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Abstract This paper presents an extensive numerical

investigation on the buckling characteristics of curved

panels, such as cylindrical, spherical and hyperbolic panels,

under linearly varying in-plane load with respect to various

types of loading, curvature, aspect ratio, Poisson’s ratio and

boundary condition using the finite element method. Three

types of linearly varying in-plane loads, i.e. triangular,

rectangular and trapezoidal in-plane loads are considered.

The aspect ratio of the curved panels varies from 0.5 to 3.0.

Six boundary conditions commonly used in the construc-

tion are considered. The above parametric study reveals

that the critical buckling loads of curved panels are greatly

influenced by the various parameters considered in the

present investigation. In addition, a comparative study is

made to find the influences of the various in-plane loads,

such as triangular, parabolic, patch and concentrated in-

plane loads, on the critical buckling load of cylindrical,

spherical and hyperbolic panels. Finally, typical design

charts in non-dimensional forms are also developed to

obtain the critical buckling loads of various commonly

used clamped spherical panels in construction. These

design charts will be immensely helpful for the designers to

find out the critical buckling load for clamped spherical

panels of any dimension, any type of linearly varying in-

plane load and any isotropic material directly from the

chart at the time of preliminary design without the use of

any commercially available finite element software, which

is very complex and time taking. This novelty for the

preparation of designed charts for clamped spherical

curved panel can also be applied to other curved panels and

boundary conditions.
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Introduction

In modern days, curved panels are often used in various

structures of aerospace, civil, marine and mechanical

engineering. Singly and doubly curved panels are mostly

used in civil engineering as roofing units in order to cover

large span areas. The use of curved panels is increasing

significantly due to appreciation of community from aes-

thetic point of view. Owing to its geometry, curved panels

are structurally stiffer than flat panels. In practical situa-

tions, many times these structures are exposed to various

non-uniform loads, such as triangular, point, patch or

arbitrary loads at the boundaries due to which non-uniform

in-plane stresses are developed. The non-uniform in-plane

stress distribution may also be developed due to material

and geometrical discontinuities in structures. When a

structure is subjected to non-uniform in-plane compressive

force, it undergoes large transverse displacements and

complex stress distribution occurs in structures. Therefore,

the study of buckling characteristics of curved panels under

non-uniform in-plane loads is of utmost technical impor-

tance so far as the understanding of the behaviour of these

systems is concerned.

In the past, several researchers reported the vibration

and buckling study of isotropic plates under various in-

plane loadings employing different methods. Timoshenko

and Gere [1] presented the numerical results on the critical
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buckling loads for flat plates under various uniform loads

and a pair of concentrated loads at mid breadth. Khan and

Walker [2] studied the buckling characteristics of plate

subjected to localized edge loading by a simple theoretical

method and compared the results obtained using finite

element solution. Numerical study on vibration and buck-

ling behaviour of plates under in-plane hydrostatic loading

was reported by Kielb and Han [3]. The bucking and

vibration solutions of rectangular plates under complicated

in-plane stress were presented by Kaldas and Dickinson [4]

using the Rayleigh–Ritz method. The elastic stability

behaviour of rectangular plates under locally distributed

edge forces was investigated by Baker and Pavlovic [5] for

simply supported boundary condition. Leissa and Ayoub

[6] investigated the buckling and vibration behaviour of a

rectangular plate for concentrated forces which are directed

opposite to each other employing the Ritz and finite ele-

ment method (FEM). The elastic stability of plates under

concentrated and distributed tangential loads was carried

out by Brown [7, 8]. Kitipornchai et al. [9] investigated the

bucking behaviour of thick skew plates using the Ray-

leigh–Ritz method. The bucking characteristics of Mindlin

plates under normal in-plane forces were investigated by

Wang et al. [10] and Liew et al. [11] employing the Ray-

leigh–Ritz method and Levy type solution method,

respectively. Similarly, the buckling analysis of rectangular

Mindlin plates under partial in-plane loading was carried

out by Liew and Chen [12] employing the radial point

interpolation method. The differential quadrature method

was also applied to analyse the buckling of rectangular

plates by Wang et al. [13]. Bradford and Azhari [14]

studied the buckling of plate for various end conditions

employing the finite strip method. The vibration, buckling

and instability study of plates with an opening positioned in

the middle under in-plane loading at the edges (tension and

compression) are reported by Prabhakara and Dutta [15].

The buckling and vibration behaviour of simply supported

free simply supported free (SS-F-SS-F) rectangular plates

subjected to in-plane moments was investigated by Kang

and Leissa [16].

Leissa and Kang [17], Kang and Leissa [18] and Wang

et al. [19] reported the exact solutions for buckling and

vibration of plates of rectangular dimension under linearly

varying in-plane stress for different boundary conditions

using power series method, method of Frobenius and dif-

ferential quadrature method, respectively. The buckling

behaviour of rectangular Reissner–Mindlin plates with

simply supported boundary condition under linearly vary-

ing in-plane load was studied by Zhong and Gu [20] using

both analytical method and computer software ANSYS.

The buckling analysis of rectangular thin plate with vary-

ing thickness under biaxial compression was carried out by

Eisenberger and Alexandrov [21] employing the extended

Kantorovich method. Moreover, the buckling behaviour of

plates subjected to various non-uniform in-plane loading

was investigated by various researchers [22–24] using

various methods. Ikhenazen et al. [25] studied the buckling

behaviour of linear plates subjected to in-plane patch

loading using FEM. Similarly, Wang and Yuan [26]

applied the differential quadrature method to analyse the

buckling of skew plates under general in-plane loading.

In addition to the study of buckling behaviour of iso-

tropic plates, a number of research works were also

reported on the buckling characteristics of composite

plates. The buckling analyses of laminated composite

plates with various boundary conditions under uniform in-

plane loading were carried out by Baharlou and Leissa [27]

and Dawe and Wang [28] using Ritz and spline finite strip

methods, respectively. Chai et al. [29] and Chai and Kong

[30] investigated the optimization of laminated plates of

rectangular dimension under linearly varying in-plane

loading. Similarly, the buckling analysis of symmetrical

composite rectangular plates under linearly varying in-

plane load was carried out by Zhong and Gu [31] and Ni

et al. [32] for different boundary conditions. The buckling

analysis of moderately thick rectangular composite and

sandwich plates subjected to partial edge loading was also

carried out by Sunderesan et al. [33] and Chakrabarti and

Seikh [34], respectively. Shufrin et al. [35] applied a semi-

analytical approach to investigate the buckling behaviour

of symmetrical laminated rectangular plates under various

combinations of in-plane compression for general bound-

ary conditions. Buckling behaviour of composite plates

subjected to partial or concentrated in-plane loading was

investigated by Daripa and Singha [36] employing FEM.

Lopatin and Morozov [37–39] and Bourada et al. [40]

reported the buckling characteristics of orthotropic rect-

angular plates subjected to various in-plane loadings for

different boundary conditions. Panda and Ramachandra

[41] obtained the critical buckling loads of rectangular

laminated plates subjected to non-uniform in-plane loading

for various boundary conditions using Galerkin’s

approximation.

Though there were extensive researches on the buckling

behaviour of isotropic and composite plates, few researches

were reported on the buckling of shells. Yamada et al. [42]

conducted experimental study on the buckling behaviour of

shallow spherical shells with clamped boundary condition

subjected to external pressure. Featherston and Ruiz [43]

also conducted a series of tests to establish the accuracy of

the theoretical critical buckling loads of curved panels

subjected to combined compression and shear. The buck-

ling behaviour of thick cylindrical shells under axial stress

was investigated by Matsunaga [44] using higher-order

shell theory. Hilburger et al. [45, 46] studied the buckling

characteristics of quasi-isotropic curved panels having a
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circular cut-out under compression. Matsunaga [47]

investigated analytically the stability and vibration of thick

shallow shells with simply supported boundary condition

under in-plane stresses. The experiments were conducted

by Mandal and Calladine [48] on self-weight buckling

behaviour of thin cylindrical shells under axial compres-

sion. Sahu and Datta [49] studied the buckling and para-

metric instability behaviour of curved panels under non-

uniform harmonic load. Ravi Kumar et al. [50] studied the

vibration and buckling behaviour of curved panels with

various in-plane tensile in-plane loading using FEM. The

same authors [51] also investigated the parametric insta-

bility and tensile buckling of curved panels with an open-

ing positioned in the middle exposed to uniaxial in-plane

partially distributed tensile load at the edges using the same

method. Khelil [52] investigated theoretically and numer-

ically the buckling behaviour of steel shells under non-

uniform axial and pressure loading. The buckling beha-

viour of circular cylindrical shells under axial compression

was studied by Edlund [53] and Ullah [54] using various

methods.

Further, a number of research works were also carried

out on the buckling characteristics of composite shells. The

buckling analysis of symmetrical laminated cylindrical

curved panels under axial compression was carried out by

Jun and Hung [55] with respect to fibre angle and width of

the panels employing the nonlinear finite element method.

Geier and Rohwer [56] investigated the buckling behaviour

of composite plates and shells for comparing different

plate/shell theories. The buckling characteristics of com-

posite conical shells subjected to axial compression were

studied by Tong and Wang [57] and Shadmehri et al. [58]

using various techniques. Greenberg and Stavsky [59]

studied the buckling behaviour of orthotropic cylindrical

shells under non-uniform axial loading. The buckling

behaviour of anisotropic curved panels having variable

curvature was investigated by Jaunky et al. [60] using

segment approach. The buckling characteristics of com-

posite elliptical cylinders under axial compression were

investigated by Sambandam et al. [61] employing FEM.

The study of post-buckling and dynamic instability char-

acteristics of cylindrical shell with dynamic partial edge

loading and transverse patch loading was performed by

Dey and Ramachandra [62]. The same authors [63] also

investigated the buckling and post-buckling characteristics

of cylindrical sandwich panels subjected to non-uniform

in-plane load using analytical method.

Asmolovskiy et al. [64] analysed various methods of

numerical buckling load estimation and formulated simu-

lation procedures suitable for commercial software and

provided the recommendations with regard to their appli-

cations for cylindrical composite shells. Demir et al. [65]

investigated the buckling behaviour of simply supported

isotropic, laminated composite and functionally graded

conical shells using discrete singular convolution method.

The post-buckling characteristics of functionally graded

cylindrical, spherical, elliptical and hyperbolic curved

panels under the uniaxial and biaxial edge loading were

investigated by Kar and Panda [66] using nonlinear finite

element analysis. Civalek [67] investigated the buckling

characteristics of composite conical and cylindrical panels

and shells subjected to axial compression using discrete

singular convolution method.

From the literature review, it is found that extensive

research works have been conducted on the study of

buckling behaviour of isotropic and composite plates and

shells with uniform loading, concentrated loading and non-

uniform loading including patch loading and different

types of linearly varying in-plane edge loading. Moreover,

several research works are also now being carried out on

buckling behaviour of singly and doubly curved panels

under various in-plane loading throughout the globe, which

shows the research potentiality of this field. However, it is

observed that most of the above works have focused on the

development of suitable methods/models for obtaining the

critical buckling loads with/without parametric study.

Hence, the further exhaustive parametric study on the

buckling characteristics of curved panels under non-uni-

form in-plane loading needs to be investigated in order to

give a clear understanding to the designers. Moreover, the

design charts in non-dimensional forms are yet to be

developed to estimate the critical buckling load of the

singly and doubly curved panels under any non-uniform in-

plane loading. These charts will be of immense help to the

designers for determining the buckling loads of these

curved panels under any in-plane loading directly from

these charts without the use of the complicated models or

software at the time of preliminary design.

In order to fill up the above research gap, an exhaustive

parametric study for static stability analysis of isotropic

singly and doubly curved panels under linearly varying in-

plane load, which is a special case of non-uniform in-plane

loading and also very common in practical fields, is pre-

sented in this paper using FEM to obtain the influences of

various parameters, such as type of loading, aspect ratio,

curvature, boundary condition and Poisson’s ratio. Further,

a comparison of the influences of the various in-plane

loads, such as triangular, parabolic, patch and concentrated

in-plane loads, on the buckling characteristics of cylindri-

cal, spherical and hyperbolic panels is made. Moreover,

various design charts in the non-dimensional form are also

developed for the clamped isotropic spherical panels of

commonly adopted dimensions using the present FEM

code to obtain the buckling loads of various curved panels

of any isotropic material under any type of linearly varying

in-plane loads, which enhances the novelty of this work

J. Inst. Eng. India Ser. A (June 2021) 102(2):565–589 567

123



further. At the last, the accuracy of the design charts is also

established by comparing the values obtained from the

design charts with those from the computer code developed

in the present investigation.

Theory and Formulations

An isotropic rectangular doubly curved panel having length

a and width b in plan form and radii of curvature Rx and Ry

under linearly varying in-plane loading (Fig. 1) is consid-

ered here as the fundamental configuration of the present

problem. The purpose behind choosing of the geometry of

a doubly curved panel as a fundamental configuration is

that the panel configuration (form) depends upon the value

of curvature, such as single curved cylindrical panel for Ry/

Rx = 0, double curved spherical panel for Ry/Rx = 1 and

hyperbolic panel for Ry/Rx = -1 as special cases, which are

shown in Fig. 2.

A typical rectangular doubly curved panel with plan

dimensions a and b under linearly varying in-plane stresses

at two opposite edges (x = 0 and x = a), while the other

two opposite edges (y = 0 and y = b) are free from any

load, is shown in Fig. 3. The linearly varying load is

expressed as:

Nx ¼ �N0 1 � c
y

b

� �
ð1Þ

Z 

X 

Ry

Rx a 

b 

Y 

Fig. 1 Geometry of a typical doubly curved panel

Fig. 2 Different forms of

curved panels: a cylindrical

shell, b elliptic paraboloid shell

(special case: spherical shell,

Rx = Ry and a = b),

c hyperbolic paraboloid shell

(special case, Rx = -Ry and

a = b)
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where Nx denotes the normal force acting per unit length of

curved panel at y along x direction. N0 is the force per unit

length along x direction at y = 0. The negative sign of N0

indicates that the force is compressive in nature and c is a

numerical load factor. The distributions of stress applied at

the edges of the curved panels at x = 0 and x = a are

identical. By changing the value of c, various cases as

shown in Fig. 4 can be obtained. It is assumed that the

curved panel is thin and of uniform thickness. The material

used is homogeneous, linearly elastic and isotropic.

Formulation

The governing equation for static stability is written as

K½ � � P Kg

� �� �
qf g ¼ 0f g ð2Þ

where [K] and [Kg] are elastic stiffness and geometric

stiffness matrices, respectively, and P is the in-plane edge

load vector. Equation (2) is an Eigen value problem. The

lowest of the Eigen values is the critical buckling load, Pcr,

and {q} is the corresponding Eigen vector.

In order to form the Eigen value problem, an eight-

nodded curved isoparametric element is used in the present

finite element formulation with five degrees of freedom per

node, i.e. u, v, w, hx and hy. The shape function of the

element is obtained employing the interpolation polyno-

mial as

uðn; gÞ ¼ a1 þ a2nþ a3gþ a4n
2 þ a5ngþ a6g

2 þ a7n
2g

þ a8ng
2

ð3Þ

The shape functions Ni, derived from Eq. (1), are

expressed as

Ni ¼ ð1 þ nniÞ ð1 þ ggiÞ ðn ni þ g gi � 1Þ=4 i ¼ 1 to 4

Ni ¼ 1 � n2
� �

1 þ g gið Þ
�

2 i ¼ 5; 7

Ni ¼ 1 þ n nið Þ 1 � g2
� ��

2 i ¼ 6; 8

ð4Þ

where n and g are the local natural coordinates and ni and gi
are the values of n and g, respectively, at ith node. The

derivations of the shape functions Ni with respect to x and

y are expressed in terms of their derivations with respect to

n and g using the Jacobian matrix.

The first-order shear deformation theory (FSDT) is

considered. A shear correction factor of 5/6 is applied to

account the nonlinear shear distribution as explained in the

literature [49, 50]. The generalized displacement functions

are expressed as follows:

u x; y; zð Þ ¼ u x; yð Þ þ zhx x; yð Þ
v x; y; zð Þ ¼ v x; yð Þ þ zhy x; yð Þ

w x; y; zð Þ ¼ w x; yð Þ
ð5Þ

where u; v andw and u, v and w are the linear displace-

ments along x, y and z directions at any arbitrary point and

at mid surface, respectively. Similarly, hx, and hy are the

rotations along x and y directions, respectively.

In this formulation, the structural analysis has been

carried out using Green–Lagrange’s strain displacement

relations. Donnell’s shell theory is considered in this study.

The linear and nonlinear parts of strain are considered to

obtain the elastic and geometric stiffness matrices,

respectively, as explained in the literature [49, 50]. The

total strain is expressed as

ef g ¼ elf g þ enlf g ð6Þ

where el and enl are linear and nonlinear strains.

The linear strain displacement relations are:

y, η

a 

b 

N0 N0 

x, ξ

Fig. 3 Plan form of a curved panel under linearly varying in-plane

load

N0 N0 

N0    0.5 N0 0 

γ=0 γ=0.5 γ=1 

Fig. 4 Examples of in-plane loading Nx along the edges x = 0 and

x = a
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exl ¼
ou

ox
þ w

Rx
þ zkx; eyl ¼

ov

oy
þ w

Ry
þ zky;

cxyl ¼
ou

oy
þ ov

ox
þ 2w

Rxy
þ zkxy;

cyzl ¼
ow

ox
þ hx �

u

Rx
� v

Rxy
; czxl ¼

ow

oy
þ hy �

v

Ry
� u

Rxy

ð7Þ

where the bending strains are expressed as

kx ¼
ohx
ox

ky ¼
ohy
oy

and kxy ¼
ohx
oy

þ ohy
ox

ð8Þ

The nonlinear strain components are as follows:

exnl ¼
1

2

ou

ox

	 
2

þ 1

2

ov

ox

	 
2

þ 1

2

ow

ox
� u

Rx

	 
2

þ 1

2
z2 ohx

ox

	 
2

þ ohy
ox

	 
2
" # ð9Þ

eynl ¼
1

2

ou

oy

	 
2

þ 1

2

ov

oy

	 
2

þ 1

2

ow

oy
� v

Ry

	 
2

þ 1

2
z2 ohx

oy

	 
2

þ ohy
oy

	 
2
" # ð10Þ

cxynl ¼
ou

ox

ou

oy

	 

þ ov

ox

ov

oy

	 

þ ow

ox
� u

Rx

	 

ow

oy
� v

Ry

	 


þ z2 ohx
ox

	 

ohx
oy

	 

þ ohy

ox

	 

ohy
oy

	 
� �

ð11Þ

The constitutive relationship for the shell is expressed as

follows:

F ¼ D½ � ef g ð12Þ

where {F} = [N1, N2, N3, M1, M2, M3, Q1, Q2]T, [D] is

flexural rigidity matrix and {e} is strain vector, N1, N2,

N3 = Normal in-plane force resultants, M1, M2, M3-

= Bending moment resultants and Q1, Q2 = shearing

stress resultants.

The flexural rigidity matrix [D], as given in the literature

[49, 50] is expressed as follows:

The element elastic stiffness matrix [K]e can be obtained

as follows.

K½ �e¼
Z1

�1

Z1

�1

B½ �T D½ � B½ � Jj j dn dg ð14Þ

where [B] is the strain–displacement matrix, which is

mentioned in the literature [49, 50] as follows:

Bi½ � ¼

Ni;x 0 Ni=Rx 0 0

0 Ni;y Ni=Ry 0 0

Ni;y Ni;x 0 0 0

0

0

0
0

0

0

0

0
0

0

0

0

0
Ni;x

Ni;y

Ni;x

0

Ni;y

Ni

0

0

Ni;y

Ni;x

0

Ni

2
6666666664

3
7777777775

for

i ¼ 1; 2. . .8

ð15Þ

Ni is the shape function, Ni,x and Ni,y are the derivatives

of the shape function with respect to x and y, i denotes the

node number of the element and [J] is the Jacobian matrix.

D½ � ¼

Eh

1 � m2

mEh
1 � m2

0 0 0 0 0 0

mEh
1 � m2

Eh

1 � m2
0 0 0 0 0 0

0 0
Eh

2 1 þ mð Þ 0 0 0 0 0

0 0 0
Eh3

12 1 � m2ð Þ
mEh3

12 1 � m2ð Þ 0 0 0

0 0 0
mEh3

12 1 � m2ð Þ
Eh3

12 1 � m2ð Þ 0 0 0

0 0 0 0 0
Eh3

24 1 þ mð Þ 0 0

0 0 0 0 0 0
Eh

2:4 1 þ mð Þ 0

0 0 0 0 0 0 0
Eh

2:4 1 þ mð Þ

2
666666666666666666666666664

3
777777777777777777777777775

ð13Þ
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The element geometric stiffness matrix [Kg]e is derived

due to applied in-plane load by adopting the procedure as

explained in the book by Cook et al. [68] using the non-

linear Green’s in-plane strains with radius of curvature.

The in-plane stresses are developed due to in-plane edge

loading and the geometric stiffness matrix is derived by

considering the in-plane stress function. Stress field being

non-uniform, the plane stress analysis has been performed

by adopting FEM to find out the stresses, which are con-

sidered to generate the geometric stiffness matrix.

The strain energy due to initial stress is given by

U2 ¼
Z

r0
� �T

enlf gdv ð16Þ

Using the nonlinear strains, the strain energy can be

written as

This can be expressed as

U2 ¼ 1

2

Z

v

f½ �T S½ � f½ �dv ð18Þ

where

ff g ¼ ou

ox
;
ou

oy
;
ov

ox
;
ov

oy
;

ow

ox
� u

Rx

	 

;

ow

oy
� v

Ry

	 

;
ohx
ox

;
ohx
oy

;
ohy
ox

;
ohy
oy

� �T

ð19Þ

where [S] is the in-plane stress matrix and expressed as

S½ � ¼

s 0 0 0 0

0 s 0 0 0

0 0 s 0 0
0

0

0

0

0

0

s
0

0

s

2
6664

3
7775 ð20Þ

where

s½ � ¼ r0
x s0

xy

s0
xy r0

y

� �
¼ 1

h

N0
x N0

xy

N0
xy N0

y

� �
ð21Þ

where Nx
0, Ny

0 and Nxy
0 are the in-plane stress resultants.

Moreover, {f} can be expressed as

ff g ¼ G½ � def g ð22Þ

where def g ¼ u v w hx hy
� �T

and [G] is the strain

matrix for geometric stiffness, which is expressed as

follows:

G½ � ¼

Ni;x 0 0 0 0

Ni;y 0 0 0 0

0 Ni;x 0 0 0

0

�Ni=Rx

0
0

0

0

0

Ni;y

0

�Ni=Ry

0

0

0

0

0

Ni;x

Ni;y

0

0

0

0

0

0

0
Ni;x

Ni;y

0

0

0

0

0
0

0

Ni;x

Ni;y

2
66666666666664

3
77777777777775

ð23Þ

The strain energy U2 becomes

U2 ¼
ZZZ

1

2
def gT G½ �T S½ � G½ � def gdv ¼ 1

2
def gT Kg

� �
def g

ð24Þ

where [Kg] is the element geometric stiffness matrix and is

written as

Kg

� �
e
¼

Z�1

�1

Z1

�1

G½ �

T

S½ � G½ � Jj jdndg ð25Þ

The nodal load vector for an element when subjected to

linearly varying edge loads (Nx) can be determined by the

expression as given below:

pef g ¼
Zþ1

�1

N½ �TNx Jj j dg ð26Þ

where {p}e is the nodal load vector of the element,

[N] denotes the shape function matrix and |J| represents the

determinant of the Jacobian matrix.

A FEM code is developed using FORTAN language to

compute the buckling loads of curved panels under linearly

U2 ¼
Z

A

h

2

r0
x

ou

ox

	 
2

þ ov

ox

	 
2

þ ow

ox
� u

Rx

	 
2
( )

þ r0
y

ou

oy

	 
2

þ ov

oy

	 
2

þ ow

oy
� v

Ry

	 
2
( )

þ2s0
xy

ou

ox

ou

oy

	 

þ ov

ox

ov

oy

	 

þ ow

ox
� u

Rx

	 

ow

oy
� v

Ry

	 
 �

2
66664

3
77775

dxdyþ

Z

A

h3

24
r0
x

ohx
ox

	 
2

þ ohy
ox

	 
2
( )

þ r0
y

ohy
oy

	 
2

þ ohx
oy

	 
2
( )

2s0
xy

ohy
ox

ohy
oy

	 

þ ohx

ox

ohx
oy

	 
 �" #
dxdy
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varying in-plane loads. To avoid the shear locking, reduced

integration technique is employed for obtaining the ele-

ment matrices. The element matrices are then assembled

using skyline technique to get the overall matrices. Equa-

tion (1) is solved using subspace iteration process. The

solution of Eq. (1) gives the Eigen values for different

Eigen vectors, which are the buckling loads of different

mode shapes. The lowest value of buckling loads is known

as the critical buckling load, Pcr. The boundary conditions

are applied constraining the generalized displacements

components at various nodal points of the discretized

structure.

Numerical Results and Discussions

Convergence and Validation of FEM Code

The convergence study has been conducted for non-di-

mensional buckling load for curved panels for the load

factor (c = 0.5), and the result so obtained is indicated in

Table 1. A mesh size of 10 9 10 indicates good

convergence and all further results have been computed

with this mesh size.

To validate the present FEM code for the buckling of

isotropic shells under linearly varying load, two types of

problems, i.e. buckling of plates subjected to linearly

varying load and buckling of shells under uniform load, are

considered in the present paper, as there is no suitable re-

sult available in the existing literature on the buckling of

isotropic shells subjected to linearly varying in-plane load.

In the first type of problem, the simply supported (SSSS)

plates under linearly varying load of Kang and Leissa [18]

and SCSC plates under linearly varying load of Leissa and

Kang [17] and Wang et al. [19] with varying load factor (c)

and aspect ratio (a/b) are considered. To obtain the buck-

ling loads, Leissa and Kang [17] and Kang and Leissa [18]

solved the above problems employing the power series

method (PSM). Similarly, Wang et al. [19] obtained the

buckling characteristics of SCSC plates using the differ-

ential quadrature method (DQM). The critical buckling

loads in the non-dimensional form of the SSSS and SCSC

plates obtained from the present formulation are presented

in Table 2 along with those of the above mentioned earlier

Table 1 Convergence of k of SSSS and CCCC curved panels under linearly varying load (c = 0.5) for a/b = 1, b/h = 100, b/Ry = 0.25, m = 0.3,

E = 2.0 9 1011 N/m2, k = Pcrb
2/D

Mesh k

SSSS CCCC

CYL SPH HYP CYL SPH HYP

4 9 4 233.64 256.195 53.99 287.78 309.765 285.73

8 9 8 215.23 240.92 52.14 285.04 305.54 279.45

10 9 10 214.78 239.93 51.98 284.94 305.024 278.86

Table 2 Comparison of k of SSSS and SCSC rectangular plates with linearly varying in-plane edge loading applied to two opposite simply

supported ends of plate for different values of a/b (k = Pcrb
2/D, b/h = 100, m = 0.3, E = 2 9 1011 N/m2)

Boundary conditions c Authors Method a/b

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.5

SSSS 1 Kang and Leissa [18] PSM 149.50 114.70 96.16 – 80.26 77.66 77.10 82.59

Present Authors FEM 151.10 115.98 97.18 – 80.89 78.14 77.43 82.89

SSSS 4/5 Kang and Leissa [18] PSM 131.40 99.30 82.44 – 68.09 65.70 65.09 70.20

Present Authors FEM 132.28 100.03 83.02 – 68.44 65.95 65.26 70.36

SSSS 2/3 Kang and Leissa [18] PSM 120.80 90.69 74.98 – 61.08 59.45 58.86 63.64

Present Authors FEM 121.43 91.19 75.40 – 61.93 59.64 58.98 63.76

SCSC 0 Wang et al. [19] DQM 93.247 75.910 69.632 69.095 72.084 77.545 75.910 –

Leissa and Kang [17] PSM 93.247 75.910 69.632 69.095 72.084 77.545 75.910 –

Present Authors FEM 93.802 76.31 69.9 69.3 72.232 77.654 76.15 –

SCSC 1 Wang et al. [19] DQM 174.4 145.2 134.8 134.6 141.0 152.0 145.2 –

Leissa and Kang [17] PSM 174.4 145.2 134.8 134.6 141.0 152.0 145.2 –

Present Authors FEM 179.48 143.946 138.37 138.37 144.56 154.13 149.44 –

PSM - power series method, FEM - finite element method, DQM - differential quadrature method
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investigations for a comparison. From Table 2, it is

observed that the results obtained from the present study

and previous studies are well compared validating the

present FEM code for the buckling analysis of the plates

under linearly varying in-plane loads.

Further, in the second type of problems, the buckling of

generalized doubly curved shells (special cases of plate,

elliptic paraboloid, cylindrical and hyperbolic paraboloid

shells) under uniform in-plane load of earlier investigations

[47, 49, 50] is considered to compare the present results for

validating the present FEM code for shell problem. To

obtain the critical buckling loads of curved panels, Mat-

sunaga [47] used the power series method (PSM) whereas

Sahu and Datta [49] and Ravi Kumar et al. [50] employed

FEM. The critical buckling loads of above isotropic shells

obtained from the present FEM code are furnished in

Table 3 along with the results of the previous works

mentioned above. It is seen from Table 3 that the present

results are well compared with those of the above earlier

researchers. As the present FEM code is validated for

isotropic plates under linearly varying in-plane load and

isotropic shells under uniform in-plane load, the same

would be automatically validated for isotropic shells sub-

jected to linearly varying loads.

Parametric Study

Extensive parametric studies are presented on buckling of

singly and doubly curved panels under linearly varying in-

plane edge loads for six boundary conditions. The bound-

ary conditions are SSSS, CCCC, CFCF, SCSC, SSSF and

SFSF. The first, second, third and fourth letters in the

nomenclature of the above abbreviations correspond to the

boundary conditions at x = 0, y = 0, x = a and y = b,

respectively. Similarly, the three letters, i.e. S, C and F, in

the nomenclature of boundary conditions correspond to

simply supported, clamped and free, respectively, which

are described below.

• Simply supported boundary (S)

v = w = hy = 0, u = 0 and hx = 0 at x = 0, a and

u = w = hx = 0, v = 0 and hy = 0 at y = 0, b

• Clamped boundary (C)

u = v = w = hx = hy = 0 at x = 0, a and y = 0, b

• Free boundary (F)

u = v = w = hx = hy = 0 at x = 0, a and y = 0, b

A typical SSSS boundary condition of shell plan form is

shown in Fig. 5 for better understanding.

Three types of curved panels, such as cylindrical (CYL),

spherical (SPH) and hyperbolic paraboloid (HYP), are

considered here to study the non-dimensional buckling

load (k) characteristics for different load factors (c), aspect

ratios (a/b) and boundary conditions. The variations of k
with a/b (value ranging from 0.5 to 3) for these curved

panels for three linearly varying in-plane load cases (c = 0,

0.5 and 1.0) with six boundary conditions, i.e. SSSS,

SCSC, SSSF, SFSF, CCCC and CFCF, are presented in

Figs. 6, 7,8, 9, 10 and 11, respectively. Thereafter, the

effects of Poisson’s ratio (m) on k for HYP, CYL and SPH

panels with SSSS boundary condition under linearly

varying in-plane load at two opposite ends (x = 0, x = a)

Table 3 Comparison of k for the SSSS curved panel under uniform in-plane load (k = Pcrb
2/D, a/b = 1, E = 2 9 1011 N/m2, m = 0.3)

a/h a/Rx b/Ry Non-dimensional buckling loads

Matsunga [47]

(PSM)

Sahu and Datta [49]

(FEM)

Ravi Kumar et al. [50]

(FEM)

Present results

FEM

10 0 0 36.9242 36.8284 36.8284 36.825

0.2 0.2 41.0872 41.0487 41.0487 41.035

0 0.2 37.8904 37.8075 37.8075 37.804

-0.2 0.2 36.6162 36.5235 36.5235 36.521

20 0 0 38.7945 38.7757 38.7757 38.724

0.2 0.2 56.1620 56.2143 56.2143 56.43

0 0.2 43.0670 43.0581 43.0581 43.058

-0.2 0.2 38.5033 38.4618 38.4618 38.461

v=0 
w=0 
θy=0 
u ≠ 0 
θx≠0 

u =w =θx =0, v≠ 0, θy≠ 0 

a 

b
1

2

3
4

x 

y 

v=0, w=0, θy=0, u ≠ 0, θx≠0 

u=0 
w=0 
θx=0 
v≠ 0 
θy≠ 0 

Fig. 5 Typical curved panels with simply supported boundary

condition (SSSS)
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for different values of a/b are obtained and presented in

Table 4. The curved panels having non-dimensional

parameters b/h = 100, b/Ry = 0.25, m = 0.3 and

E = 2 9 1011 N/m2are considered. The non-dimensional

buckling load parameter, k = Pcrb
2/D is used throughout

the buckling analysis, where D = Eh3/[12(1 - m2)].

Moreover, a comparative study of the effects of the various

in-plane loads, such as triangular, parabolic, patch and

concentrated in-plane loads, on the buckling loads of the

above panels is presented. At the end, typical design charts

of clamped spherical panels having different non-dimen-

sional parameters like a/b value ranging from 0.5 to 3.0, b/

h = 50, 100, 150 and 200, Ry/b = 5, 10, 15, 20, 25 and 30,

load factor c = 0, 0.5 and 1.0 are presented. Using the

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
100

150

200

250

300

350

400

450

N
on

-d
im

en
si

on
al

 B
uc

kl
in

g 
Lo

ad
 (λ

)

Aspect ratio (a/b)

γ=0 (CYL)
γ=0 (SPH)
γ=0 (HYP)
γ=0.5 (CYL)
γ=0.5 (SPH)
γ=0.5 (HYP)
γ=1 (CYL)
γ=1 (SPH)
γ=1 (HYP)

b/h=100, b/Ry=0.25, ν=0.3, E=2x1011N/m2

Fig. 7 Variation of k with a/b for SCSC curved panels

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

50

100

150

200

250

300

350

400

N
on

-d
im

en
si

on
al

 b
uc

kl
in

g 
lo

ad
 (λ

)

Aspect ratio (a/b)

γ=0 (CYL)
γ=0 (SPH)
γ=0 (HYP)
γ=0.5 (CYL)
γ=0.5 (SPH)
γ=0.5 (HYP)
γ=1 (CYL)
γ=1 (SPH)
γ=1 (HYP)

b/h=100, b/Ry=0.25, ν=0.3, E=2x1011N/m2

Fig. 8 Variation of k with a/b for SSSF curved panels

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

20

40

60

80

100

120

140

160

180

200

N
on

-d
im

en
si

on
al

 B
uc

kl
in

g 
Lo

ad
( λ

)

Aspect ratio (a/b)

γ=0 (CYL)
γ=0 (SPH)
γ=0 (HYP)
γ=0.5 (CYL)
γ=0.5 (SPH)
γ=0.5 (HYP)
γ=1 (CYL)
γ=1 (SPH)
γ=1(HYP)

b/h=100, b/Ry=0.25, ν=0.3, E=2x1011N/m2
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design charts, the critical buckling load can be found out

for clamped spherical panels of any isotropic material, any

linear loads (c = 0.0 to 1.0), any value of a/b ranging from

0.5 to 3, any value of b/h ranging from 50 to 200 and any

value of Ry/b ranging from 5 to 30 directly from the charts.

Effect of Load Factor (c)

The variation of k with a/b varying from 0.5 to 3.0 for

different curved panels under linearly varying in-plane load

cases (c = 0.0, 0.5 and 1.0) with SSSS, SCSC, SSSF, SFSF,

CCCC and CFCF boundary conditions is shown in Figs. 6,

7,8, 9, 10 and 11. These figures indicate that for all the

parameters considered here, the value of k is the highest for

load factor c = 1.0 followed by c = 0.5 and c = 0. This is

because for a fixed N0, the total in-plane force over the

width of the panel is the highest for c = 0 followed by

c = 0.5 with trapezoidal distribution and c = 1.0 with tri-

angular distribution. The same trend is also reported by

earlier investigators [17–19] for the case of isotropic plates

under linearly varying in-plane loads.

It is worth mentioning that in the cases of SFSF and

CFCF boundary conditions (Figs. 9 and 11), the value of k
with respect to a/b for all load factors and curved panels is

close to each other, and hence, the impact of load factor is

not significant on the values of k unlike in the cases of

SSSS, SCSC, CCCC and SSSF boundary conditions.

Effect of Form of Curved Panels

In the cases of SSSS, SCSC and CCCC boundary condi-

tions (Figs. 6,7 and 10), it is seen that for all loading fac-

tors and aspect ratios considered here, the synclastic doubly

curved (SPH) panels show the highest value of k followed

by singly curved CYL and anticlastic doubly curved HYP

panels. This is because both curvatures in x and y directions

for SPH panel, single curvature in y direction and zero

curvature along x direction for CYL panel and two opposite

curvatures along x and y directions for HYP panel. The

HYP panel having both curvatures in opposite directions

cancels curvature effects and behaves as a flat panel due to

which it has the lowest buckling load as in the case of plate.

The above trend is also supported by the earlier investi-

gations of Matsunaga [47], Sahu and Datta [49] and Ravi

Kumar et al. [50] for the case of SSSS curved panels under

uniform in-plane load. However, in the case of CFCF

boundary condition (Fig. 11), the HYP panel shows the

best performance with respect to the buckling load fol-

lowed by SPH and CYL panels, which may be due to the

free opposite edges.
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Fig. 11 Variation of k with a/b for CFCF curved panels

Table 4 Effect of ‘‘m’’ on k for a SSSS curved panels under linearly varying in-plane loading at two opposite ends for different values of a/b
(k = Pcrb

2/D, b/h = 100, b/Ry = 0.25, E = 2 9 1011 N/m2)

a/b m c = 0 c = 0.5 c = 1

HYP CYL SPH HYP CYL SPH HYP CYL SPH

0.5 0 61.627 111.934 166.660 81.802 226.978 288.896 116.080 278.150 362.273

0.3 61.574 102.633 151.002 81.747 215.890 283.162 115.980 266.754 355.578

0.5 61.567 89.347 128.620 81.737 195.411 265.560 115.960 245.922 344.515

1.0 0 39.457 59.215 88.088 52.554 225.775 249.634 77.440 276.610 319.045

0.3 39.451 50.392 77.127 52.545 214.780 239.931 77.433 265.240 307.552

0.5 39.442 41.333 64.787 52.533 194.541 223.362 77.415 244.535 287.945

1.5 0 42.821 42.880 46.562 56.932 219.642 254.552 82.928 274.143 326.604

0.3 42.807 34.778 38.573 56.914 210.983 242.307 82.890 264.527 311.855

0.5 42.794 27.688 31.180 56.896 194.076 221.472 82.870 243.871 286.943

2.0 0 39.473 35.772 26.804 52.511 220.776 252.002 77.216 277.000 326.954

0.3 39.462 28.062 21.579 52.495 210.783 241.633 77.192 265.336 313.020

0.5 39.450 21.879 17.151 52.480 194.201 224.895 77.168 244.431 291.960
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In case of SSSF and SFSF boundary conditions (Figs. 8

and 9), it is observed that the performance of curved panel

is greatly influenced by aspect ratio (a/b) and loading

factors (c) mentioned above. From Fig. 9, it is seen that for

lower range of a/b = 0.5 to 1.0, the value of k is observed

to be the highest for SPH panel followed by HYP and CYL

panels. Then with the increase of a/b up to 1.8, superior

performance is observed by HYP panel followed by SPH

and CYL panels. Thereafter, for higher value of a/

b = 2.8–3, the value of k is observed to be the highest for

CYL panel followed by HYP and SPH panels.

It is seen from Fig. 8 that for all values of a/b and load

factor c = 1, the value of k is observed to be the highest for

SPH panel followed by CYL and HYP panels. In the case

of load factor c = 0.5, the value of k is observed to be the

highest for SPH panel followed by CYL and HYP panels

for a/b up to 2.4. Thereafter, for a/b = 2.4–2.6, HYP panel

shows better performance than CYL and SPH panel. When

a/b[ 2.6, the value of k is found to be close to each other

and hence significant impact of curvature is not observed

on k. For load factor c = 0, the value of k is observed to be

the highest for SPH panel followed by CYL and HYP

panels for a/b = 0.5–1.2 and 1.8–2.2. The order of supe-

riority changes to SPH panel followed by HYP and CYL

panels for a/b = 1.2–1.5. Thereafter, HYP panel shows

superior performance followed by CYL and SPH panels

with further increase of a/b = 2.5–3.

Effect of Boundary Conditions

It is observed from Figs. 6, 7,8, 9, 10 and 11 that the value

of k is the highest for CCCC boundary condition and the

lowest for SFSF boundary condition for all types of curved

panels and aspect ratios. However, for SPH and CYL

panels, superior performance is observed in CCCC

boundary condition followed by SCSC, SSSS, SSSF, CFCF

and SFSF, whereas for HYP panel the above order is

CCCC, SCSC, CFCF, SSSS, SSSF and SFSF. It is also

observed that HYP panel with SSSS, SSSF, SFSF boundary

conditions shows fluctuations in buckling load with aspect

ratio in the presence of at least two opposite SSSS

boundary conditions along loading edges and without any

clamped support. However, this fluctuation diminishes

when there is addition of at least one clamped support. On

the other hand, all curved panels show the worst perfor-

mance in case of having free boundary condition as

expected.

Effect of Aspect Ratio

From Fig. 6, it is seen that for SPH and CYL panels with

SSSS boundary condition, the value of k fluctuates with the

increase in aspect ratio from 0.0 to 1.5 beyond which it

remains nearly constant. However, for HYP panel with

SSSS boundary condition (Fig. 6), it decreases and

increases alternatively with the increase in aspect ratio

showing the number of half longitudinal waves having

maxima at a/b = 0.5,1.5 and 2.5 and minima at a/b = 1.0,

2.0 and 3.0.
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It is seen from Fig. 7 that the value ofk for SCSC

boundary condition fluctuates slightly in the lower values

of a/b, i.e. from 0.5 to 1.5, for all the curved panels and

loading factors, beyond which the value of k increases

marginally up to a/b = 2.8. Thereafter, it decreases mar-

ginally up to a/b = 3.0. The same trend is also observed in

the earlier work of Kang and Leissa [18] for the case of the

SCSC plates under linearly varying in-plane stress.

In CCCC boundary condition (Fig. 10), it is observed

that for all curved panels and loading factors the values of k
are the highest for a/b = 0.5, which reduces with the

increase in a/b up to 1.5. Thereafter, it remains almost

constant with further increase in a/b up to 3. It is worth

mentioning that variation of k with a/b for clamped HYP

panel is similar to that of SPH and CYL panels unlike in

simply supported one.

In the case of CFCF boundary condition (Fig. 11), it is

seen that for all loading factors and aspect ratios, the value

of k decreases exponentially with increase of a/b from 0.5

to 3.0 unlike in other cases discussed earlier. Though

superior performance is observed for load factor equal to 1

followed by 0.5 and 0.0 and for HYP panel followed by

SPH and CYL panels, it is worth mentioning that the values

of k for different panels and load factors are close to each

other without showing any significant effects of curved

panels and load factors unlike in other cases.
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Fig. 13 Variation of k with a/b for SSSS curved panels under various in-plane loads: a CYL b SPH and c HYP
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In case of SSSF and SFSF boundary conditions (Figs. 8,

9), it is seen that the HYP panel with load factor (0.0, 0.5

and 1.0) shows the same trend as in the case of the HYP

panel with SSSS boundary condition (Fig. 6). In case of

SFSF, the value of k decreases and increases alternatively

having maxima at a/b = 0.5 and 1.4 and minima at a/

b = 1.0 and 3.0 and in case of SSSF, the value of k
decreases and increases alternatively having maxima at a/

b = 0.5, 1.4 and 2.6, and minima at a/b = 1.0, 2.0 and 3.0.

For other curved panels, the value of k is higher for smaller

values of a/b and decreases exponentially with the increase

in the value of a/b.

Effect of Poisson’s Ratio

The influence of Poisson’s ratio m on k for HYP, CYL and

SPH panels with SSSS boundary condition under linearly

varying in-plane stress at two opposite ends (x = 0,

x = a) for different values of a/b is presented in Table 4. It

is observed that the HYP panel, k is not affected by m for all

the load factors. On the other hand, for CYL and SPH

panels with all load factors c, the value of k decreases

considerably as m increases.

Comparison of Influences of Various Non-Uniform

In-Plane Loads on Critical Buckling Load

A comparative study on the effects of different types of

non-uniform in-plane loads, such as parabolic load (Type

I), triangular load (Type II), concentrated load at mid-

breadth (Type III), partial load from the end at y = 0 with

c/b = 0.2 (Type IV) and partial load at mid-breadth with c/

b = 0.5 (Type V), as shown in Fig. 12, on buckling beha-

viour of curved panels with six commonly used boundary

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

50
100
150
200
250
300
350
400
450
500
550
600
650

 (a) CCCC (CYL)  Parabolic load
 Triangular load
 Concentrated load at mid breadth
 Partial load from y = 0 (c/b = 0.2)
 Partial load at mid breadth (c/b = 0.5)

N
on

-d
im

en
si

on
al

 b
uc

kl
in

g 
lo

ad
 ( λ

)

Aspect ratio (a/b) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

100

200

300

400

500

600

700

800
 (b) CCCC (SPH) Parabolic load

 Triangular load
 Concentrated load at mid breadth
 Partial load from y = 0  (c/b = 0.2)
 Partial load at mid breadth (c/b = 0.5)

N
on

-d
im

en
si

on
al

 b
uc

kl
in

g 
lo

ad
 (λ

)

Aspect ratio (a/b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
50

100
150

200
250

300
350
400

450
500
550
600

650
700

 (c) CCCC (HYP) Parabolic load
 Triangular load
 Concentrated load at mid breadth
 Partial load from y = 0 (c/b = 0.2)
 Partial load at mid breadth (c/b = 0.5)

N
on

-d
im

en
si

on
al

 b
uc

kl
in

g 
lo

ad
 ( λ

)

Aspect ratio (a/b)

Fig. 14 Variation of k with a/b for CCCC curved panels under various in-plane loads: a CYL b SPH and c HYP

578 J. Inst. Eng. India Ser. A (June 2021) 102(2):565–589

123



conditions, such as SSSS, CCCC, SCSC, SSSF, SFSF and

CFCF, is furnished in this section. Here, c is the length of

the partial in-plane load. Three types of curved panels, such

as CYL, SPH and HYP panels with radii of curvatures (a/

Rx = 0, b/Ry = 0.25), (a/Rx = 0.25, b/Ry = 0.25) and (a/

Rx = -0.25, b/Ry = 0.25), respectively, are considered. The

curved panels are having b/h = 100, m = 0.3 and

E = 2 9 1011 N/m2. The non-dimensional buckling load

parameter is considered as k = Pcrb
2/D for the load types I,

II, IV and V. But, for the load type III, it is taken as

k = Pcrb/D. The variations of k with a/b varying from 0.5

to 3.0 for different curved panels subjected to above load

types are shown in Figs. 13, 14, 15, 16, 17 and 18 for

SSSS, CCCC, SCSC, SSSF, SFSF and CFCF boundary

conditions, respectively.

It is observed from Fig. 13a, b that for CYL and SPH

panels with SSSS boundary condition, the value of k is the

highest for triangular load (Type II) followed by parabolic

load (Type I), partial load at mid-breadth with c/b = 0.5

(Type V), partial load from the end at y = 0 with c/b = 0.2

(Type IV) and concentrated load (Type III). In these panels

with load cases II, IV and V; the value of k marginally

increases/decreases with the increase in the value of a/b up

to 3.0. Further, in the case of HYP panel (Fig. 13c), the

value of k is the highest for triangular load (Type II),

followed by Parabolic load (Type I), partial edge load from

the end at y = 0 with c/b = 0.2 (Type IV), partial load at

mid-breadth with c/b = 0.5 (Type V) and concentrated load

(Type III). However, the value of k decreases and increases

alternatively with the increase in aspect ratio showing

number of half longitudinal waves having maxima near a/

b = 0.5, 1.5 and 2.5 and minima near a/b = 1.0, 2.0 and

3.0. It is worth mentioning that the present results of all the

three SSSS panels subjected to parabolic load (Type I)
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show the similar trend with that of the SSSS plates sub-

jected to parabolic load of the earlier work of Panda and

Ramachandra [41]. Moreover, in the earlier investigations

for the SSSS plates with concentrated load [6] and partial

load at mid-breadth [24], the value of k is higher at a/

b = 0.5 and then lower at a/b = 1.0 and again higher at a/

b = 2.0. Similar trend is also observed in the present

investigation for the SSSS HYP curved panel. This is due

to the fact that the HYP panel having both curvatures in

opposite directions cancels curvature effects and behaves

as a flat panel, which has been discussed in the earlier

section. However, the trends of SSSS CYL and SPH panels

are different from the above trend due to the introduction of

curvatures in the one or both directions, respectively.

For CCCC boundary condition (Fig. 14), it is observed

that the trends of variation of k with a/b for all the curved

panels considered here are same unlike these panels with

SSSS boundary condition. This may be due to the con-

straints along all edges by CCCC boundary condition

unlike SSSS boundary condition. In this case, for the val-

ues of a/b from 0.5 to 1.2, the value of k is the highest for

triangular load (Type II) followed by parabolic load (Type

I), partial edge load from the end at y = 0 with c/b = 0.2

(Type IV), partial edge load at mid-breadth with c/b = 0.5

(Type V) and concentrated load (Type III). However, for

the values of a/b from 1.2 to 1.8, the order of decreasing of

the value of k is same except the load types IV and V,

where the value of k for load type V is higher than that of

load type IV unlike the earlier case. When the value of a/b

exceeds 1.8, the above order again changes, i.e. the value

of k for the load type III is higher than that of the load type

IV, which has the lowest value of k among all load types in

this range of a/b.
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For all CCCC curved panels with the triangular load

(Type II), the value of k is the highest for a/b = 0.5 which

decreases with increase in a/b up to 1.5. Thereafter, it

remains almost constant with further increase in a/b up to 3

(Fig. 14). Similarly, for all these panels with load Types IV

and V, the value of k decreases with increase in a/b from

0.5 to 1.2. Thereafter, it remains almost constant with

further increase in a/b up to 3. The value of k for the above

curved panels with the concentrated load (Type III)

decreases marginally with the increase in a/b from 0.5 to

0.6, and thereafter, it increases marginally up to a/b = 3.0.

However, for all curved panels with the parabolic load

(Type I), the value of k is high for small value of a/b = 0.5

and the value decreases with increase in a/b up to 1.5.

Thereafter, it marginally increases and decreases with the

increase in a/b up to 3.0 at which it has higher value. It is

worth mentioning that for the CCCC boundary condition,

the variation of k with respect to a/b for HYP panel is

similar to those of SPH and CYL panels unlike in the

simply supported one due to the constraints along the four

edges. The trend of present results of the above panels with

parabolic load is also similar to that of plate with parabolic

load as reported in the literature [41]. But, the values of k
are significantly higher due to the introduction of curvature

in the cases of SPH, CYL and HYP curved panels.

It is observed from Fig. 15a, b, c that for CYL, SPH and

HYP panels with SCSC boundary condition, the value of k
is the highest for triangular load (Type II), followed by

parabolic load (Type I), partial load from the end at y = 0

with c/b = 0.2 (Type IV), partial load at mid-breadth with

c/b = 0.5 (Type V) and concentrated load (Type III). In

these panels with all the types of loads, the value of k
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marginally increases/decreases with the increase in the

value of a/b up to 3.0, i.e. there is very little effect of aspect

ratio on the buckling loads. It is worth mentioning that for

SCSC boundary condition, the similar trend is observed

like CCCC boundary condition, but unlike SSSS boundary

condition due to the constraints along the two opposite

edges. Moreover, the present results of SPH, CYL and

HYP panels with SCSC boundary condition subjected to

parabolic load show more or less similar trend with that of

Panda and Ramachandra [41] for SCSC plates under the

same type load, but having higher values of k due to

introduction of curvature in the present case.

It is observed from Fig. 16a, b that for CYL and SPH

panels with SSSF boundary condition, the value of k is the

highest for triangular load (Type II) followed by parabolic

load (Type I), partial load at mid-breadth with c/b = 0.5

(Type V), partial load from the end at y = 0 with c/b = 0.2

(Type IV) and concentrated load (Type III) for a/b up to

1.2. Thereafter, the value of k is the highest for triangular

load (Type II) followed by Type IV, I, III and V. It is worth

noting that the variation of k with a/b is insignificant for

load type III and V. In case of the load types II, III and V,

the value of k is high for small values of aspect ratio and

maintains a constant value with increase of a/b from 0.5 to

1.5 and thereafter the value of k decreases with further

increase of a/b up to 3.0. But in the case of load type I, the

value of k decreases exponentially with increase of a/b up

to 3. However, in the case of load type IV, the value of k
remains same with the increase in a/b up to 1.8. Thereafter,

Fig. 19 Variation of k with a/b for CCCC spherical panel: a load
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it increases suddenly with the increase of a/b up to 2.2 and

then decreases/increases marginally with the further

increase of a/b up to 3. In the case of HYP panel with SSSF

boundary condition (Fig. 16c), the value of k is the highest

for triangular load (Type II) followed by Parabolic load

(Type I), partial edge load from the end at y = 0 with c/

b = 0.2 (Type IV), partial load at mid-breadth with c/

b = 0.5 (Type V) and concentrated load (Type III) unlike

the trends observed in the cases of SPH and CYL panels.

However, the value of k decreases and increases alterna-

tively with the increase in aspect ratio showing number of

half longitudinal waves having maxima near a/b = 0.5, 1.5

and 2.5 and minima near a/b = 1.0, 2.0 and 3.0 like HYP

panel with SSSS boundary condition.

It is observed from Fig. 17a, b that for all the load types

with CYL and SPH panels with SFSF boundary condition,

the value of k decreases with increase of a/b from 0.5 to 3.

The value of k is the highest for parabolic load (Type I),

followed by triangular load (Type II), partial load at mid-

breadth with c/b = 0.5 (Type V), concentrated load (Type

III) and the partial load from the end at y = 0 with c/

b = 0.2 (Type IV) for small value of a/b up to 1. For a/b

value beyond 1, the values of k for CYL and SPH panels

are close to each other without showing any significant

effect of load Type (I, II, III and V). In the case of HYP

panel with SFSF boundary condition (Fig. 17c), the value

of k is the highest for triangular load (Type II), followed by

parabolic load (Type I), partial load at mid-breadth with c/

b = 0.5 (Type V), concentrated load (Type III) and partial

edge load from the end at y = 0 with c/b = 0.2 (Type IV).

However, the value of k decreases and increases alterna-

tively with the increase in aspect ratio showing the number

of half longitudinal waves having maxima near a/b = 0.5

and 1.4 and minima near a/b = 1.0 and 3.0 for all the load

types except the partial load from y = 0 (c/b = 0.2).

For CFCF boundary condition (Fig. 18), it is observed

that for all curved panels and load cases considered here,

the value of k is high for small values of aspect ratio and

decreases exponentially with increase of a/b from 0.5 to 3.

This is due to the free support at two opposite ends of the

panels. For all the curved panels, the value of k is the

highest for parabolic load (Type I) followed by triangular

load (Type II), partial load at mid-breadth with c/b = 0.5

(Type V), concentrated load (Type III) and the partial load

from the end at y = 0 with c/b = 0.2 (Type IV). For a/b

value beyond 1.0, the values of k for all the three panels are

close to each other without showing any significant effect

of load Types I, II, III and V.

From the above discussion, it is found that in the cases

of SSSS, CCCC, SCSC and SSSF boundary conditions, all

three curved panels under the triangular in-plane load

(Type II) show the best performance and these panels

under the concentrated load (Type III) show the worst

performance among the five load types considered here

with respect to their critical buckling loads. Similarly, in

the cases of CFCF and SFSF boundary conditions, all three

curved panels under the parabolic in-plane load (Type I)

show the best performance and these panels with the partial

in-plane load from the end at y = 0 with c/b = 0.2 (Type

IV) show the worst performance among the five load types

considered here with respect to their critical buckling

loads. These two boundary conditions show different

trends as compared to other boundary conditions due to the

presence of two opposite free ends.

Design Charts for Clamped Spherical Panel

With an aim to prepare design charts, clamped spherical

panels of various dimensions subjected to in-plane loading

(c = 0.0, 0.5 and 1.0), which are commonly adopted in the

practical field applications, are considered to estimate the

non-dimensional critical buckling load. Various non-di-

mensional parameters such as c values 0, 0.5 and 1.0, a/b

values ranging from 0.5 to 3.0, b/h with values of 50,100,

150 and 200 and Ry/b with values of 5, 10, 15, 20, 25 and

30 have been considered here to include the c value ranges

from 0 to 1.0, thickness, span and radius of curvature of

curved panel in various ranges. Thereafter, the values of k
of these spherical panels are obtained from the present

FEM code with different aspect ratios. The variation of k
with respect to aspect ratio of these panels is presented in

Figs. 19, 20 and 21, which are termed as design charts.

These charts will be used to obtain buckling loads for

different clamped spherical panels under any linear in-

plane loading with c ranging from 0 to 1.0 for various

dimensions and any isotropic materials commonly adopted

in the practice.

Moreover, ten numbers of practical field examples of

clamped spherical panels of various dimensions and

materials, such as steel (three examples), aluminium (three

examples) and concrete (four examples having different

moduli of elasticity and Poisson’s ratio), have been selec-

ted to establish the validity of these design charts (Figs. 19,

20 and 21). The different parameters such as a, b, h and Ry

have been selected from the practical field application point

of view and mentioned in Table 5. The dimensional

parameters of all these examples considered here are con-

verted to the non-dimensional parameters. With the help of

these non-dimensional parameters, the values of k for these

Fig. 20 Variation of k with a/b for CCCC spherical panel: a load

factor c = 0.5, Ry/b = 5, b load factor c = 0.5, Ry/b = 10, c load factor

c = 0.5, Ry/b = 15 d load factor c = 0.5, Ry/b = 20 e load factor

c = 0.5, Ry/b = 25 f load factor c = 0.5, Ry/b = 30

c
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examples are calculated from the design charts (Figs. 19,

20 and 21) by linear interpolation of various non-dimen-

sional parameters such as a/b, b/h, Ry/b and c. Further, the

critical buckling loads, Pcr of these examples are calculated

from the corresponding k values considering actual

dimension of these clamped spherical panel, using the

expression Pcr = kD/b2 = k[Eh3/12(1 - m2)/b2]. Further-

more, the critical buckling loads of these problems are

computed directly using the present computer code. The

values of Pcr of these examples obtained from both the

methods are indicated in Table5 with the percentage of

deviation between these values. The above percentage of

deviations is within the range of (5%), which is accepted

from the engineering point of view. Though these charts

(Figs. 19, 20 and 21) are obtained for the steel with Pois-

son’s ratio 0.3, the critical buckling load of other materials

such as concrete having Poisson’s ratios of 0.15 and 0.17

and aluminium having Poison’s ratio of 0.33 has been

calculated from the design charts confining the error limit

within 5%. Further, though the design charts are obtained

for c = 0, 0.5 and 1.0, the Pcr can be found for any load

factor ranging from 0.0 to 1.0. Moreover, it is noteworthy

that the design charts are prepared in the form of non-

dimensional parameters and hence, Pcr can be found out

from these charts for any dimension, material properties

and load factor. Thus, Figs. 19, 20 and 21 can be beneficial

for the designers to ascertain the critical buckling load, Pcr

for clamped spherical panel of any dimension, material and

load factor without using complicated computer pro-

gramme. Similarly, these design charts can also be pre-

pared for spherical shells with other boundary conditions.

Further, the design charts can also be prepared for other

curved panels such as CYL and HYP by following the

above novelty.

Accordingly, the above design charts (Figs. 19, 20 and

21) are suggested as ‘Design aids’ to the designers for

obtaining the critical buckling loads of clamped isotropic

spherical panels with any type of linearly varying in-plane

load at the stage of preliminary design. Hence, these charts

are very much useful for the designers to calculate the

buckling load without going through the tedious calcula-

tion using computer code or using commercially available

complicated FEM software.

Conclusion

The buckling characteristics of three curved panels, such as

spherical, cylindrical and hyperbolic panels, under linearly

varying in-planeload with six boundary conditions and

aspect ratio ranging from 0.5 to 3 can be concluded as

follows:

(1) The critical buckling loads of all three curved panels

under linearly varying in-plane load show the best

performance with c = 1 (triangular load) followed by

c = 0.5 (trapezoidal load) and c = 0 (uniform load) as

the total longitudinal force for a fixed N0 is maximum

for c = 0 followed by c = 0.5 and c = 1.0.

(2) For all load factors and aspect ratios considered in

this study, the critical buckling loads are observed to

be the highest for synclastic doubly curved spherical

(SPH) panel followed by singly curved cylindrical

(CYL) panel and anticlastic doubly curved hyperbolic

paraboloid (HYP) panel with SSSS, SCSC and CCCC

boundary conditions. However, for CFCF boundary

conditions, HYP panel shows the best performance in

the critical buckling loading followed by SPH and

CYL panels. Further, it is worthy to note that the

performance of these panels is greatly influenced by

Fig. 21 Variation of k with a/b for CCCC spherical panel: a load

factor c = 1, Ry/b = 5, b load factor c = 1, Ry/b = 10, c load factor

c = 1, Ry/b = 15 d load factor c = 1, Ry/b = 20 e load factor c = 1,

Ry/b = 25 f load factor c = 1, Ry/b = 30

b

Table 5 Critical buckling load (Pcr) of clamped spherical panel obtained from the computer code and design charts

Sl. no a/b b/h Ry/b c a (m) b (m) h (m) Ry (m) E (GPa) m Pcr from code (kN/m) Pcr from charts (kN/m) Deviation (%)

1 0.70 166.70 13.00 0.30 0.7 1.0 0.006 13.0 200.00 0.3 987.6 990.0 - 0.24

2 1.67 120.00 16.67 0.67 1.00 0.6 0.005 10.0 200.00 0.3 1041.6 994.5 ? 4.52

3 1.88 90.00 13.33 0.90 1.70 0.9 0.010 12.0 200.00 0.3 4060.0 4227.0 - 4.11

4 0.67 187.50 14.67 0.20 1.00 1.5 0.008 22.0 69.00 0.33 372.0 354.0 ? 4.83

5 1.28 116.67 7.14 0.40 0.90 0.7 0.006 5.0 69.00 0.33 580.0 602.5 - 3.88

6 1.25 180.00 15.55 0.80 2.25 1.8 0.010 28.0 69.00 0.33 458.0 471.0 - 2.84

7 2.25 80.00 18.75 0.35 18.00 8.0 0.100 150 25.00 0.15 3523.0 3570.0 - 1.33

8 2.33 75.00 23.33 0.25 35.00 15.0 0.200 350 22.36 0.15 6400.0 6523.0 - 1.92

9 1.32 83.33 16.00 0.10 33.00 25.0 0.300 400 29.50 0.17 11,630.0 11,804.0 - 1.50

10 0.55 112.50 26.67 0.75 25.00 45.0 0.400 1200 31.62 0.20 23,040.0 24,080.0 - 4.51

J. Inst. Eng. India Ser. A (June 2021) 102(2):565–589 587

123



the aspect ratios for other two boundary conditions,

i.e. SSSF and SFSF.

(3) HYP panel for all load factors shows fluctuation of

critical buckling load with the aspect ratio in the

presence of at least two opposite loading edges

simply supported and without any clamped support

such as SSSS, SSSF and SFSF. However, this

fluctuation is diminished when there is one or more

clamped support in the curved panels such as SCSC.

The variation of k with respect to aspect ratio is

greatly influenced with load factors and boundary

conditions of curved panels.

(4) The critical buckling load of a curved panel with

linearly varying in-plane edge load is the highest for

CCCC boundary condition and the lowest for SFSF

boundary condition. SPH and CYL panels show

superior performance with CCCC boundary condition

followed by SCSC, SSSS, SSSF, CFCF and SFSF

with regard to critical buckling load. On the other

hand, for HYP panel, the above sequence is CCCC,

SCSC, CFCF, SSSS, SSSF and SFSF.

(5) The critical buckling load for simply supported HYP

panel with all load factors is not affected by Poisson’s

ratio, whereas the same for simply supported CYL

and SPH panels with all load factors decreases

considerably as Poisson’s ratio increases.

(6) When SPH, CYL and HYP panels with six boundary

conditions are subjected to five different non-uniform

in-plane loads, such as parabolic load, triangular load,

concentrated load at mid breadth, partial load from

the end at y = 0 with c/b = 0.2 and partial load a mid-

breadth with c/b = 0.5, the best and worst perfor-

mances are observed for the triangular and concen-

trated in-plane loads, respectively, with respect to the

critical buckling load in case of SSSS, CCCC, SCSC

and SSSF boundary conditions. But in case of CFCF

and SFSF boundary conditions the best and worst

performances are observed for the parabolic and

partial load from the end at y = 0 with c/b = 0.2,

respectively, with respect to the critical buckling load.

(7) The suggested design charts (Figs. 19, 20 and 21) will

be very much useful for the designers to determine

the critical buckling load of any isotropic clamped

spherical panel with any dimension and load factor

ranging from 0 to 1.0 with minimum error at the time

of preliminary design without going through the

tedious computations.

From the above study, it is found that the buckling

characteristics of the curved panels are greatly influenced

by various parameters, and hence, the designers have to be

cautious while designing structures under non-uniform in

plane edge loading. Moreover, these results can be con-

sidered as the benchmarks for the future researchers.
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