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Abstract Structural reliability evaluation is considered to

be the solution for modern complex engineering systems

possessing uncertain parameters. Reliability estimation

involves probabilistic theory when the uncertainties are

defined as random variables, whereas with limited resour-

ces, it is strenuous to estimate precise parameters in the

structural model. Therefore, for such cases, imprecise

parameters should be treated appropriately in the design

and analysis stage for the improvement of serviceability of

the system. On the other side, analyses involving multi-

dimensional, computationally expensive, and highly non-

linear structures are formidable in simulation-based meth-

ods in the presence of uncertainties. An efficient

uncertainty analysis procedure is presented in this paper for

analysing the systems with imprecise uncertainties defined

as probability-box variables. The estimated bounds of

failure probability for the numerical examples from struc-

tural mechanics are compared with the traditional approa-

ches to demonstrate the efficiency of the methodology.

Keywords Failure probability � HDMR �
Imprecise uncertainty � Interval MCS � Probability-box

Introduction

Uncertainties influencing both structural parameters and

imposed loads are important in the prediction of behaviour

of the structure. Many approaches have been used to deal

with the uncertainties for studying the system responses.

These approaches demand a mathematical representation

of uncertainties on the basis of available information.

Probability theory is the most customary technique to

describe uncertainties as random variables characterised by

the probability density functions (PDF). If the data are,

however, incomplete, ambiguous, and of poor quality, it is

difficult to form the PDF. Hence, uncertainty is inadequate

to analyse the real structural behaviour by probabilistic

theory; therefore, expected structural response may diverge

due to the presence of imprecise uncertainties.

Imprecise quantities are defined/expressed as set of

possible values that a parameter under consideration varies.

Imprecise probability is an extension of traditional proba-

bility theory when uncertainties are bounded by lower and

upper values for an event. In the past, many researchers

considered the uncertainties by representing in many ways

based on their sources. For example, evidence theory [1–3],

fuzzy sets and possibility theory [4–7], convex models

[8–10], Bayesian theory [11–13], interval analysis [14–16],

and probability-box (p-box) [17–21] can be found in many

engineering applications. The representations are different

from one another by the way the incomplete knowledge is

interpreted/described mathematically. Also, these theories

need the description of variables in bounds rather than

precise information about the probability distribution.

Structural reliability-based methods were developed with

uncertainties; mainly, direct reliability

[4–7, 14, 15, 18, 20, 22] and inverse reliability [23–25] are

the two methods which were studied and algorithms were
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formulated for finding the solution. The lower and upper

ranges of structural responses have been extracted by

adopting interval finite element method [26]. Matrix

decomposition strategy and fixed point formulation were

used [19] so as to reduce the overestimation of bounds for

uncertain variables, in estimating the structural reliability.

Fuzzy [5, 6] and interval [15, 16] parameters are used to

quantify the uncertainties with insufficient data in respec-

tive studies for the estimation of reliability for complex

structures. In the context of imprecise probability, relia-

bility bounds have been evaluated [27], considering

imprecise measurements of the members of the structure.

To limit the dependency overestimation, interval compu-

tation was adopted [28]. Intervals are employed to repre-

sent spatial nondeterministic response of structural systems

under various loading conditions [22]. Reinforced concrete

framed structure was considered for an earthquake loading

in the presence of uncertainties in the design of the struc-

ture [29]. Probabilistic risk is identified for a retaining wall

on considering sensitivity of the variables [30]; also, the

study had been extended for the reliability estimation of

retaining wall subjected to blast loading with different

geotechnical uncertainties [31].

PðEÞ and �PðEÞ are a generalised representation of lower

and upper probabilities of an event E, respectively, with

0�PðEÞ� �PðEÞ� 1 for any imprecise variable. To handle

imprecise uncertainties, interval analysis can be unified

with traditional probability theory, called probability

bounds analysis, which is generally represented as p-box. It

is a general representation of an imprecise variable with

lower bound (LB) and upper bound (UB) on its cumulative

distribution function (CDF). Computation of reliability

index or failure probability becomes burdensome and

impractical for the modern multiplex engineering struc-

tures. Therefore, simulation methods [e.g. Monte Carlo

simulation, (MCS)] and approximate methods like first-

and second-order reliability methods (FORM and SORM)

are used. These are robust and easy for application, but

impractical to generate more samples for real-life exam-

ples, in which a complex analysis procedure may be

required for the analysis. Hence, for nonlinear systems with

more number of uncertainties having imprecise informa-

tion, traditional simulation-based methods become

impractical.

Moreover, design of the system involves repeated

analysis to satisfy the design constraints. The complex

high-dimensional systems are computationally cumber-

some. Hence, approximate models which map the input

and output, commonly called response surface methods

(RSM), become inevitable. Some of the RSM techniques

include sensitivity analysis [11], Kriging meta-models

[9, 18], gradient projection method, and Rackwitz–Fiessler

algorithms [32]. The application of antecedently mentioned

theories is restricted to simple models since they are

computationally expensive to adopt for high-dimensional

complex structural models. In order to surmount this rig-

orousness, high-dimensional model representation

(HDMR) was introduced by [33]. A concept of support

vector regression (SVR) was utilised in computing the

sensitivity indices with an adequate number of sample

points in accordance with HDMR [34]. The application of

HDMR has also been incorporated to uncertainty analysis

when the input variables are modelled as interval variables

and fuzzy membership functions [5, 6, 14, 34].

The main objective of this work is to propose a

methodology for estimating failure probability of structural

systems with imprecise uncertainties defined as p-box

variables. The HDMR techniques are used for response

surface generation, and interval Monte Carlo simulations

(IMCSs) are performed for failure probability calculation.

The paper is organised as follows. Section 2 presents a

brief description of the uncertainties considered and their

mathematical operations. Section 3 presents the failure

probability assessment and response surface generation in

the presence of imprecise uncertainties using HDMR. Both

explicit and implicit numerical examples are solved in

Sect. 4 to substantiate the proposed methodology. Sum-

mary and conclusion are presented in the last section.

Probability-box (P-box)

P-box approach merges conventional probability theory

with the concept of intervals. The p-box gives bounds on

CDF for an uncertain variable. Let x ¼ ½x; �x� be a p-box, in
which x and �x are the LB and UB, respectively. In this

paper, the notations followed are as follows: X for a vector

of random variables, X for a random variable, x for a

realisation vector, and x for a realisation of a random

variable.

The possible value of FðxÞ lies in between F xð Þ and

F xð Þ for every value of x, and it represents the p-box. The

expression for failure probability from MCS is given by:

Pf �
1

Ns

XNs

k¼1

I gðxkÞ� 0½ � ¼
1; if I½�� is true
0; if I½�� is false

( )
ð1Þ

where Ns is the number of samples, I½�� is the indicator

function, and xk is the kth simulated sample of X, which can

be generated using inverse transform method.

xk ¼ F�1
X vj
� �

; j ¼ 1; 2; . . .N ð2Þ

where vj is the sample of random variable. If the variable X

is not precisely defined with known PDF, then it may be

assumed to fall in between two extreme ranges for the PDF.

In this context, failure probability also varies in ranges
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P; �P½ �. This interval of failure probability can be evaluated

using IMCS [26] as expressed in Eqs. (3) and (4) which

represent bounds of failure probability for all possible

values of FðxÞ.

Pf ¼ min
1

Ns

XNs

k¼1

I g F�1
X ðvjÞ

� �
� 0

� �
( )

ð3Þ

and

�Pf ¼ max
1

Ns

XNs

k¼1

I g F�1
X ðvjÞ

� �
� 0

� �
( )

ð4Þ

Similarly, for gðxÞ, CDF intervals are defined as g; �g
h i

.

The interval bounds are expressed as Eqs. (5) and (6):

g ¼ min
x2 x;x½ �

gðxÞf g ð5Þ

and

�g ¼ max
x2 x;x½ �

gðxÞf g ð6Þ

If X is a Gaussian variable with standard deviation of

0.5, and due to limited resource, mean of the variable is not

precise and lies in an interval between [2, 3]; therefore, the

variable is modelled as p-box. This imprecise information

on the variable is shown in Fig. 1.

Failure Probability Assessment in the Presence
of Imprecise Uncertainties

Failure probability Pfð Þ is the assessment of the probability

of occurrence of an extreme event related to a given

structure. In the usual setting, limit state function (LSF)

describes the safety level of the structure for a given input

vector X 2 R. The failure domain (FD), i.e.

F ¼ fX 2 RjgðXÞ� 0g, corresponds to the set of inputs for
which the performance function gðXÞ� 0.Pf evaluation

demands calculation of the probability that the response

oversteps a threshold limit, defined by a LSF, mathemati-

cally represented as:

Pf ¼ PðgðXÞ� 0Þ ¼
Z

gðxÞ� 0

pXðxÞdx ð7Þ

where X ¼ X1; X2; . . .; XNf g is the N-dimensional vector

of random variables of the system under observation; gðXÞ
is the LSF such that gðXÞ� 0 represents the FD; and pXðxÞ
is the joint PDF.

HDMR is a correlated function expansion which maps

input–output in an orderly manner. Let gðXÞ be the

response function with N input variables. The first-order

HDMR expansion is defined as:

g Xð Þ ¼ g0 þ
XN

i¼1

gi xið Þ þ
X

1� i� j�N

gij xi; xj
� �

þ
X

1� i� j� k�N

gijk xi; xj; xk
� �

þ � � �

þ g12...N x1; x2; . . .; xNð Þ ð8Þ

where g0 is a constant term representing the response at c.

Here, giðxiÞ is a first-order term indicating the effect of xi
acting alone. The function gi1i2ðxi1 ; xi2Þ is a second-order

term which defines the interdependent effects of the vari-

ables xi1 and xi2 , and g1 2;...;N x1; x2; . . .; xNð Þ represents any
residual dependence of all the input variables which shows

the impact on the output gðXÞ.
In contrast to ANOVA–HDMR, which is one of the

forms of HDMR, the cut-HDMR specifically exhibits the

output in the hyper-plane passing through a reference point

c defined in the variable space [14, 33]. After determining

each component in Eq. (8), the resulting equation gives

HDMR function by replacing the original computationally

exorbitant model. The behaviour of the output gðXÞ is

collectively extracted from lower-order correlations up to

second order of the input variables [5, 6, 23, 35], by

ignoring higher-order terms in Eq. (8). The steps involved

for the response surface generation by HDMR are shown in

Fig. 2. Here, N and n are number of variables present in the

structural system under consideration and number of

sample points considered on the variable axes. /jðxiÞ is

Lagrange’s interpolation term for first-order HDMR.

The sampling system for first-order HDMR for a func-

tion having one variable ðXÞ and two variables ðX1 and X2Þ
is shown in Fig. 3a, b, respectively.

Based on the previous studies [5, 6, 14, 23, 34, 35], it is

witnessed that up to second-order expansions are likely

sufficient to characterise outputs of varied realistic systems.

In this paper, first-order HDMR expansions are utilised for

obtaining ~gðXÞ as shown in Fig. 2. For all the values of N

and n, the function has to be evaluated N � n� 1ð Þ þ 1

number of times for first-order HDMR [35].0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6

F(
x)

x 

Upper bound

Lower bound

Fig. 1 P-box with a mean [2, 3] and standard deviation 0.5
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Numerical Examples

In this paper, four numerical examples are illustrated with

proposed HDMR-based uncertainty analysis. Both explicit

and implicit structural problems are presented to demon-

strate the efficiency and applicability of the proposed

method. An exact continuous and approximated function

obtained from the HDMR technique is simulated with

IMCS for different function evaluations, and variation in

the bounds of response of the models and failure proba-

bility is studied.

Creep–Fatigue Interaction

A nonlinear creep–failure criterion is considered on the

basis of creep and fatigue damage accumulation. The initial

explicit model is defined as:

g Nc;Nf ; nc; nf ; h1; h2ð Þ ¼ 2� exp h1Dcð Þ

þ exp h1ð Þ � 2

exp h2ð Þ � 1
exp �h2Dcð Þ � 1ð Þ

� Df

ð9Þ

where Dc and Df represent the creep damage and fatigue

damage, such that, Dc ¼ nc=Nc and Df ¼ nf=Nf . nc and Nc

are a number of loading cycles and life of creep, and

nf and Nf are a number of loading cycles and life of fati-

gue. h1 and h2 are the experimental parameters. The input

parameters are listed in Table 1.

The function in Eq. (9) is analysed using the present

method by deploying three samples along each of the

variable axis. The original function was evaluated only at

the selected sample point locations, and the corresponding

component functions are developed; then, the HDMR

response function was obtained. The IMCS was applied on

the developed HDMR function by simulating the input

variables based on their characterisation. In this process, 13

number of function evaluations resulted for the construc-

tion of the HDMR function. To study the impreciseness of

the failure probability, the CDF was drawn for the LB and

UB, as shown in Fig. 4. The function was analysed using

other available methods like direct IMCS, FORM, and

SORM. Here, the direct IMCS, which requires 500,000

function evaluations, is taken as the reference for the

comparison. The proposed technique predicts the failure

probability with least computational effort. However, the

bounds are wider compared to IMCS. Therefore, the cho-

sen number of sample points along each of the axis was

varied from 3 to 7 for seeking improvement in the con-

structed HDMR model, and the results are presented in

Table 2 and Fig. 4. The CDFs for n ¼ 5 and n ¼ 7 are

overlapping exactly with the original function, wherein the

pattern of CDFs for n ¼ 3 is significantly showing the

Fig. 2 Flowchart for generating the first-order HDMR-based

function

(a) (b)

X2

X1

c
X

c

Fig. 3 Sampling scheme for first-order HDMR: a for a function

having one variable ðXÞ and b for a function having two variables

X1 and X2ð Þ

Table 1 Input parameters for creep–fatigue interaction

Variables Interval mean SD

Nc [5294,5686] 549

Nf [15876,18324] 3420

nc [496,504] 10

nf [11737,12263] 600

h1 [0.402,0.438] 0.042

h2 [5.737,6.263] 0.6
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deviation, and the curves are wide covering ample of

bounds.

Fracture Strength of Turbine Blade and Disc

The fracture strength of a turbine blade and disc shown in

Fig. 5 is considered in this example. The radius of crack of

the turbine disc exposed to cyclic loading Nc is defined as:

a ¼ pm=2ð2� mÞ=2 � c � Ncð2Frmax=pÞm þ a
1�m=2
0

� �2=ð2�mÞ

ð10Þ

where c, rmax, and a0 represent the crack propagation,

maximum stress, and the radius of initial crack on the

surface of the material. The correction factor F and the

crack propagation index m are taken as 1.122 and 3.285,

respectively. The stress intensity factor for maximum stress

near crack tip is defined as Kmax ¼ 2F
ffiffiffiffiffiffi
pa

p
=p � rmax. The

LSF is expressed as the difference of critical fracture

toughness KIC and stress intensity factor.

g ¼ KIC � Kmax � 73 ð11Þ
The input p-box variables considered for this study are

listed in Table 3. Practically, the number of loading cycles

Nc can be accurately controlled as a constant in a small

amount of the fatigue test; similarly, the crack propagation

(c) as well as the initial surface crack radius (a0) can also

be simply treated as constants when the crack is clear.

The first-order HDMR function is established for the

fracture strength of turbine disc by considering n sample

points along each of the variable axes, considering c as the

mean of p-box variables. Also, the function in Eq. (11) is

evaluated using crude IMCS for comparing the computa-

tional effort of the HDMR uncertainty analysis which is

appreciably lesser than the original function evaluation.

Only five function evaluations were required for obtaining

the responses, which is computationally very less intensive

compared to the direct IMCS (i.e. 500,000 function eval-

uations). Bounds of failure probability of the function are

presented in Table 4, and the corresponding CDFs of the

responses are shown in Fig. 6.

Further, n is varied from 3 to 7 to examine the accuracy.

It is evident from Table 4 that the failure probability

bounds for the LSF obtained using HDMR (n ¼ 3) have a

slight variation with reference to the original model.

However, for n ¼ 5; and 7, the CDFs are exact. The effort

taken for getting zero error is (nine evaluations) much

lesser than that of the direct IMCS. However, as there is no

error resulted for the higher values of n, the respective

bounds are overlapping in Fig. 6.

Portal Frame

Figure 7 shows the portal frame taken for our study as the

implicit problem [35]. The cross-sectional areas A1 and A2

(log-normal) and horizontal load P (normal) are modelled

as imprecise uncertainties, and their parameters are given

in Table 5.

The values of the second moment of areas are expressed

as Ii ¼ aiA2
i i ¼ 1; 2; a1 ¼ 0:08333; a2 ¼ 0:16670ð Þ. The

LSF is defined for deflection in the horizontal direction at

the top of the frame.

g A1;A2;Pð Þ ¼ Dh � Dlim ð12Þ

where Dlim ¼ 6 mm and Dh is the horizontal deflection.

The LSF for the displacement of the portal frame is derived

using the first-order HDMR technique by distributing

n sample points along each of the variable axis and taking,

respectively, the mean values of the p-box variables as

reference point c.
Table 2 Bounds of failure probability of creep–fatigue interaction

Failure Probability Effort

UB UB LB UB

Direct IMCS 0.0032 0.0039 500,000 500,000

HDMR (n = 3) 0.0531 0.089 13 13

HDMR (n = 5) 0.0033 0.0046 25 25

HDMR (n = 7) 0.0034 0.0051 37 37

FORM 0.0093 0.0156 – –

SORM 0.0178 0.0425 – –

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

F(
x)

Limit state function 

MCS_U
MCS_L
n = 3_U
n = 3_L
n = 5_U
n = 5_L
n = 7_U
n = 7_L

Fig. 4 CDFs of limit state function of creep–fatigue interaction

Fig. 5 Turbine blade and turbine disc
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The failure probability is evaluated for all the values of

n = 3. Only seven function evaluations were required for

obtaining the responses, which is computationally very less

intensive compared to the direct IMCS (i.e. 500,000

function evaluations). Bounds of failure probability of the

function are presented in Table 6, and the corresponding

CDFs of the responses are shown in Fig. 8. Table 6 also

presents the bounds of failure probability for sample points

n ¼ 5 and 7, and FE results by direct IMCS without

adopting HDMR for evaluating the efficiency of the

methodology. Figure 8 shows CDFs of LSF for different

sample points.

The results of the frame for three different variables

show the different bounds for all sample points when

compared with the direct FE analysis using IMCS without

adopting HDMR. From Table 6, for sample points 3 and 5,

bounds are nearer; however, n ¼ 7 significantly reduces the

error with minimum computational effort compared to

direct IMCS.

Plane Truss

A 15-bar steel truss structure [26] is studied with small

modification, as shown in Fig. 9. The cross-sectional areas

(normal) are A ¼ A1; A2; . . .; A15f g, and three loads (log-

normal) P ¼ P1; P2; P3f g are considered as p-box vari-

ables for the study. First and second moments are listed in

Table 7. The LSF is defined for vertical deflection at the

node-5 with limit of 0.06 m.

g A1;A2; . . .A15;P1;P2;P3ð Þ ¼ dv � dlim ð13Þ

where dlim ¼ 0:06 m and dv is the vertical deflection

obtained by the proposed method. From FE analysis, ver-

tical deflection at node-5 is calculated for all the mean

values of variables for deriving the explicit approximated

LSF. The failure probability is evaluated for all the values

of n ¼ 3. As the number of input variables is high com-

pared to other examples, 37 function evaluations were

required for obtaining the responses, which is still com-

putationally very less intensive compared to the direct

IMCS (i.e. 500,000 function evaluations). Bounds of fail-

ure probability of the function are presented in Table 8,

and the corresponding CDFs of the responses are shown in

Fig. 10.

Similar to the other examples, a parametric study has

been carried out for n ¼ 3; 5; and 7. Figure 10 shows

CDFs of failure probability for the vertical deflection at

node-5 for different sample points. The exact ranges are

presented in Table 8 as LB and UB, along with the com-

putational efficiency. The errors in the results are compared

with that of FE analysis using IMCS. Sample point n ¼ 7 is

showing more accurate results compared to n ¼ 3 and 5.

The effort taken for FE analysis with IMCS is way greater

than the effort taken for sample point n ¼ 7 (i.e. 109).

Summary and Conclusions

Uncertainties are inherent to most of the physical pro-

cesses, and therefore, these uncertainties should be quan-

tified efficiently, in which, the characterisation of

uncertainty in the input variables is crucial. It is encour-

aged to consider different kinds of uncertainties in the

system, when the information of the uncertainties is

imprecise in real-time systems. In this context, a compu-

tationally efficient uncertainty analysis method to estimate

the failure probability of structural system by modelling the

input variables using probability-box is presented in this

paper. The behaviour of the system is modelled by the

concepts of HDMR, and interval Monte Carlo simulations

are implemented to predict the responses in the numerical

examples.

Distributions of all the variables are predefined, and no

assumptions are introduced in the numerical examples. The

proposed method holds good for all kinds of distributions

of parameters with inadequate statistical data. The

numerical examples, which possess the explicit nonlinear

functions, are directly used for simulation; then, the func-

tion is approximated using first-order HDMR in which the

polynomial-type function replaces the original nonlinear

function. The number of sample points in each of the

variable axis is varied from 3 to 7 so that the improvement

in the accuracy of the approximated HDMR function is

witnessed. The simulation of the original nonlinear func-

tion over million times is evidently cumbersome as com-

pared to the HDMR-based polynomial function in terms of

computation effort. However, in case of implicit examples,

Table 3 Input parameters of turbine blade and turbine disc

Variables Interval mean SD

rmax (MPa) [655.676,694.324] 54.0

KIC (kN/m1.5) [83.887,90.113] 8.7

Table 4 Bounds of failure probability of turbine blade and turbine

disc

Failure Probability Effort

LB UB LB UB

Direct IMCS 0.0172 0.0200 500,000 500,000

HDMR (n = 3) 0.0177 0.0202 5 5

HDMR (n = 5) 0.0174 0.0198 9 9

HDMR (n = 7) 0.0174 0.0197 13 13
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Table 5 Input parameters for portal frame

Variables Distribution Mean Std. Dev.

A1 Log-normal [0.325, 0.395] 0.036

A2 Log-normal [0.162, 0.198] 0.018

P Normal [15, 25] 5.0

0

0.2

0.4

0.6

0.8

1

-8 -5.5 -3 -0.5 2

F(
x)

Limit state function (kN/m1.5)

MCS_U

MCS_L

n = 3_U

n = 3_L

n = 5_U

n = 5_L

n = 7_U

n = 7_L

Fig. 6 CDFs of limit state function of turbine blade and turbine disc

Fig. 7 Portal frame

Table 6 Bounds of failure probability of portal frame

Failure probability Effort

LB LB UB UB

Direct IMCS 0.0121 0.0057 500,000 500,000

HDMR (n = 3) 0.0082 0.0046 7 7

HDMR (n = 5) 0.0082 0.0044 13 13

HDMR (n = 7) 0.0085 0.0046 19 19

0

0.2

0.4

0.6

0.8

1

-3.2 -2.6 -2.1 -1.5 -1.0 -0.4 0.1 0.7

F(
x)

Limit state function (mm)

MCS_U

MCS_L

n = 3_U

n = 3_L

n = 5_U

n = 5_L

n = 7_U

n = 7_L

Fig. 8 CDFs of limit state function of portal frame

Fig. 9 Plane truss

Table 7 Input parameters for plane truss

Variables Distribution Interval mean SD

A1 to A6 Normal [0.001014, 0.001051] 0.00516

A7 to A15 Normal [0.000634, 0.000657] 0.00323

P1 Log-normal [84.73, 92.47] 5.836

P2 Log-normal [254.19, 277.44] 15.839

P3 Log-normal [84.73, 92.47] 5.836

Table 8 Bounds of failure probability of plane truss

Failure probability Effort

LB LB UB UB

Direct IMCS 0.0544 0.1227 500,000 500,000

HDMR (n = 3) 0.0639 0.1068 37 37

HDMR (n = 5) 0.0669 0.1113 73 73

HDMR (n = 7) 0.0318 0.1247 109 109

0

0.2

0.4

0.6

0.8

1

-0.0035 -0.0015 0.0005 0.0025

F(
x)

Limit state function (m)

MCS_U

MCS_L

n = 3_U

n = 3_L

n = 5_U

n = 5_L

n = 7_U

n = 7_L

Fig. 10 CDFs of limit state function of plane truss
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the FE analysis carried out for original function evaluation

with IMCS is very tedious, as each run takes more time.

Therefore, first-order HDMR is adopted to derive the per-

formance function, and the simulation is performed on the

HDMR function. The CDFs are presented for all the

bounds of the LSF, as the input variables are represented by

imprecise probability distributions. In all four examples,

the bounds of the failure probabilities obtained from the

proposed method are closer to the failure probability

bounds of the original model evaluation from the interval

Monte Carlo method with lesser effort and high efficiency.

In the example of portal frame, it is evident that sample

point n ¼ 7 shows the lesser percentage of error with the

lesser effort of 19 evaluations compared to direct IMCS,

whereas in the example of the plane truss, n ¼ 7 shows

more accurate results as compared to n ¼ 3 and 5 with a

lesser percentage of error. The effort taken for FE analysis

with IMCS (i.e. 5, 00,000) is way greater than the effort

taken for n ¼ 7 (i.e. 109). From the results obtained using

the proposed methodology, the application of HDMR

makes the uncertainty quantification more efficient when

the imprecise uncertainties are characterised as p-box

variables in the systems. It is recommended that the pro-

posed method can be applied to any kind of imprecise

uncertainties with less computational effort without com-

promising on the accuracy.
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