass, mv = (ms + mus) from the 2-DOF quarter-car 
vehicle model.

(10)ÿc = ÿv +
d2ÿv

𝜔2
v
dt2

(11)ÿc = ÿv +

(

ÿt+1
v

− 2ÿt
v
+ ÿt−1

v

)

(𝜔vΔt)
2

However, it is still to be ensured that the ratio of the 
bridge and vehicle frequency should meet the requirement 
𝜔bi∕𝜔v <

√

2 , to construct the desired number of bridge 
mode shapes. Here �bi refers to the  ith bridge frequency 
and �v is the vehicle frequency.

Variational Mode Decomposition (VMD)

VMD [34, 35] can be employed to decompose any non-
linear nonstationary signal s(t) into a discrete collection 
of intrinsic mode functions (IMFs). This decomposition 
algorithm is non-recursive and has an optimal ability to 
deal with noise in the signal. The step-by-step VMD sig-
nal decomposition procedure is presented below. Here, uk 
represents the mode with its respective central frequency 
�k , where k = 1, 2, 3, …K.

1. Initialize ⌢u
1

k
,⌢𝜔

1

k
 , 

⌢

𝜆

1

 , and set iteration counter n to 0.
2. Update the previous mode uk and its associated center 

frequency �k using Eqs. (12) and (13), respectively.

3.  Update Lagrange multiplier λ using Eq. (14), then set 
n = n + 1

4.  Repeat Steps (2) and (3) till the convergence criterion 
given in Eq. (15) is satisfied

The VMD procedure requires the setting up of control 
parameters; i.e., fidelity factor (α) and mode number (K). 
Since, the number of peaks in the Fourier spectra associated 
with the signal (i.e., the time history vibration response) can 
be identified, it is assigned to K in the present work. Since 

(12)

⌢

u
n+1

k
(𝜔) =

s −
∑

i<k

⌢

u
n+1

i
(𝜔) −

∑

i>k

⌢

u
n

i
(𝜔) +

�

⌢

𝜆(𝜔)

2

�

1 + 2𝛼(𝜔 − 𝜔n
k
)2

(13)
⌢

𝜔
n+1

k
=

∫∞
0

𝜔
|

|

|

|

⌢

u
n+1

k
(𝜔)

|

|

|

|

2

d𝜔

∫∞
0

𝜔
|

|

|

|

⌢

u
n+1

k
(𝜔)

|

|

|

|

2

d𝜔

(14)
⌢

𝜆

n+1

=
⌢

𝜆

n

+

(

s −
∑

ûn+1
k

k

)

(15)
∑

k

‖

‖

‖

‖

⌢

u
n+1

k
− un

k

‖

‖

‖

‖

2

2

‖

‖

‖

‖

⌢

u
n

k

‖

‖

‖

‖

2

2

< 𝜀, where𝜀 >

Start

Acceleration response from a moving
vehicle

Evaluation of contact point response

Extraction of IMFs through VMD

TKEO on each IMF to obtain
instantaneous energy

Mode shape Construction

Stop

IMF: Intrinsic Mode Function
VMD: Variational Mode

Decomposition
TKEO: Teager-Kaiser Energy

Operator
DESA: Discrete Energy Seperation

DESA-2 to obtain instantaneous
amplitude

Fig. 2  Modal identification algorithm combining VMD with TKEO 
using indirect measurements
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we are interested in extracting low frequencies, the fidelity 
factor (α) is set to a greater value. Accordingly, α is taken 
as 9000 in the present work, based on parametric studies 
carried out by varying fidelity factor from 7000 to 10,000.

Teager Kaiser Energy Operator (TKEO)

TKEO [36–39]is a more contemporary alternative method 
to HT, for amplitude-frequency separation of a signal and 
estimating the instantaneous characteristics of frequency, 
amplitude, and phase. The instantaneous energy,Ed

TK
(t) , of 

a discrete-time signal, u(t), is evaluated using Eq. (16).

The discrete TKEO energy operator �d(u(t)) has good 
adaptation to the instantaneous changes in u(t) and provides 
exceptional time resolution as it only needs three samples 
(u(t − 1), u(t), and u(t + 1)) to compute the energy at any 
time instant t. The instantaneous amplitude, A(t), and fre-
quency, Ω(t), are estimated by DESA-2 [40] using Eq. (17) 
and Eq. (18) respectively.

To improve the obtained estimation results, the 
Teager–Kaiser weighted instantaneous frequency �i is ana-
lyzed using Eq. (19).

The modal identification technique with VBI responses 
by combining VMD with TKEO is detailed in the form of a 
flow chart in Fig. 2.

(16)Ed
TK
(t) = �d(u(t)) = u2[t] − u[t − 1]u[t + 1]

(17)�A(t)� ≈
2�d(u(t))

√

�d(u(t + 1) − u(t − 1))

(18)Ωi(t) ≈
1

2
������(1 −

�d(u(t + 1) − u(t − 1))

2�d(u(t))

(19)Ωi = �iT

Numerical Studies

The effectiveness of the proposed VBI and TKEO-based 
modal identification algorithm is examined through numeri-
cal simulations. The proposed method uses the measured 
vibration data from the passing vehicle to identify the mode 
shapes and natural frequencies of the bridge. A 20 m span 
bridge is considered and it is idealized with Euler beam 
elements by discretizing into 100 elements. The mass den-
sity of the structure is 2400 kg/m3, Flexural Rigidity, EI 
is 54.015E08  Nm2, and the damping ratio is assumed as 
0.01. The natural frequencies are worked out to be 3.84 Hz, 
15.35 Hz, 34.55 Hz, 61.43 Hz, 95.98 Hz, and 138.21 Hz.

The quarter-car model discussed in the earlier sections 
is employed to idealize the moving vehicle. The proper-
ties of the moving, as well as sensing vehicle, are: body 
mass  mb = 545.5 kg, axle mass  ms = 200 kg, body spring 
(suspension) stiffness  ks = 2.0E05 N/m; body spring stiff-
ness  kb = 2.0E05 N/m. The natural frequency of the vehicle 
is 6.99 Hz. In the numerical simulations, the sampling fre-
quency is taken as 1000 Hz, and 2.0 m/s is the vehicle speed. 
The roughness of the road surface is not considered in this 
set of simulations.

The parameters of the sensing vehicle are known. Fur-
ther, the vehicle’s frequencies do not coincide with the natu-
ral frequencies of the structure. Therefore, it is possible to 
recover the dynamic modal responses of the structure from 
the measured vehicle response for the modal parameter esti-
mation. The measured vehicle vibration response and the 
CP response evaluated using Eqs. (2) and (8) are shown in 
Fig. 3a, b respectively. The Fourier spectrum associated with 
the CP response is presented in Fig. 4a.

The first peak value at 0.122 Hz in the Fourier spectrum 
plot shown in Fig. 4a and marked with a red colored dot, 
indicates the driving frequency 2n�v∕L , where v is the 
vehicle speed. The zoomed portions of the first and second 
bridge frequencies are shown in Fig. 4b, c respectively. The 
green dots in Fig. 4b, c indicate the shifting frequencies of 
�bn − n�v∕L and �bn + n�v∕L. The bridge frequencies can 
be worked out by averaging shifting frequencies. Similarly, 
all the other frequency values are indicated by the vertical 
red lines in Fig. 4a. The natural frequencies extracted from 

Table 1  Natural frequencies of 
the structure obtained from the 
CP response

S. no. Bridge theoretical 
natural frequency  (wn) 
Hz

Bridge frequency from CP 
response  (wn) Hz

Avg value of 
shifted frequen-
cies

% of variation from 
theoretical frequencies

�
bn
− n�v∕L �

bn
+ n�v∕L

1 3.84 3.784 3.906 3.845 0.13
2 15.35 15.26 15.44 15.350 0.0
3 34.55 34.36 34.67 34.515 0.10
4 61.43 61.04 61.4 61.220 0.34
5 95.98 94.97 95.46 95.215 0.80
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the Fourier spectrum plot of CP responses are presented in 
Table 1. The percentage of variation from the theoretically 
evaluated natural frequencies is also indicated in Table 1. 
The term "theoretical evaluated natural frequencies" here 
refers to the natural frequencies evaluated using the finite 
element analysis of the structure. Since vibration frequencies 
related to the vehicle are not present in the CP response and 
also the frequency resolution of the structure is found to be 
good, it is proposed to use the CP responses to extract the 
modal responses using VMD.

It can be observed from Table 1 that the average values 
of frequencies of the beam obtained from CP responses are 
compared well with the theoretically evaluated natural fre-
quencies. The variation is found to be significantly higher 
as we go beyond the 5th natural frequency. Accordingly, in 
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the present work, it is proposed to identify the first five mode 
shapes using the proposed algorithm.

The VMD discussed in the earlier sections is used to 
decompose the bridge CP time history response into intrin-
sic mode functions (IMF). Even though it has been reported 
that VMD works better than the widely used EMD in terms 
of overcoming mode mixing and boosting noise suppression, 
it is extremely sensitive to the settings of the initial con-
trol parameters. Especially the control parameters; i.e., the 
modal component number K and the penalty factor α must 
be appropriately specified beforehand to obtain the sought-
after decomposition of the signal. Improper configurations 
of these two parameters are likely to result in inconsistent 
decomposition performances of VMD. As a result, research 
on optimizing the VMD control settings has drawn a lot 
of interest. Recently, attempts have been made to optimize 
these control parameters using metaheuristic algorithms 
[41, 42]. Therefore, a proper computationally efficient IMF 
selection strategy is desirable for identifying the dominant 
frequency modes. Keeping this in view, in this paper, a cor-
relation coefficient-based approach for the selection of IMFs 
with dominant frequency modes is considered. According 
to this procedure, first, the correlation coefficient indicating 

correlation strength between the generated IMF and the time 
history response is determined using Eq. (20).

where y(t) is the time history signal to be decomposed, rj(t) 
is the j-th IMF generated using the VMD. While y and rj are 
the mean values of the original time history signal and j-th 
IMF signal respectively, �y and �ri are the standard deviation 
values of the respective signals. Once the correlation coef-
ficients of all the IMFs generated by VMD are evaluated, 
the relative correlation weight, W of each one is calculated 
as given in Eq. (21).

These weights are sorted in descending order and the 
top desired number of IMFs with the highest weight are 
selected.

(20)
�
�

rj, y
�

=

M
∑

j=1

�

y(t) − y
��

rj(t) − rj
�

�ri�y

(21)
W(j) =

�(rj, y)

M
∑

j=1

�(rj, y)
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Fig. 8  First five Mode shapes of the structure constructed using the proposed algorithm from the CP responses with varying vehicle speeds: a 
First mode shape b Second Mode shape c Third mode shape d Fourth Mode shape e Fifth mode shape
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The first five IMFs generated using the above procedure 
and their corresponding frequency plots are shown in Fig. 5. 
It can be observed from the responses shown in Fig. 5, that 
the VMD technique with appropriate parameter settings can 
decompose the signal into high-quality modal responses 
(IMFs) without any mode mixing.

The TKEO is employed on each of the IMFs to esti-
mate the instantaneous energy of the signal. DESA-2 is 
then employed to evaluate the instantaneous frequency and 
amplitude. DESA-2 is employed in the present work, as it 
is reported to be more computationally efficient and robust 
with the least errors. Accordingly, the instantaneous ampli-
tude plot of each IMF (i.e., modal response) can be obtained. 
The mode shape corresponding to the modal response (IMF) 
being analyzed can be obtained by connecting all the peaks 
of the instantaneous amplitude plot. Engineering judgment 
and expertise need to be used to determine the sign of the 
mode shape [43]. Finally, the normalized mode shapes 
obtained using the procedure combining VMD and TKEO 
are presented in Fig. 6. The theoretical mode shapes are 
also plotted in Fig. 6 for easy appreciation of the quality of 
the mode shapes generated using the proposed algorithm. 
The theoretical mode shapes and natural frequencies that are 

used for comparison in this research come from the struc-
ture’s finite element analysis.

Sensitivity of the Proposed Algorithm to the Vehicle 
Speed

In the numerical studies presented so far, the vehicle speed 
is 2 m/s. In this section, investigations are carried out, with 
higher vehicle speeds, i.e. 4 m/s, 6 m/s, 8 m/s, and 10 m/s, 
to explore the sensitivity of vehicle speed on the VMD 
decomposition and subsequent mode shape construction. For 
a typical vehicle speed of 10 m/s Fourier spectrum of CP 
response is shown in Fig. 7a and a comparison of the Fourier 
spectrum responses for different vehicle speeds considered 
in this paper is shown in Fig. 7b. The shifted frequencies 
with varying speeds of the vehicle are shown in Table 2. 
The percentage variation of the extracted frequencies from 
the theoretically evaluated natural frequencies is indicated 
in parenthesis for each vehicle speed in Table 2. It can be 
observed from Fig. 7 as well as Table 2 that the first five 
frequencies are marginally shifted with increased vehicle 
speeds. The mode shapes constructed using the proposed 
algorithm with the CP responses with varying vehicle speeds 
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are shown in Fig. 8. The plots shown in Fig. 8, indicate that 
the modal parameter identification can be carried out with 
reasonable accuracy even with higher vehicle speeds using 
the proposed method.

However, it should be pointed out here that the rough-
ness is neglected in all the studies carried out so far using 
varying vehicle speeds. The dynamic response of the struc-
ture is likely to be heavily polluted at higher vehicle speeds 
due to the impact caused by the rough road surfaces. At the 
same time, the dynamic components of the vehicle are likely 
to be enhanced. In view of the dominance of the vehicle-
related dynamic components in the measured response, the 
structure-related components become less obvious. On the 
other hand, a lower test vehicle speed will result in a longer 
measurement duration and it helps in identifying a larger 
number of modes with good accuracy. Hence, it is suggested 
that a sensing vehicle traveling at a modest speed is advan-
tageous for drive-by bridge health monitoring and modal 
parameter estimation.

Sensitivity to the Measurement Noise

Investigations are carried out using the CP responses cor-
rupted with varying noise levels. Three different noise 
levels in the form of SNR 50, 60, and 70 are considered. 
VMD is employed on the time history data corrupted with 
noise. The IMF components and their spectra for a typical 
noise level of SNR-50 are shown in Fig. 9a, b, respectively. 
Similarly, the mode shapes constructed using the TEKO 
and DESA-2 algorithms are presented in Fig. 10. It can 
be observed from Fig. 9 that VMD decomposition perfor-
mance is satisfactory even with noise-polluted time history 
signal without mode mixing. Similarly, we can observe 
from Fig. 10 that the first four mode shapes generated are 
compared well with the mode shapes obtained using the 
finite element method (FEM). However, the fifth mode 
shape is slightly distorted. The investigations carried out 
on the combined effects of noise and roughness, on the 
constructed mode shapes are discussed in Sect. “Effect of 
Surface Roughness”.

(a)                                                           (b)                                                          (c)

                                                    (d)                                                                                       (e)

Fig. 10  First five Mode shapes generated using the proposed algorithm from the noise-corrupted responses—SNR 50: a First mode shape b 
Second Mode shape c Third mode shape d Fourth Mode shape e Fifth mode shape



615J. Inst. Eng. India Ser. A (September 2024) 105(3):603–618 

1 3

Effect of Surface Roughness

Investigations are carried out, considering the road sur-
face roughness as Class-C according to the ISO standard 
specification discussed earlier, and accordingly, the road 
roughness is evaluated using Eqs. (6) and (7).

Figure 11 shows the decomposition details i.e., the 
IMFS and their associated Fourier spectrum of the vehi-
cle acceleration time history signal with roughness using 
VMD. It can be observed from the IMFs generated that 
only three IMFs are generated with reasonably good accu-
racy. The corresponding mode shapes constructed using 

(
)

                                                (a)                                                                                   (b)                   

Fig. 11  Decomposition of time history measurements with road surface roughness (Class-C) using VMD a IMFs of the noise signal b FFT 
spectra of IMFs

)c()b()a(

Fig. 12  First three constructed mode shapes using the proposed algorithm considering the road surface roughness—Class-C: a First mode shape 
b Second Mode shape c Third mode shape
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TKEO and DESA-2 algorithms are shown in Fig. 12. It can 
be observed that while the first two mode shapes generated 
are comparing well with the FEM mode shapes, the 3rd 
mode shape constructed is rather distorted.

Combined Effect of Noise and Road Surface Roughness

Studies are carried out to evaluate the sensitivity of the 
proposed algorithm with road surface roughness and 
noise-corrupted measurements. Modal assurance criterion 
(MAC) is employed to assess the quality of the generated 
mode shapes and is defined in Eq. (22).

Where ΦA and ΦR refers to theoretical (FEM) and recon-
structed mode shapes respectively. Subscripts r and q refer 
to the mode shape numbers. MAC value will be one, if the 
theoretical as well as reconstructed mode shape using the 
proposed algorithm are exact. MAC value will be close to 
zero if they are very poorly correlated. The vehicle speed 
is considered as 2 m/sec. The MAC values are furnished 
in Table 3. It can be observed from the results presented 
in Table 3 that the quality of mode shapes is sensitive 
to higher road surface roughness. However, they are less 
sensitive to measurement noise.

Conclusion

A new bridge modal identification algorithm from the 
responses captured from an instrumented moving vehicle 
traveling over a bridge is proposed. The proposed algo-
rithm is developed by combining a non-recursive signal 

(22)
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decomposition method called VMD with TKEO. The VBI 
problem is formulated by idealizing the bridge as a sim-
ply supported beam with Euler beam elements and the 
moving vehicle as a quarter-car model. The sensitivity of 
the proposed modal identification algorithm with varying 
vehicle speeds, measurement noise, and roughness of the 
road surface profile is investigated. The following conclu-
sions are drawn based on the investigations carried out and 
presented in this paper.

1. The extracted CP acceleration response is found to pos-
sess the participation of many number of bridge frequen-
cies and not the vehicle dynamics.

2. The IMFs generated from the CP responses using VMD 
are free from mode mixing. VMD is also found to be 
less sensitive to measurement noise. However, setting 
the proper control parameters of VMD is crucial in 
obtaining the desired quality of decomposition of the 
signal.

3. The selection of IMFs based on correlation weights is 
found to be effective in choosing the dominant modal 
responses from the time history signal.

4. TKEO along with the DESA-2 is found to be accurate 
and effective in constructing the low-frequency mode 
shapes of the structure even with measurement noise.

5. A vehicle moving on the bridge at a lower speed (i.e., 
2 m/sec) is effective in capturing all the lower dominant 
modes of the structure. At greater vehicle speeds, the 
bridge frequencies are often muted by the dominance 
of the vehicle suspension dynamics. Apart from this, a 
slow-moving vehicle results in the collection of vibra-
tion measurements for a longer duration. A large num-
ber of samples helps in identifying the larger number of 
modes with much higher resolution.

6. Road surface roughness certainly influences the accu-
racy of the identified modes.

Table 3  Performance of the 
proposed modal identification 
algorithm under varying 
road surface roughness and 
measurement noise

S. no. Road surface 
roughness

Measurement 
noise (SNR)

MAC values of all the constructed mode shapes of the 
structure

1 2 3 4 5

1 Class-A 70 0.991 0.984 0.981 0.979 0.968
2 Class-B 70 0.981 0.969 0.963 0.861 0.717
3 Class-C 70 0.979 0.956 0.811 – –
4 Class-A 50 0.982 0.981 0.979 0.981 0.953
5 Class-B 50 0.976 0.981 0.940 0.849 0.719
6 Class-C 50 0.961 0.953 0.804 – –
7 Class-A 40 0.981 0.981 0.960 0.975 0.956
8 Class-B 40 0.961 0.964 0.789 0.832 0.695
9 Class-C 40 0.953 0.919 0.715 – –
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