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Abstract The present study examines a composite can-

tilever beam containing a plate with two parallel sides

stiffened symmetrically. A simplified procedure is used to

analyze the flexural behavior of the beam. A numerical

example illustrates the simplicity and accuracy of the

methodology. When the edges of the cantilever plate are

stiffened, the stress concentration is increased. The cen-

terline stresses of the plate at the fixed end are considerably

higher. A low aspect ratio (l/w) and a low G/E ratio sig-

nificantly influence stress concentration. The present study

demonstrates that stiffeners with high flexural rigidity

could significantly reduce stress concentration along can-

tilever plate centerlines, allowing them to achieve similar

results to those predicted by simple bending theory (SBT).

Comparison and verification of the proposed simplified

methodology are conducted using existing literature and

finite element analysis. The theoretical results are in good

agreement with those obtained by the literature and finite

element analysis.

Keywords Composite beam � Stiffening � Shear lag �
Stress concentration � Warping

Notations

The following symbols are used in this paper:

E, G = Young’s modulus and shear modulus of the

beam

EeIe, EpIp, EsIs = Flexural rigidity

h = Height of the fiber from the neutral axis

hs = Thickness of stiffener

Ip, Is = Moment of inertia

k, n = Reissner’s parameters

l = Span length

M(x), M = Bending moment

P, q = Loading’s intensity

t, ts = The thickness of the plate and width of the

stiffener

u (x) = Longitudinal displacement

u (z) = Vertical displacement

u (x, y) = Spanwise sheet displacement

U(x) or U = Correction due to shear lag

w = The half-width of the plate

x, y, z = Coordinates

x1, x2 = End of the interval of integration

a, b = Constants

d = Deflection

do = Maximum deflection in EBT

l Poisson’s ratio

ex; c = Linear and shear strain of the cover sheet

Pl, Pst, Pp,

PT

= Potential energy

r, rx, r (x, y) = Bending stress

rmax Maximum bending stress (at the fixed end)

rEBT = Bending stress in EBT
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Table a continued

ro = Maximum bending stress in EBT (at the fixed

end)

Introduction

In engineering design, cantilever plates are frequently used

for variable, discontinuous, concentrated, or eccentric

loads. Cantilever walls, projecting floor slabs, projecting

piers heads, and gear teeth are examples of cantilever

plates [1]. Other thin cantilever plates stiffened by an

attached member are box, U-T-, and I-beams with thin

cover plates as flanges. Ship hulls, floors, tanks, aircraft,

box-girder bridges, and tubular-tall buildings utilize these

beams. In these beams, stress distribution across the width

is not uniform similar to elementary beam theory (EBT)

stresses in narrow beams. These types of beams do not

satisfy the assumption of elementary beam theory that the

normal stress in the flange does not vary in the direction

across the width because of the shear deformability of the

flanges [2].

As a result of the bending in the cantilever plate, com-

plex boundary conditions are produced [3–9]. In particular,

the shape of the plate is cylindrical, and two corners are

lifted [4, 7, 10–13]. In the past literature, a plate with

different boundary condition has been analyzed by various

scholars [14–20]. The authors analyze the cantilever plate

using numerical methods, preferably finite difference

method, superposition method, and the generalized varia-

tional principle [1–3]. However, the stresses do not follow

a uniform distribution across the width in very short wide

plates. In order to calculate the strength of such a plate, the

concept of effective width was introduced [1–3, 19–21]. In

addition, Tenchev [21] reported that Poisson’s ratio in

calculating the effective width produces a significant error

in the plates composed of composite material as the E/G

ratio of the plate affects the variation in stress along the

width of the plate. It also did not include any provisions for

different E/G ratios in the code for fiber composites and

sandwich constructions [22].

A thin plate is also used as a flange in a box beam, I-,

T-beam, and U-beam, stiffened by another plate called the

web. Therefore, stiffening the thin plate in this manner

produces a 2D plane stress problem [23–28]. Box beam, I-,

T-beam, and U-beam cross sections become warped under

shear stresses [23–33]. Thus, preventing the free warping

of the flange produces stress concentration in the flange.

The bending stress distribution across the width becomes

unequal, and this phenomenon is called shear lag

[2, 23–28]. Actual stresses are significant at the junction of

the flange and web. A positive shear lag occurs at the

flange–web junction when the actual stresses are higher

than the other part of the flange [23–28]. However, the

opposite of this phenomenon is negative shear lag [30–33],

which occurs whenever the actual stresses at the flange–

web junction are lowest compared with those at the other

part of the flange.

Researchers have examined the effects of stiffening on

preventing the free warping of thin plates [34, 35]. The

warping displacement of the flange is used to study the

stress concentration in terms of shear lag effect. Many

researchers have studied and explained the shear lag phe-

nomenon using 2D models [36–40]. In addition to the other

notable methods to analyze these structures [24, 41–44],

the energy method is quite versatile as well. The least work

method uses the stress compatibility equilibrium equations,

and the minimum potential energy method uses the strain

compatibility equilibrium equations

[2, 23, 28, 30, 45–53]. The shape functions of the warping

of the flange of the structure are assumed to be polynomials

of degrees two, three, four, and five. The assumed shape

function shows the stress distribution across the width

[27, 54, 55].

According to the rigorous literature review, stress con-

centration is a major concern when analyzing the cantilever

plate [1, 3, 15]. A part of flanges located far from web–

flange junctions does not take their full share of the

resisting bending moment in thin plate sections [2, 25–27].

Utilizing Poisson’s ratio may result in an incorrect stress

distribution across the width of composite plates. There-

fore, this study aims to analyze a composite cantilever

beam composed of a plate symmetrically stiffened along its

parallel sides (Fig. 1). Stiffeners provide an additional

constraint along the parallel sides of the cantilever to

restrain the plate’s free warping. The cantilever plate can

be stiffened along the parallel sides to prevent it from

bending cylindrically and the corners from lifting (Fig. 1a).

The entire composite cantilever beam can be considered as

a 2D plane stress problem. The composite cantilever beam

is discretized using the variation approach [2, 53]. For the

entire simulation, the G/E ratio was used instead of Pois-

son’s ratio. The warping displacement function is assumed

to follow a second-order polynomial. Because the order of

differential equation is higher than in elementary beam

theory, additional boundary conditions appear in addition

to the governing equations.
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Analytical Formulation

The present study considers a composite cantilever beam

with length l. It has a width of 2w and a thickness of

t (Fig. 1c). The stiffener has a width of ts and a thickness of

hs. For shear deformation coupled with normal stress, the

corresponding span-wise displacement is assumed to be a

polynomial function. Assuming that the span-wise coordi-

nate is x, the coordinates perpendicular to the x-direction

are y and z. Coordinate z(x) represents the deflection of the

neutral axis of the beam.

Here are the assumptions.

• Parts of the beam are rigidly connected.

• A simple bending theory is followed by the stiffeners.

• Assuming shear deformation coupled with normal

stress, the corresponding span-wise displacement of

the plate would be:

u x; yð Þ ¼ �h
dz

dx
þ y2

w2
U xð Þ

� �
ð1Þ

where U(x) is the correction due to shear lag. The stiffened

cantilever plate’s potential energy may be composed of the

elastic potential energy of the load system Gl, the strain

energy of the two stiffeners Gst, and the strain energy of

the plate Gp.

The elastic potential energy of a load system for a dis-

tribution of bending moments M along the length l is given

by:

Pl ¼
Z

M
d2z

dx2
dx ð2Þ

The strain energy of the two stiffeners

Pst ¼
1

2

Z
EsIs

d2z

dx2

� �2

dx Where Is ¼
1

6
tsh

3
s

� �
ð3Þ

Is denotes the principal moment of inertia of the two-

Fig. 1 Composite panel composed of cantilever plate stiffened along parallel sides: a single panel, b multiple panels, c geometry and coordinates

of the composite cantilever beam/panel
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sided stiffener. Denoting, Es and Ep are the modulus of

elasticity of the stiffener and the plate, and Gp is the

modulus of rigidity of the plate. The strain energy of plate

Pp ¼
1

2

ZZZ
Epe

2
x þ Gpc

2
� �

dxdydh ð4Þ

The span-wise linear and shear strain in the plate can be

calculated from Eq. 1 as follows:

ex ¼ �h z00 þ y2

w2

� �
U0

� �
; c ¼ � 2h

w

y

w
U ð5Þ

Putting the values of linear and shear strain from Eq. 5

in Eq. 4, the strain energy of the plate

Pp ¼
1

2

Z
EpIp z00ð Þ2þ 1

5
U0ð Þ2þ 2

3
z00U0 þ Gp

Ep

4

3w2
U2

� �
dx

where Ip ¼
1

6
wt3

� �

ð6Þ

After combining Eq. 2, Eq. 3, and Eq. 6, the total

potential energy for the system

PT ¼
Z

1

2
EeIe z00ð Þ2þMz00

� �
dxþ r

1

2
EpIp

1

5
U0ð Þ2þ 2

3
z00U0 þ 4

3w2

Gp

Ep
U2

� �

dx; where EeIe ¼ EpIp þ EsIs

ð7Þ

The differential equation and boundary condition for z

and U can be derived using theorem of minimum potential

energy, i.e., dPT ¼ 0. Thus, with x1and x2 denoting the

interval of integration

dPT ¼
Z

EeIez
00 þM þ 1

3
EpIpU

0
� 	

dz00
�

þEpIp � 1

5
U00 � 1

3
z000 þ 4

3w2

Gp

Ep
U

� 	
dU

�
dx

þ EpIp
1

5
U0 þ 1

3
z00

� 	
dU

� �x2

x1

¼ 0

ð8Þ

The following relations can be established.

z00 þ 1

3

EpIp
EeIe

U0 þ M

EeIe

� 	
¼ 0 ð9Þ

EpIp
1

5
U00 � 4

3

Gp

Ep

1

w2
U þ 1

3
z000

� 	
¼ 0 ð10Þ

EpIp
1

5
U

0 þ 1

3
z}

� 	
dU

� �x2

x1

¼ 0 ð11Þ

From Eqs. 10 and 11, eliminating the U’ and U’’ and

arranging the term

z}� zIV

k2
¼ � M

EeIe
þ n

k2
M}

EeIe
ð12Þ

The two Reissner’s parameters are

n ¼ 1

1� 5
9

EpIp
EeIe

and k ¼ 1

w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20

3
n
Gp

Ep

s
ð13Þ

Solutions

The cantilever beam is analyzed by applying uniformly

distributed load q throughout the span, point load P at the

free end, uniformly varied load with maximum intensity q

at the support, and uniformly varied load with maximum

intensity q at the free end, respectively. The bending stress

distribution in the cantilever is derived, assuming the free

end is the origin of the coordinate system. As a result of

bending Eqs. 18, 19, 20, and 21, Eq. (12) can be solved in

close form accordance with Reissner [2] and Singh et al.

[53] for each load case, respectively, as follows.

rx ¼ � ql2

2

Eph

EeIe

x

l

� �2

þ 10

3

n

klð Þ2
1

3

EpIp
EeIe

� y2

w2

� �"

cosh l� xð Þ þ kl sinh kx
cosh kl� 1

� �	 ð14Þ

rx ¼ �Pl
Eph

EeIe

x

l
þ 5

3

n

kl

1

3

EpIp
EeIe

� y2

w2

� �
sinh kx

cosh kl

� �� 	
ð15Þ

rx ¼ � ql2

6

Eph

EeIe

x

l

� �3

þ 10n

klð Þ2
1

3

EpIp
EeIe

� y2

w2

� �"

� x

l
þ kl

2
þ 1

kl

� �
sinh kx

cosh kl

� �	 ð16Þ

rx ¼ � ql2

3

Eph

EeIe

3

2

x

l

� �2

� 1

2

x

l

� �3

þ 5n

klð Þ2
1

3

EpIp
EeIe

� y2

w2

� �"

x

l
� 1þ cosh kxþ kl

2
� sinh kl� 1

kl

� �
sinh kx

cosh kl

� �	

ð17Þ

Results and Discussion

In the example, a composite cantilever beam of 250 mm

length, 2w = 100 mm, t = 20 mm, is obtained by adding

stiffeners of 20 mm thickness (hs) and 6 mm width (ts) to

the plate. Material properties of the beam are as follows:

Young’s modulus of plate (Ep) = 70 GPa, Gp/Ep ratio =

0.38, Young’s modulus of stiffeners (Es) = 200 GPa. As-

pect ratio (l/w) and stiffness ratio (EpIp/EeIe) of the can-

tilever are five and 0.75, respectively. Three-dimensional

finite-element analysis of the composite beam is carried out

using ANSYS version 15 for all load cases considered. The

longitudinal and vertical displacements at the end of the

beam are restrained by setting u(x) = 0 and u(z) = 0. An

additional boundary condition is applied to fulfill the
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assumption made in the present study by restricting the

lateral displacements and rotations at the edges of stiffeners

at the free end. A 20-noded 3D homogenous structural

solid element, SOLID186, which adopts a higher-order

deformation theory, was used as part of the analysis. The

model is discretized using a global mess size of 7.5 mm,

resulting in 1632 elements (Fig. 2). The stress concentra-

tion is expressed as a stress factor (r/rEBT), i.e., the ratio

Fig. 2 Finite element analysis

model of the composite

cantilever beam

Fig. 3 Comparison of the deflection profile of the composite cantilever beam with the literature and FEA
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of actual stress to stress calculated by the elementary beam

theory. A peak stress factor indicates the greatest stress

observed across the width of a beam (rmax/ro).

According to Eqs. 18, 19, 20, and 21, the deflection

profiles of the composite beam are calculated and

compared with those of the FEA and existing literature and

presented in Fig. 3. The calculated results are in close

agreement with those obtained by the FEA, Reissner’s box

beam [2], and Euler–Bernoulli’s beam. There is a trivial

deviation in the deflection profile compared to Euler–

Fig. 4 Comparison of the variation in the stress at the top fiber in the centerline of the of the plate in the cantilever beam

Fig. 5 Stress profile across the plate width in the composite cantilever beam: a for uniformly distributed load; b for point load at free end; c for

uniformly varied load with maximum intensity at the support; and d for uniformly varied load with maximum intensity at the free end
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Bernoulli’s beam due to the additional deflection produced

by the shear deformation. In comparison with a cantilever

box beam, there is an apparent increase in the maximum

deflection of the composite cantilever.

Further, to verify the accuracy of the present method-

ology, the stresses in the centerline of the plate along the

length of the top fiber are also compared to the FEA results

for all loading cases (Fig. 4). There is excellent agreement

between the present methodology and FEA results for all

loading scenarios. Even though FEA can evaluate stress in

various structures, the results at the fixed end of the can-

tilever cannot be determined directly and precisely due to

singularities.

A composite cantilever beam considered in the present

study exhibits a negative shear lag effect at the fixed end

similar to those obtained by Singh et al. [53]. Applied loads

induced higher stresses apart from the plate–stiffeners

junction and along the plate’s centerline at the support.

This can be observed in Fig. 5 for uniformly distributed

load q, for point load P at the free end, for uniformly varied

load with maximum intensity q at support, and for uni-

formly varied load with maximum intensity q at the free

end. The stress factor is used to calculate the additional

stresses produced. Peak stress factors in the centerline of

the example beam generated by each load case are 1.12,

1.066, 1.164, and 1.10, respectively. The centerline of the

beam at the fixed end exhibits a higher stress factor than the

box beam [2] due to reverse shear transmission. There is a

positive shear lag effect after a certain distance along the

length of the cantilever from the fixed end as shown in

Fig. 5. Similar results are observed for negative shear lag

along the length of a cantilever box beam [30].

If the present study is extended to cantilever beams

consisting of a plate and stiffeners of the same material, the

stiffness ratio EpIp/EI is transformed into Ip/I. As shown in

Fig. 5, the variation of the bending stresses in the plate of

the composite beam is not uniform, and the maximum

stresses are located at the centerline of the fixed end. This

method can be applied to estimate the exact stress variation

in H-shaped beams, fletched wood beams, ship hulls,

composite glass, ceramic, and metallic plates, and com-

posite concrete slabs under varying load conditions. The

present study also applies to stiffening the edges of layered

composite cantilever plates using Young’s modulus and

shear modulus for transverse bending. It is practical and

economical to design the composite beam using the exact

estimation of the stress variations. A precise prediction of

the adhesive bond strength and weld length can be made

when fabricating this type of composite. As a result of

space constraints, the results for different end conditions

are not presented in the present study, but they can be

easily derived from Kuzmanovic and Graham [56]. In the

parametric analysis section, detailed discussions on the

various parameters affecting the stress concentration are

included. A parametric analysis of stress localization based

on stress factors is presented in the following paragraphs.

Effect of Aspect Ratio

The aspect ratio (l/w) is one of the most important

parameters affecting the shear lag. In Fig. 6, the peak stress

factor developed due to the negative shear lag effect is

plotted against the aspect ratio. The variation in peak stress

factor follows the pattern of the box beam. The peak stress

factor is observed to be greater for lower aspect ratios. The

fixed end stress is significantly affected by stiffening the

cantilever plate with an aspect ratio below five. Peak stress

factors at the fixed end of the cantilever for square plates

(aspect ratio 2) are 1.25, 1.17, 1.31, and 1.22 for uniformly

distributed load, point load at free end, uniformly varied

load at support, and uniformly varied load at free end,

respectively. Aspect ratios of 20 or more result in a lower

peak stress factor of 1.05 (Fig. 6a).

Fig. 6 a Variation in the peak stress factor at the fixed end with respect to the aspect ratio (l/w); b variation in the peak stress factor at the fixed

end with respect to the stiffness ratio (EpIp/EeIe); c variation in the peak stress factor at the fixed end with respect to the Gp/Ep ratio
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Effect of Stiffness Ratio

Variations in the stiffness ratio (EpIp/EI) correspond to

changes in the relative stiffness of the plate. Figure 6b

shows the variation in stress factor to stiffness ratio (EpIp/

EI) in the composite cantilever beam’s plate for the aspect

ratio five. Some existing box girder bridges have stiffness

ratios ranging from 0.8 to 0.96 [43, 47, 57]. For the can-

tilever beam, the stiffness ratio is assumed by Reissner [2]

to be 0.5. The stiffness ratio of composite beams may be

lower [21]. Therefore, the stiffness ratio range is taken as

0.1 to 0.90. Stress concentration in terms of negative shear

lag effect is noted to increase with a higher stiffness ratio.

Moffatt and Dowling [43] observed a similar phenomenon

in box beams for the positive shear lag. The peak stress

factor increases as the stiffness ratio of the flange plate

increases. Additionally, the combination of the plate and

stiffeners may result in a lower stiffness ratio, reducing the

stress concentration at the fixed end. According to Fig. 6b,

the peak stress factor is reduced by 1.05 or less for stiffness

ratios below 0.3. The stress factors are closer to one, which

is closer to the results of the SBT.

Effect of Material Property

The present methodology is based on the Gp/Ep ratio

instead of the Poison’s ratio [55], which results in an

inevitable error when analyzing composite beams [21].

Material properties are presented in terms of variations in

peak stress factors relative to the Gp/Ep ratio. In this study,

the Gp/Ep ratio ranges from 0.18 to 0.64. Figure 6c shows

the relation between the Gp/Ep ratio and the stress factor for

the aspect ratio five. Significantly higher stress levels are

observed in the cantilever beam with lower Gp/Ep ratios of

the plate. Lin and Zhao [47] report a similar observa-

tion. For a box beam loaded in its nonlinear range of

behavior, a higher stress concentration is observed.

Therefore, the Gp/Ep ratio is an essential parameter when

analyzing composite structures and equally relevant when

the beam is loaded in its nonlinear range.

Effect of Stiffeners and Remedy

Although stiffeners are used to prevent the cantilever plate

from being bent cylindrically or lifted at the corners, the

plate still shows stress concentration at the fixed end,

Fig. 7 Variation in the peak stress factor at the fixed end with respect to the relative stiffness of the stiffeners and plate for different loadings
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similar to past studies [1, 3, 4, 7]. Accordingly, the present

study suggests that minimizing localized stresses at the

fixed end of a composite cantilever beam can result in an

approximately uniform distribution of stresses across its

width. It is possible to minimize stress localization by

combining plates and stiffeners in a way that produces a

low stiffened ratio. Because the stiffness ratio depends on

the stiffness of both the plate and the stiffener, stiffeners

with high flexural rigidity will reduce the stiffness ratio of a

composite beam made of specific plates (Fig. 7).

The variation of the stress factor for the relative stiffness

of the stiffeners and plate (EsIs/EpIp) is depicted in Fig. 7

for G/E = 0.6 and the aspect ratios in most of the practical

range. The stiffeners with higher relative stiffness reduce

the stress factor closer to one. However, in a very wide

beam, the shear lag effect is higher, and thus the stress

concentration. Consequently, the stiffeners even having the

relative stiffness two or more are not able to reduce the

stress factor significantly in very wide beam/panel (l/w

B 1). Partitioning the panels, in this case, can reduce the

stress concentration at the fixed end of the plate. Parti-

tioning the panels (Fig. 1b) may result in a higher relative

stiffness of the stiffeners along with an increased aspect

ratio of the plate. This may reduce stress concentrations

along the centerline of the fixed end of the plate.

Conclusions

This paper analyzes a cantilever plate symmetrically

stiffened along its parallel sides using the simplified pro-

cedure for varying shear loads. A higher stress concentra-

tion is observed at the centerline of the fixed end due to a

negative shear lag effect. The results are verified by com-

paring with the result of existing literature and finite ele-

ment analysis. Additionally, the conclusions of the present

study are as follows.

(a) Adding stiffeners to the sides of a cantilever plate

produces stress concentrations in the centerline at the

fixed end due to the negative shear lag effect and

reduced stress at the plate–stiffener interface. Aspect

ratio greatly influences shear lag—a lower aspect

ratio results in higher stress concentrations.

(b) Higher plate stiffness results in a higher negative

shear lag effect. Nevertheless, stiffeners with high

flexural rigidity may reduce the stress concentration

in the centerline at the fixed end of the composite

cantilever beam significantly and even more so than

the SBT.

(c) The G/E ratio of the plate significantly affects the

negative shear lag in composite cantilever beams. -

With lower G/E ratios, stress levels are significantly

higher. This makes the G/E ratio an essential param-

eter in analyzing composite structures and equally

relevant when the beam is loaded in its nonlinear

range.

Thus, the present study recommends using stiffeners

with higher flexural rigidities in composite beam con-

struction than stiffeners with lower flexural rigidities. This

accomplishes the objective of analyzing the composite

cantilever beam.

Appendix 1 Additional Equations

Assuming the coordinate x = 0, x = l at free end fixed end

of the beam, respectively, the equations for the bending

moment can be written (Eqs. 18–21 for each loading cases,

respectively)

M ¼ � ql2

2

x

l

� �2

ð18Þ

M ¼ �Pl
x

l

� �
ð19Þ

M ¼ � ql2

6

x

l

� �3

ð20Þ

M ¼ � ql2

3

3

2

x

l

� �2

� 1

2

x

l

� �3
� 	

ð21Þ

The cantilever’s deflection profile for each loading case

can be obtained after putting U’ and M in Eq. 12 and

integrating twice. Making z (l) = z’ (l) = 0, the equations

for the deflection profile for uniformly distributed load q,

point load P at free end, uniformly varied load with

maximum intensity q at the support, uniformly varied load

with maximum intensity q at the free end can be obtained,

respectively, as

z xð Þ ¼ ql4

8EeIe

1

3

x

l

� �4

� 4

3

x

l

� ��

þ 1þ 8ðn� 1Þ
klð Þ2

1

2
1� x

l

� �2
� �

þ cosh kx� cosh kl

klð Þ2

(

� sinh kx� sinh kl

klð Þ2cosh kl
sinh kl� klð Þ

)
�

ð22Þ

z xð Þ ¼ Pl3

3EeIe

1

2

x

l

� �3

� 3

2

x

l

� ��

þ1þ 3ðn� 1Þ
klð Þ2

� x

l
þ sinh kx

klcosh kl
� tanh kl

kl
þ 1

� �#

ð23Þ
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37. M. Rovňák, L. Rovňáková, Discussion on negative shear lag in

framed-tube buildings. J. Struct. Eng. (1996). https://doi.org/

10.1061/(ASCE)0733-9445(1996)122:6(711)

38. W. Yao, H. Yang, Hamiltonian system-based Saint Venant

solutions for multi-layered composite plane anisotropic plates.

Int. J. Solids Struct. 38(32–33), 5807–5817 (2001). https://doi.

org/10.1016/S0020-7683(00)00371-1

39. J.Q. Tarn, W.D. Tseng, H.H. Chang, A circular elastic cylinder

under its own weight. Int. J. Solids Struct. 46(14–15), 2886–2896
(2009). https://doi.org/10.1016/j.ijsolstr.2009.03.016

40. L. Zhao, W. Chen, Plane analysis for functionally graded mag-

neto-electro-elastic materials via the simplistic framework.

Compos. Struct. 92(7), 1753–1761 (2010). https://doi.org/10.10

16/j.compstruct.2009.11.029

41. M.M. Carlos, A.C. Aparicio, Grillage analysis of cellular decks

with inclined webs, Proceedings of the Institution of Civil

Engineers -. Struct. Build. 164(1), 13–18 (2011). https://doi.org/

10.1680/stbu.8.00056

42. M.S. Cheung, L. Wenchang, L.G. Jaeger, Spline finite strip

analysis of continuous haunched box-girder bridges. Can. J. Civil

Eng. 19(4), 724–728 (1992). https://doi.org/10.1139/l9

2-080.10.1139/l92-080

43. K.R. Moffatt, P.J. Dowling, Shear lag in steel box girder bridges.

Struct. Eng. 53(10), 439–448 (1975)

44. L. Zhu, J. Nie, F. Li, W. Ji, Simplified analysis method

accounting for shear lag effect of steel-concrete composite decks.

J. Construct. Steel Res. (2015). https://doi.org/10.1016/

j.jcsr.2015.08.020
45. A. Coull, B. Bose, Simplified analysis of frame-tube structures.

J. Struct. Div. 101(11), 2223–2240 (1975). https://doi.org/10.10

61/JSDEAG.0004200

46. Z. Lin, J. Zhao, Least work solutions of flange normal stresses in

thin walled flexural members with high order polynomials. Eng.

Struct. (2011). https://doi.org/10.1016/j.engstruct.2011.05.022

47. Z. Lin, J. Zhao, Revisit of AASHTO effective flange-width

provisions for box girders. J. Bridg. Eng. 16(6), 881–889 (2011).

https://doi.org/10.1061/(ASCE)BE.1943-5592.0000194

48. P.C. Chang, Analytical modeling of tube-in-tube structure.

J. Struct. Eng. (1984). https://doi.org/10.1061/(ASCE)

0733-9445(1985)11:6(1326)

49. Q.Z. Luo, Q.S. Li, Shear lag of thin-walled curved box girder

bridges. J. Eng. Mech. (2000). https://doi.org/10.1061/(ASCE)

0733-9399(2000)126:10(1111)

50. Q.Z. Luo, J. Tang, Q.S. Li, Shear lag analysis of beam-columns.

Eng. Struct. (2003). https://doi.org/10.1016/s0141-0296

(03)00061-0

51. S.J. Zhou, Finite beam element considering shear lag effect in

box girder. J. Eng. Mech. 136(9), 1115–1122 (2010).

https://doi.org/10.1061/(ASCE)EM.1943-7889.0000156

52. R. Mahjoub, R. Rahgozar, H. Saffari, Simple method for analysis

of tube frame by consideration of negative shear lag. Aust.

J. Basic Appl. Sci. 5(3), 309–316 (2011)

53. G.J. Singh, S. Mandal, R. Kumar, R. Kumar, Simplified analysis

of negative shear lag in laminated composite cantilever beam.

J. Aerosp. Eng. (2020). https://doi.org/10.1061/(ASCE)

AS.1943-5525.0001100

54. Y.H. Zhang, L.X. Lin, Shear lag analysis of thin-walled box

girders adopting additional deflection as generalized displace-

ment. J. Struct. Eng. (2014). https://doi.org/10.1016/j.eng

struct.2013

55. Q. Song, A.C. Scordelis, Formulas for shear-lag effect of T-, I-,

and box beams. J. Struct. Eng. 116(5), 1306–1318 (1990).

https://doi.org/10.1061/(ASCE)0733-9445(1990)116:5(1306)

56. B.O. Kuzmanovic, H.J. Graham, Shear lag in box girder.

J. Struct. Eng. 107(9), 1701–1712 (1981). https://doi.org/10.

1061/JSDEAG.0005777

57. C. Menn, Prestressed concrete bridges. Birkhäuser Verlag AG
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