
Vol.:(0123456789)1 3

J. Inst. Eng. India Ser. A (December 2022) 103(4):1195–1208 
https://doi.org/10.1007/s40030-022-00683-9

ORIGINAL CONTRIBUTION

Prediction of Probability of Liquefaction Using Soft Computing 
Techniques

Divesh Ranjan Kumar1 · Pijush Samui1 · 
Avijit Burman1 

Received: 11 June 2022 / Accepted: 17 August 2022 / Published online: 7 September 2022 
© The Institution of Engineers (India) 2022

found to give the best prediction among all five models. In 
summary, XGBoost model attained ( R2

= 0.978 for training 
and R2

= 0.799 for testing), GBM model attained ( R2
= .953 

for training and R2
= 0.780 for testing), RF model attained 

( R2
= .930 for training and R2

= 0.769 for testing), SVR 
model attained ( R2

= .702 . for training and R2
= 0.778 for 

testing), GMDH model attained ( R2
= 0.650 for training 

and R2
= 0.701 for testing). The proposed models can also 

be utilized as a valid model for forecasting the probability 
of liquefaction efficiently for complicated real-world earth-
quake engineering problems.

Keywords  Liquefaction · SPT · XGBoost · GBM · SVR · 
GMDH

Introduction

An earthquake is a natural event that can be extremely devas-
tating leading to Landslides, debris flows, soil liquefaction, 
etc. Soil liquefaction is one of the most hazardous phenom-
enon among them. Terzaghi and Peck (1948) discovered 
the soil liquefaction phenomenon in the early stages of soil 
mechanics to explain the loss of strength in saturated loose 
sand deposit [1]. There have been several reports of soil liq-
uefaction induced due to earthquake in various locations of 
the world. Because of the ground water label proximity, the 
likelihood of liquefaction of soil induced by an earthquake 
is higher in some coastal locations [2]. The coastal soil usu-
ally has very little cohesive strength. The earth gets loosened 
and wet in the event of seismic shaking. If an earthquake 
happens under these conditions, the dramatically increase 
the pore water pressure in the layer of soil, causing severe 
deterioration of soil shear strength and decrease in bearing 

Abstract  Prediction of liquefaction potential of any 
soil deposit is itself a very challenging task. The problem 
becomes even more demanding when it becomes neces-
sary to incorporate the variability of all related parameters. 
Because the parameters that impact liquefaction potential 
are inherently unknown, the problem is probabilistic rather 
than deterministic. In the literature, probabilistic analysis 
of liquefaction potential has attracted a lot of attention, 
and it’s been shown to be a useful technique for evaluat-
ing uncertainty inherent in the problem. Machine Learning 
(ML) techniques have found their applications in all fields 
of science and engineering while dealing with problems of 
stochastic nature. These techniques are capable of finding 
out the desired outputs very effectively. In this paper, five 
different ML models namely, extreme gradient boosting 
(XGBoost), random forest (RF), gradient boosting machines 
(GBM), support vector regression (SVR), and group method 
of data handling (GMDH) have been used for evaluation 
of probability of liquefaction based on standard penetration 
test data. In this study, analysis has been carried out with 
six input variable such as, depth of penetration, corrected 
standard penetration blow number, total vertical stress, fine 
content, maximum horizontal acceleration, total effective 
stress, and earthquake magnitude. To examine the capabili-
ties of the suggested models in predicting the probability of 
liquefaction, several statistical parameters have been exam-
ined. To compare the accuracy of the proposed models, Tay-
lor graph, REC curve, and error matrix have been developed. 
While all of the proposed models could efficiently predict 
the probability of liquefaction. XGBoost model has been 
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capacity of soil, which is the most common cause of soil 
liquefaction [3, 4].

Soil liquefaction can cause serious damage to the integrity 
of any building structure as the stability of the foundations 
is drastically affected. The surrounding region will sink as a 
result of the foundations collapsing, causing traffic gridlock 
and casualties [5, 6]. As a result, measuring the potential for 
soil liquefaction is of considerable importance and interest 
[7, 8]. If the risk of soil liquefaction can be more precisely 
assessed, countermeasures can be put in place ahead of time 
to reduce the adverse effects of soil liquefaction. Many fac-
tors, however, influence the existence and progression of soil 
liquefaction [9, 10]. Because the majority of these character-
istics do not have a direct correlation with soil liquefaction, 
predicting the liquefaction potential of soil is difficult. Many 
attempts have been made by many authors around the world 
to estimate the liquefaction potential of soil, with the goal of 
proposing novel, relevant, and front-line research approaches 
in order to solve this issue [11–16]. Seed and Idriss "simpli-
fied technique" have a strong reputation for assessing the 
possibility for soil liquefaction [11]. Many scholars have 
built on the "simplified procedure" by expanding and devel-
oping it based on field test findings. Some common field 
test methods, namely standard penetration test (SPT), cone 
penetration test (CPT), and shear wave velocity (Vs) test 
(SWVT), are used to assessing the liquefaction potential 
[17–20]. Traditional prediction methods include semiem-
pirical methods, such as the "simplified procedure," and pure 
empirical methods, which largely trust on "limit states." The 
limit states method can be used to differentiate between the 
region of liquefaction or non-liquefaction [21]. Empirical 
and semiempirical approaches, on the other hand, are insuf-
ficient to forecast soil liquefaction potential. In actuality, 
a variety of features, such as the earthquake’s parameters, 
and qualities of soil, can influence the liquefaction of soil 
induced by earthquakes. However, because soil parameters 
are highly unknown, selecting a suitable and adequate exper-
imental equation for evaluating liquefaction potential of soil 
is problematic [22]. The existing techniques appear to be 
ineffective in this regard, and another strategy is necessary 
to achieve a greater estimation capacity level for predicting 
liquefaction potential of soil.

Artificial intelligence (AI) methods have advanced 
quickly in recent decades. Machine learning (ML) technol-
ogies, in particular, have substantially aided the advance-
ment of several engineering research topics [23–27]. As a 
result, various researchers have employed and created AI 
and ML algorithms in the field of soil liquefaction prediction 
[28–30]. Furthermore, as the amount of data generated by 
in situ tests has increased in recent decades, the use of AI 
and machine learning approaches in engineering practice has 
grown significantly. Approaches based on AI and machine 
learning may often reach greater accuracy in anticipating 

the possibility for soil liquefaction than traditional predic-
tion methods [31, 32]. Artificial neural networks (ANNs) 
are a powerful algorithm that has been widely employed in 
geotechnical engineering among the various ML algorithms 
[33, 34]. Juang et al. (2000) construct an ANN model and 
developed a function of the liquefaction limit state using 
the SPT database of 243 data sample [35]. Xue and Yang 
[36] developed the adaptive neuro-fuzzy inference system 
(ANFIS), a particular neural network model that has great 
potential to predict the soil liquefaction potential. Other 
machine learning and AI strategies, such as support vec-
tor machine (SVM), relevance vector machine (RVM), and 
stochastic gradient boosting (SGB), have been effectively 
utilized to estimate liquefaction potential of soil [21, 29, 
37]. These new AI prediction models are not only more 
accurate than traditional prediction methods, but they are 
also better alternatives when a large database with a large 
number of data samples. Furthermore, these techniques do 
not require the collection of correlation data between each 
input parameters and the output parameters, and they can 
successfully handle the complicated collaboration between 
each distinctive parameters [38]. However, all methods, AI 
and machine learning-based models have their own set of 
limitations and no perfect method for forecasting liquefac-
tion potential. The most generally used ML method in this 
field, the ANN model does not consider the significance of 
each parameter while addressing a goal problem, it is unable 
to determine the relationship between output parameters and 
characteristic input parameters. Black box property, slow 
convergence, overfitting tendency, and poor generalization 
performance are some of the flaws of ANN models. Because 
the occurrence of soil liquefaction is difficult to assess and is 
frequently influenced by a variety of geological conditions, 
existing machine learning methods based on AI technique 
have limited application. As a result, additional prediction 
models are needed to provide more alternatives for future 
study.

Extreme gradient boosting (XGBoost), a powerful ML 
algorithm based on a gradient boosting system [39, 40] was 
proposed by Chen and Guestrin [41]. XGBoost, in particular, 
is a powerful datamining method that has been widely uti-
lized and demonstrated to be useful in a variety of regression 
and classification applications [42, 43]. Random forest (RF) 
method proposed by Breiman [44], is an ML algorithm with 
a well-developed system and high flexibility that has been 
widely used in the field of civil and geotechnical engineer-
ing. RF model was used by various researchers to access 
the liquefaction potential of soil [38, 45]. RF is a very well-
developed and commonly used integrated model. First, the 
RF model’s strong performance and high accuracy, when 
solving variety of technical challenges. Second, whether 
working with huge amount of data samples or multidimen-
sional input parameters, RF provides excellent processing 
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capabilities. More crucially, RF algorithms can determine 
the significance of each feature in the input sample, mak-
ing them an ideal combination of AI and machine learn-
ing techniques [46]. Gradient boosting machine (GBM) is 
a ML technique for regression and classification problems 
proposed by [47]. GBM generates an ensemble of weak pre-
diction models as prediction models [48]. Other research 
using GBM in the field of civil engineering and other techni-
cal problem are presented in is by [49]. Vapnik introduced 
Support vector machine (SVM) [50] is a strong ML algo-
rithm based on theory of statistical learning. SVM has been 
expanded to address regression problems called support vec-
tor regression (SVR) after Vapnik introduced an intensive 
loss function [51]. Group method of data handling (GMDH) 
method is proposed by [52] to regulate the dead-end problem 
of equation multidimensional character and linear depend-
ency found in normal regression equation. The GMDH tech-
nique has been effectively implemented in engineering and 
other fields [53].

The aim of this paper is to explore the feasibility of 
the proposed models such as, extreme gradient boosting 
(XGBoost), random forest (RF), gradient boosting machines 
(GBM), support vector regression (SVR), and group method 
of data handling (GMDH) based machine learning methods 
for predicting the soil liquefaction potential using the SPT 
dataset. In this study, the probability of soil liquefaction is 
estimated with the help of corrected standard penetration 
blow number ( N

1,60
) , fine content (FC) , depth ( Z ), vertical 

effective stress (��

v
) , maximum horizontal ground accelera-

tion (amax) magnitude moment (Mw) , and total vertical total 
stress (�v) . The deterministic method proposed by Idriss 
and Boulanger (2006) for evaluating liquefaction potential 

is used [13] in this work. A comparative study has also been 
carried out between the all developed models.

Historical Data Collection

The data sets used in this study contain two different data-
bases, namely “A” and “B” respectively. Database A con-
tains a total of 620 case records in the collection, in which 
290 datasets collected from Taiwan earthquake and 330 
datasets collected from Kocaeli earthquake. The suggested 
models were developed using the field test findings of two 
earthquakes that occurred in Chi-Chi, Taiwan (1999) and 
Kocaeli, Turkey (1999) [54].

In database “B” also contain SPT test based data. These 
data include a total of 214 cases documented by Cetin et al. 
[18] that provides the source of the liquefaction/non-lique-
faction case histories. These datasets came from earthquakes 
in various places of the world. In these cases, the soil types 
ranged from pure gravels and sands to silt mixes. There are 
seven parameters in database A and B, which contain the 
depths ranging from 1 to 20 m. The fine content in per-
cent ranged from 0 to 90, and the adjusted SPT blow count 
ranged from 2 to 50 (In kPa), the vertical effective and total 
stress ranged from 2 to 188 and 12 to 356, respectively. The 
value of maximum horizontal ground acceleration varied 
between 0.08 and 0.7. The magnitude of the earthquakes 
varied from 5 to 8. As an illustration, sample data of two 
locations are shown in Table 1.

Table 1   Sample dataset Location Z(m) N1,60) FC (%) �
v
 (kPa) �

′

v
    (kPa) a

max
(g) M

w

Location 1 1.0 6 90 16.3 14 0.4 7.4
1.8 8 94 30.9 20.6 0.4 7.4
2.6 7 100 45.6 27.3 0.4 7.4
3.4 5 87 60.3 34 0.4 7.4
4.2 5 74 75.8 41.5 0.4 7.4
5.0 3 92 90.1 47.8 0.4 7.4
6.0 3 97 108.2 55.9 0.4 7.4
7.0 19 70 127.9 65.6 0.4 7.4
8.0 26 58 147.5 75.2 0.4 7.4

Location 2 1.0 3 74 18 15.8 0.4 7.4
1.8 5 86 32.8 22.6 0.4 7.4
3.4 2 85 62.4 36.2 0.4 7.4
4.2 10 93 77.4 43.2 0.4 7.4
6.0 4 99 109.5 57.3 0.4 7.4
7.0 11 85 128.3 66.1 0.4 7.4
8.5 39 8 156.2 79 0.4 7.4

10.0 25 6 186.6 94.4 0.4 7.4
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Methodology

Deterministic approach

In the current study, the soil liquefaction due to seismic load-
ing is commonly expressed in terms of cyclic stress ratio 
(CSR). Boulanger and Idriss (2014) proposed a stress-based 
technique to determine the cyclic stress ratio (CSR) and 
using Eq. 1. The value of CSR is frequently “normalized” 
to a standard reference with moment magnitude Mw = 7.5 to 
simulate the field condition with different earthquake mag-
nitude [55].

here �v , and ��

v
 represent the total vertical and effective verti-

cal stress respectively. amax represents the maximum ground 
acceleration and rd represent the stress reduction factor. The 
factor of 0.65 is taken to transform the peak cyclic shear 
stress ratio to the most significant cycle during the entire 
loading period. Parameter rd can be calculated using Eq. (2) 
as follows given by [55]:

The parameters �(z) and �(z) in the above Eq. 2 are cal-
culated using Eqs. (3) and (4).

here z denotes the depth below the ground surface. The value 
of rd depends upon z. When the depth is more than 10 m, 
there is an increase in the uncertainty during estimation of 
rd.

The influence of the improved MSF relationship on the 
SPT-based technique that accounts for the effects of soil 
type and density was investigated by Boulanger and Idriss 
[55]. The variable MSF can be calculated using following 
relationship.

Based primarily on this concept, the following is recom-
mended by [55] for determination of Cyclic resistance ratio 

(1)(CSR)M=7.5,�
�
v
=1 = 0.65

(
�v

�
�

v

)(
amax

g

)
rd

MSF

(2)rd = exp
[
�(z) + �(z).Mw

]

(3)�(z) = −1.012 − 1.126sin
(

z

11.73
+ 5.133

)

(4)�(z) = 0.106 + 0.118sin

(
z

11, 28
+ 5.142

)

(5)MSF = 1 + (MSFmax − 1) ×

(

8.64 × e

(
−

Mw

4

)

− 1.325

)

(6)MSFmax = 1.09 +

((
N
1

)
60cs

31.5

)2

≤ 2.2

(CRR) using SPT data is calculated using Eq. (7) in terms of 
(N1,60,cs ), where N1,60cs represents the clean sand equivalent 
SPT penetration resistance value which is calculated using 
Eq. (10) and (11) respectively.

here (N1,60,cs) denotes the clean-sand equivalence of the over-
burden stress, for corrected SPT blow count calculation refer 
and FC represent the fine content in percentage. The final 
CRR for any other value of M and �′

v
 is calculated using

Because the case history database is dominated by level or 
nearly level ground conditions, the effect of persistent static 
shear stresses, which can be described through a K� factor, 
is often minor for nearly level ground conditions and is not 
included herein.

In the deterministic evaluation, factor of safety Fs , defined 
as Fs = CRR∕CSR is used to calculate the probability of 
liquefaction.

In the present work, the factor of safety (Fs) has been cal-
culated using different random variable parameters of SPT 
based dataset. The various parameters involved in liquefaction 
analysis (i.e., corrected SPT value ( N1,60 ), maximum ground 
acceleration ( amax ), fine content (FC), total vertical stress 
( �v ), effective vertical stress ( ��

v
 ), and magnitude moment 

(Mw)) have been randomly generated with the help of coef-
ficient of variation (COV). The coefficient of variation (COV) 
is expressed in Eq. (13) as the ratio of standard deviation of 
parameters to the mean of those parameters [7, 56–59].

here �m and �m are denoted as mean of standard deviation 
and the mean value of ten randomly generated datasets of 
the input variables. Phule and Choudhury (2017) prescribed 
the range of COV values for various parameters used for 
generating the random datasets for all the six parameters, 
as shown in Table 2. Factor of safety is calculated for each 
random variable generated using the COV and finally reli-
ability index � is calculated using Eq. (14).

(7)

CRR
M=7.5,�

�
v
=1 = exp

(
(N

1
)
60cs

14.1
+

(
(N

1
)
60cs

126

)2

−

(
(N

1
)
60cs

23.6

)3

+

(
(N

1
)
60cs

25.4

)4

− 2.8

)

(8)(N
1
)
60cs = (N

1
)
60
+ Δ(N

1
)
60

(9)Δ(N
1
)
60

= exp

(

1.63 +
9.7

FC + 0.01
−
(

15.7

FC + 0.01

)2
)

(10)CRRM,�
�
v
= CRRM=7.5,�

�
v
=1 ×MSF × K�

(11)COV =
�m

�m
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Here �F represents the standard deviation of factor safety 
of ten randomly generated datasets of input variables and 
�F is the mean factor of safety. Then probability of failure 
(PL) is estimated with the help of MATLAB using the rela-
tion PL = 1 − �(�) where � is denoted as standard normal 
cumulative distribution function.

Description of ML Techniques

In the present work, a few ML techniques namely extreme 
gradient boosting (XGBoost), Random Forest (RF), gradient 
boosting machines (GBM), support vector regression (SVR), 
and group method of data handling (GMDH) have been used 
to model the liquefaction potential probability of the study 
area. A brief description of all these ML techniques is pro-
vided in this section.

Extreme Gradient Boosting (XGBoost)

XGBoost is a machine learning algorithm that was recently 
invented by Chen and Guestrin (2016) and is now widely 
used in a variety of applications. Because it is well-organ-
ized, portable, versatile, and has the fastest and most-inte-
grated decision tree algorithm, it will be appropriate for a 
extensive variety of applications. The algorithm combines 
the gradient boosting machine (GBM) and cause based 
decision tree (CBDT) into a single efficient approach. It 
increases the capacity of the tree boosting approach to pro-
cess for almost all types of data fast and reliably. XGBoost is 
a powerful and adaptable tool that can handle a wide range 
of classifications and regressions, as well as user-defined 
objective functions for the desired output. XGBoost can also 
be used to process large datasets with numerous attributes 
and classifications. This method also provides realistic and 
capable solutions for new optimization problems, particu-
larly when efficiency and accuracy trade-offs are taken into 
account.

The objective function of XGBoost is almost similar to 
that of other ML models, and it might be the combination 

(12)� =
�F − 1

�F

of the regular term and the loss function. The accuracy 
of the model is controlled by the loss function, while the 
model’s complexity is controlled by the regular term. At 
each iteration, XGBoost uses the residual to calibrate the 
prior prediction; this is a method of improving output of 
loss function. XGBoost incorporates regularization into the 
objective function to limit the danger of overfitting during 
the calibration phase.

Chen and Guestrin (2016) suggest the regularization term 
for the decision tree (DT):

where Φ is the parameter skilled from the provided data, 
the second term  Ω represent the regularization term, which 
avoid overfitting because it can regulate the model complex-
ity, l denotes the training loss function, yi is the observed 
value, y represent the difficulty of individual leaf, T  denotes 
the total leaves present in that DT, � denotes the compromise 
parameter that is mostly used for grading the penalty, and �j 
signifies the score on the j-th leaf.

Tree ensemble model that contains functions as param-
eters shown in Eq. (10). It train the model in a different way, 
assuming that y is the estimate of the ith instance at the tth 
iteration, and a different function f (t) is introduced to dimin-
ish the subsequent objective.

The solutions of (Eq. 11) is approximated by the expan-
sion of Taylor’s series [41, 62]. The objective function cal-
culated using Eq. 11 and the mean square error (MSE) is 
expected as the loss function (LF).

where gi and hi indicate the first and second derivatives of 
loss function respectively, and q indicate a function which 
associated to a data point of that corresponding leaf.

Equation (12) represent the combination of loss values of 
each data sample which corresponds to one leaf node.

Accordingly, Gj and Hj are defined as

(13)L(𝜙) = l(𝜙) + Ω(𝜙) =

n∑

i=1

l
(
yi, ŷi

)
+

K∑

K=1

Ω
(
fk
)

(14)Ω(f ) = yT +
1

2
�
∑T

j−1
�2

j

(15)L(t) =

n∑

i=1

l(yi, ŷ
t−1
i

+ ft
(
xi
)
+ Ω

(
ft
)

(16)

L(t) ≈
∑n

i=1

[
gi�q(xi) +

1

2
(hi�

2

q(xi)

]
+ �T +

1

2
�
∑T

j=1
�2

j

(17)L(t) ≈ �T +
∑t

j=1

[(∑

i∈ij
gi

)

�j +
1

2

(∑
hi + �

)
�2

j

]

Table 2   Coefficient of variation for different parameters

S. No Parameter COV Reference

1 Corrected ‘N’ value 0.1–0.40 [57, 58, 60]
2 Fine content (FC) 0.05–0.35 [58]
3 σ′v 0.1–0.2 [59]
4 σv 5–20 [61]
5 amax 10–20 [61]
6 Mw 5–10 [61]
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where Ij represent total data samples in leaf node j.
Overall, finding the minimum of a quadratic function 

can be used to convert the optimization of the objective 
function. In other words, the objective function is used to 
measure the variation in model output when node in the 
DT separated. This split will be used if the model output 
is better than previous one; else, the separation will be 
terminated. Furthermore, regularization aids in the avoid-
ance of over-fitting [41, 63].

Random Forest (RF)

In decision tree learning, the random forest (RF) model 
is very popular for performing regression and classifica-
tion. It is incredibly efficient, and it outperforms other 
regression models in terms of regression accuracy. The 
concept of RF model is introduced by Breiman (2001). 
The model combines the outcomes of individually deci-
sion tree using a specific combination approach, result-
ing in a classifier having good simplification capability. 
There are two ways to seen the randomness of RF: (1) 
The characteristics used in training are chosen at random 
during the construction of each decision tree, and not all 
features are used in the training procedure: (2) To train 
the model the bootstrap samples are chosen at random 
from the training samples. Because each decision tree’s 
development process is separate, parallel processing can 
be performed during the model construction phase to 
increase productivity. The following is the procedure for 
building a model:

•	 Feature selection: Each DT is built by choosing m fea-
tures to avoid overfitting. at random from a entire of 
M features as input variables.

•	 Sample Selection: Each DT is built using bootstrap 
sampling, which selects n samples for training from a 
total of N samples, and those that aren’t drawn consid-
ered as out-of-bag data (OOB).

•	 Grouping of decision tree: The model error is calcu-
lated using the out-of-bag data of each tree after n 
decision trees have been constructed and trained. The 
output of the model is then derived by averaging the 
values of all of the individual trees’ outputs.

The following hyperparameters must be artificially 
determined before the RF model can be recognized: (1) 
Total number of DT, (2) The maximum quantity of fea-
tures, (3) the least number of samples needed at the leaf 
node, (4) To split an inner node the minimum number of 

Gj =
∑

i∈ij
gi,Hj =

∑

i∈ij
hi

samples required (5) the maximum tree depth, and (6) the 
maximum number of leaf nodes. For final decision result 
of the RF model detail description refer [44, 64].

Gradient Boosting Machines (GBM)

Boosting algorithms iteratively combine weak learners, i.e., 
learners who are somewhat better than random, into a strong 
learner. Gradient boosting is a regression approach that is 
similar to boosting [47]. The purpose of GBM algorithms 
is to estimate, F(x) of the function F∗(x) given a training 
dataset =

{
xi, yi

}N

1
 , which maps instance x to their target 

values y, by diminishing the predictable value of loss func-
tion denoted by,L(y,F(x)) . Gradient boosting constructs an 
alternate estimate of F∗(x) as a weighted sum of functions;

where �i represent the ith function hi(x) weight, Iteratively, 
the approximation is built. First, it has been obtained a con-
stant approximation of F∗(x) as

Models after that should be proceed towards the mini-
mum value.

Rather than directly resolving the optimization issue, each 
hm can be considered a greedy step in a gradient descent 
optimization for F∗ . For a new dataset D =

{
xi, rmi

}N

i=1
 “ hm ” 

is trained for each model, where residuals rmi are determined 
by following equation.

After then, the value of  �m is determined by solving a line 
search optimization problem.

If the model hm completely fits the residuals for some loss 
functions, the residuals will become zero in the following 
iteration, and the process will end prematurely. Several hyper-
parameters are taken to govern the additive process of gradient 
boosting. Applying shrinkage to each gradient decent step to 
minimize each gradient decent step is a logical technique to 
regularize gradient boosting  Fi(x) = Fi−1(x) + v�ihi(x)  with 
v = (0.1] , usually taken as 0.1. Furthermore, by reducing the 
complexity of the trained models, more regularization can be 
obtained. It can limit the depth of decision trees or the mini-
mum number of instances required to split a node in the case 
of decision trees. Finally, hyper-parameters that randomize the 

(18)Fi(x) = Fi−1(x) + �ihi(x)

(19)Fo(x) = argmin
�

N∑

i=1

L(yi, �)

(20)
(
�m, hm(x)

)
= argmin

�,h

N∑

i=1

L(yi,Fi−1

(
xi
)
+ �h(xi))

(21)rmi =

[
�L

(
yi,F(x)

)

�F(x)

]

F(x)=Fi−1(x)
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base learners, such as random subsampling without replace-
ment, are incorporated in various versions of gradient boost-
ing and can increase the generalization of the ensemble [47]. 
The gradient boosting approach is a sophisticated and efficient 
regression tool that can handle complex non-linear function 
dependencies [65].

Support Vector Regression (SVR)

The support vector machine (SVM) is a set of learning meth-
ods proposed by [66]for handling real issues with a short 
sample, non-linearity, and high dimensionality. It also has a 
high degree of generalization ability [67]. The SVM is a clas-
sification algorithm that can also be used to tackle regression 
problems. The sample point is meant to be as far away from 
the real-valued function as possible when constructing a real-
valued function, with the divergence between the actual value 
of the sample and the output value of the function being as 
little as possible.

As an example, consider linear regression, for a given set of 
sample, U =

(
xi, yi

)
, i = 1.2,… n, in which xi is represented 

as input vector, yi is represented as target output, and n is the 
total number of samples in the sample set. Many non-linear 
problems in real life are solved by translating the sample point 
into a high-dimensional space (x → �(x)) using a mapping 
function � , the optimization problem can be defined as:

with the constraints,

where � and b are the normal vectors and offset of the regres-
sion function respectively.

Group Method of Data Handling (GMDH)

Group method of data handling (GMDH) is a type of neural 
network based on the principal of heuristic self-organizing that 
was proposed by Ivakhnenko (1971). Different types of Arti-
ficial Neural Networks are now being used to solve a variety 
of technical challenges. The GMDH-NN utilized in this paper 
is a powerful tool for tasks including prediction, data mining, 
optimization, and pattern recognition. The network structure 
is made up of numerous layers, each with several neurons and 
inputs that are chosen in a self-organized fashion.

(22)min�(�) =
1

2
(�2)

{
yi − � ⋅ xi − b ≤ �

� ⋅ xi + b − yi ≤ �

i = 1.2,… n,

To create general functional links between input variables 
and output variables, GMDH-NN often uses the Kolmogo-
rov–Gabor polynomial [69] as a reference function.

In the above equation 
(
x
1
, x

2
,… .., xn

)
 are the input vari-

ables, 
(
a
1
, a,… .., an

)
 represent the weight vector, n repre-

sent the total number of input variables, and Y represent the 
network output, in order to achieve a non-linear mapping 
between input variable and output variable through learning, 
GMDH-NN frequently uses a multi-layer iterative procedure 
to identify neurons in the model construction. The external 
standard is then used to select the best model. For more details 
of GMDH, the reader are encouraged to refer the works of Mo 
et al. (2018).

Data Analysis

This study proposes XGBoost, GBM, RF, SVR, and GMDH 
machine learning approaches to study the probabilistic nature 
of liquefaction phenomenon. The entire dataset used in 
this study is normalized between 0 to 1 using the min–max 
approach to enhance the performance of the proposed models.

here Amax and Amin are the maximum and minimum value 
of the parameters respectively. AAct and ANor are the actual 
and normalized value of the parameters respectively. After 
the process of normalization, the entire dataset is randomly 
divided into two parts i.e., training (70%) and testing (30%), 
training set used for construction of model and testing set 
used for validation of model. For all developed models input 
parameters have been taken as SPT blow count and Cyclic 
Stress Ratio and output parameters have been taken as prob-
ability of liquefaction. Input and output data statistical sum-
mary given in Table 3.

Different statistical parameters are used to evaluate the 
accuracy of the proposed model. Root mean square error 
(RMSE), coefficient of determination (R2), Weighted mean 
absolute percentage error (WMAPE), Nash–Sutcliffe effi-
ciency (NS), variance account factor (VAF), performance 
index (PI), RMSE-observations standard deviation ratio 
(RSR), mean absolute error (MAE), are calculated using 
available mathematical expression [70, 71]. It is observed that 
for a proposed model with higher accuracy, these parameters 

(23)

Y = f
(

x1, x2,… .., xn
)

= a0 +
n
∑

i=1
aixi +

n
∑

i=1

n
∑

j=1
aijxixj

+
n
∑

i=1

n
∑

j=1

n
∑

k=1
aijkxixjxk +…

(24)ANor =
AAct − Amin

Amax − Amin
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values should be equal or nearer to their ideal values (shown 
in Table 4). Among the eight statistical parameters, the four 
parameters namely R2 , VAF, NS, RSR and PI, were utilized 
to determine the trend value, while MAE, WMAPE, RMSE 
were utilized to determine the amount of error of the devel-
oped models.

Result and Discussion

The outcomes of the developed models are presented in 
this study for predicting the probability of liquefaction are 
evaluated in detail. As stated earlier, two soil parameters, 
namely corrected SPT blow count and CSR, were considered 
as input variable to predict the probability of liquefaction 
of soil. In the first stage, for development of model train-
ing dataset was used and subsequently, using testing dataset 
performance of developed model was assessed. Ten perfor-
mance parameters were calculated to estimate the accuracy 
of the developed models from different aspects.

Actual versus Predicted Curve

The results of the several proposed models are plotted on 
a scatterplot shows the actual versus predicted values for 
the training and testing dataset in Fig. 1a–j. Based on the 
experimental and observed values, a scatter plot was plotted 

along the line x = y to determine the model’s prediction abil-
ity. The best model prediction is shown by data points on 
the x = y line. For each of the models shown in Fig. 1a–j, 
the scatterplot plotted for the training dataset and testing 
datasets is shown individually.

The plotted points in Fig. 1 are near to the line y = x , 
showing that all models were able to successfully predict 
liquefaction probability PL . The symbols Tr denotes train-
ing phase and Ts denotes the testing phase, respectively. The 
equation and R2 value displayed in the scatterplot conclude 
that XGBoost model achieve highest R2 value followed by 
GBM, RF, SVR, and GMDH. Therefore, XGBoost is found 
to be most reliable and efficient ML technique amongst all 
other techniques used in the current work.

Performance Evaluation

The ability of the proposed models to solve geotechni-
cal problems should be assessed. The performance of the 
created models was measured using a variety of perfor-
mance criteria in this study. Table 5 represent eight statis-
tical parameters calculated for training phase and testing 
phase for all developed models. Nash–Sutcliffe efficiency 
(NS), Coefficient of determination (R2), root mean square 
error (RMSE), weighted mean absolute percentage error 
(WMAPE), variance account factor (VAF), performance 
index (PI), RMSE-observations standard deviation ratio 
(RSR), and mean absolute error (MAE), are used to evalu-
ate the performance of developed models in this article. In 
both training phase and testing phase, the accuracy level 
of R2 of models ranges from 65.01% to 97.18%. The errors 
parameters calculated for training and testing dataset are 
considered as best because, they are close to their ideal value 
as mentioned in Table 4.

Score Analysis

To compare the performance of the proposed models, a sim-
ple score analysis method is adopted. The score value is 
calculated for each predictive model for training and testing 
respectively. The range of score values is chosen on the basis 
of total number of predictive models i.e., 1 to “n” (n = total 
number of predictive models). In this article, the models 
having minimum values for error parameter are awarded a 
minimum rank 1, and maximum values for error parameters 
are awarded a maximum rank m, while the maximum value 
for accuracy parameter is awarded a maximum rank n, indi-
vidually for training and testing phase. The overall perfor-
mance (total rank) of all the above models is then calculated 
by adding the ranks of each dataset. Finally, the total score 
of both the training and test datasets are added together to 
get each model’s final score. Based on the results of score 

Table 3   Statistical summary of input and output variable

Statistics N1,60 CSR PL

Max 50.4 0.77 1
Min 1 0.05 0.002
Median 11.000 0.360 0.920
Mean 13.320 0.346 0.732
1st Quartile 7 0.2 0.408
3rd Quartile 18 0.44 1
STDEV 9.051 0.153 0.312
Var 81.921 0.023 0.097
Skewness 1.192 0.395 -0.643
Kurtosis 1.103 −0.290 −1.210

Table 4   Parameters absolute value

Parameters Absolute value Parameters Abso-
lute 
value

R2 1 RSR 0
WMAPE 0 NS 1
RMSE 0 MAE 0
VAF 100 PI 2
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Fig. 1   Compression of Actual and predicted PL for a XGBoost (Tr), b XGBoost (Ts), c GBM (Tr), d GBM (Ts), e RF (Tr), f RF (Ts), g SVR (Tr), 
h SVR (Ts), i GMDH (Tr), j GMDH (Ts)
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Fig. 1   (continued)

Table 5   Statistical Parameters

Statistical Parameters XGBoost GBM RF SVR GMDH

Train Test Train Test Train Test Train Test Train Test

R2 0.9718 0.7991 0.9534 0.7806 0.9304 0.7694 0.7027 0.7782 0.6501 0.7017
WMAPE 0.0342 0.1314 0.0569 0.1334 0.0557 0.1326 0.1454 0.1354 0.1961 0.1893
NS 0.9713 0.7920 0.9531 0.7790 0.9290 0.7691 0.7021 0.7775 0.6510 0.6965
RMSE 0.0532 0.1416 0.0680 0.1459 0.0836 0.1492 0.1713 0.1464 0.1854 0.1710
VAF 97.1164 79.5115 95.2912 77.8522 92.8732 76.9045 70.0960 77.8043 64.9604 69.5513
PI 1.8897 1.4510 1.8382 1.4114 1.7753 1.3874 1.2313 1.4081 1.1131 1.2237
RSR 0.1695 0.4560 0.2166 0.4701 0.2664 0.4805 0.5458 0.4717 0.5908 0.5509
MAE 0.0250 0.0956 0.0417 0.0971 0.0408 0.0965 0.1065 0.0986 0.1436 0.1378
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analysis shown in Table 6, it is found that XGBoost has 
performed best as its rank is highest.

Taylor Graph

Taylor graph has been generated to observe the accu-
racy of the liquefaction potential predicting models dur-
ing training and testing. Taylor (2001) established the 
concept of a Taylor graph, which is a two-dimensional 
graph designed to graphically depict the accuracy of mul-
tiple constructed models. In other words, this diagram 
presents a graphical and comparative analysis of many 
models in a single figure. The degree of correspondence 
between actual and expected behaviors is measured using 
R, RMSE, and the ratio of SD values, and is represented 

by a single point. The position of the point should be 
closer to the reference point in an ideal model. The rela-
tive advantages of the models proposed in this article are 
presented in Fig. 2, where the models’ status have been 
represented by the respective points. It is observed from 
the given figure that XGBoost model achieves very close 
to the reference point therefore, XGBoost model is con-
sidered as the most robust model for prediction of lique-
faction probability (Fig. 3).

Error Matrix

The performance of the models is evaluated using an error 
matrix, and it is a new graphical concept of showing the error 
value as heat map matrix. In this analysis, different statistical 
parameters considered to predict the performance of proposed 
model for training phase (TR) and testing phase (TS) sepa-
rately [23]. Figure 4 shows the error matrix of five models as 

Table 6   Score analysis Model XGBoost GBM RF SVR GMDH

Parameters TR TS TR TS TR TS TR TS TR TS

R2 5 5 4 4 3 2 2 3 1 1
WMAPE 5 5 3 3 4 4 2 2 1 1
NS 5 5 4 4 3 2 2 3 1 1
RMSE 5 5 4 4 3 2 2 3 1 1
VAF 5 5 4 4 3 2 2 3 1 1
PI 5 5 4 4 3 2 2 3 1 1
RSR 5 5 4 4 3 2 2 3 1 1
MAE 5 5 3 3 4 4 2 2 1 1
Sub total 40 40 30 30 26 20 16 22 8 8
Total score 80 60 46 38 16
Rank 1 2 3 4 5

Fig. 2   Taylor graph for Training Dataset

Fig. 3   Taylor graph for Testing dataset
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a heat map matrix of error and trend parameters. Error matrix 
shows the obtained error (in %) as a function of the parameters 
by comparing them to their ideal values.

where, Et and Ee represent the error for the trend measur-
ing and error parameters, ia represent the ideal value of the 
parameters, Pt and Pe represent the observed values of the 
trend and error parameters respectively. Parameters which 
measure the trend (VAF, WI) and error (RMSE, WMAPE, 
MAE) are calculated using Eq. (28) and Eq. (29) respec-
tively. Finally, all models are compared in terms of overall 
error, which ranges from 3 to 59%. XGBoost has attained 
the lowest error (3%) in training phase and GMDH model 
attain higher error (59%) shows in Fig. 4.

Regression Error Characteristic (REC) Curve

The REC curves achieve three objectives at a time. REC 
curves show absolute deviation of error tolerance on the 
x-axis of the plot and proportion of observations predicted 
within the specified tolerance on the y-axis. As a result, the 
error tolerance and regression function accuracy have an 
obvious trade-off. The idea of error tolerance is appealing 
because most regression data are intrinsically wrong. The 
generated curve estimates the error between the experimen-
tal and observed values’ cumulative distribution function. 
The amount of error is expressed as an absolute deviation 
or a squared residual in the REC curve. Curve area provide 
a valid measure of a regression model’s performance, some-
times known as the area over the curve (AOC), value of 
AOC value should be as low as feasible for proposed model, 
and the location of the curve should correspond with the y 
axis (Figs. 5, 6).

(25)Et =
|
|1 − Pt

|
| × 100

(26)Ee =
|
|Pe

|
|

ia
× 100

Result and Discussion

The developed models are capable to estimate the prob-
ability of liquefaction in every possible way. Initially, the 
evaluation is carried out using eight performance indices., 
named as R2, RMSE, WMAPE, NS, VAF, PI, RSR, and 
MAE. The best prediction performance was achieved by the 
XGBoost model with (R2 = 0.978.and RMSE = 0.053) and 
(R2 = 0.799 and RMSE = 0.141) in the training and testing 
phase, respectively. The GBM model attained (R2 = 0.953.
and RMSE = 0.068) and (R2 = 0.780 and RMSE = 0.145), 
RF model attained (R2 = 0.930.and RMSE = 0.083) and 
(R2 = 0.769 and RMSE = 0.149), SVR model attained 
(R2 = 0.702.and RMSE = 0.171) and (R2 = 0.778 and 
RMSE = 0.146), GMDH model attained (R2 = 0.650 and 

TR TS TR TS TR TS TR TS TR TS

R2 3% 20% 5% 22% 7% 23% 30% 22% 35% 30% 59%

WMAPE 3% 13% 6% 13% 6% 13% 15% 14% 20% 19%

NS 3% 21% 5% 22% 7% 23% 30% 22% 35% 30%

RMSE 5% 14% 7% 15% 8% 15% 17% 15% 19% 17% 20%

VAF 3% 20% 5% 22% 7% 23% 30% 22% 35% 30%

PI 6% 27% 8% 29% 11% 31% 38% 30% 44% 39%

RSR 17% 46% 22% 47% 27% 48% 55% 47% 59% 55%

MAE 3% 10% 4% 10% 4% 10% 11% 10% 14% 14% 3%

XGBoost GBM RF SVR GMDH

Fig. 4   Error matrix

Fig. 5   REC curve for Training Dataset

Fig. 6   REC curve for Training Dataset
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RMSE = 0.185) and (R2 = 0.701 and RMSE = 0.171) in 
the training and testing phase, respectively. The calculated 
statistical parameters value for the proposed models are 
presented in Table 5. It is concluded that XGBoost model 
outperforms all other ML techniques (i.e., GBM, RF, SVR 
and GMDH) while simulating the probabilistic nature of 
liquefaction. Additionally, visualization of obtained result 
using Taylor graph, REC curve, and error matrix have been 
presented. The Taylor’s graph provides a clear comparative 
representation of the models in terms of coefficient of cor-
relation, RMSE, and ratio of standard deviation. The REC 
curve and accuracy matrix, show the cumulative distribution 
of the squared error and the degree of inaccuracy respec-
tively. Finally, the performance of the best prediction model 
was assessed using a novel method called as "Score Analy-
sis”. The XGBoost model attain the higher final score of 80 
while the GMDH model attain lowest score (16) value. It 
may also be concluded that the XGBoost, GBM, RF, SVR, 
and GMDH algorithm is certainly helpful in the forecast of 
prediction of probability of liquefaction.

Conclusion

To predict the probability of liquefaction of soil, five mod-
els, namely XGBoost GBM, RF, and GMDH were advanced 
and validate in this paper. Experimental field test data was 
taken from the literature of several earthquakes study. First, 
the entire dataset was divided into two sets training and 
testing. Then. the training dataset is used to construct the 
model and the testing sets was used to validate the devel-
oped models. Statistical parameters calculation concludes 
that, the XGBoost model obtained the highest predictive effi-
ciency in the testing phase with R2 = 0.799, RMSE = 0.141, 
MAE = 0.0956, VAF = 79.511, PI = 1.451, RSR = 0.456, 
WMAPE = 0.1314, and NS = 0.792. The “Score Analysis” 
further demonstrated that, at all point, the XGBoost model 
outperforms the others models. The XGBoost algorithm 
is a promising tool in predicting the probability of lique-
faction of soil based on the outcomes. This research aims 
to not only replace actual test operations for determining 
probability of liquefaction of soils, but also to offer details 
about previous AI-based investigations, including the results 
at all levels. In order to produce robust and efficient pre-
diction models, five soft computing-based algorithms were 
developed. The developed models are notable for their 
strong generalization potentials, low computing costs, and 
little over-fitting problems. In comparison to the perfor-
mance in the training phase, the models’ performance in 
the testing phase was shown to be in good accord. During 
the testing phase, no significant fluctuations or undesired 
values were found, demonstrating the model’s generalization 

capabilities and robustness. The XGBoost model followed 
by GBM, RF, SVR, and GMDH models can be introduced as 
a viable option to aid geotechnical specialists in predicting 
the probability of liquefaction of soils, based on its overall 
performance.
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