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Abstract This research focuses on the geometrically

nonlinear large deflection analysis of a cantilever beam

subjected to a concentrated tip load. Initially, a step-by-step

development of the theoretical solution is provided and is

compared with numerical analysis based on beam and shell

elements. It is shown that the large deflections predicted by

numerical analysis using beam elements accurately capture

the theoretical results as compared to shell elements.

Comparison of above deflections with theoretical and

numerical approaches based on small deflection theory is

also provided to show the extent of latter’s applicability.

Finally, it is shown that for a linear elastic working range

of common engineering metals, both small and large

deflection approaches yield same results and one can adopt

the simple small deflection approach for engineering

design. It is highlighted that the theoretical approach of

large deflection commonly available in design texts is valid

only within the linear elastic strain limit and recommends a

careful approach to designers. Further, the effect of para-

metric variation in geometry and stiffness of beam on large

deflection, and resulting bending strains and tip reactions

are analyzed and discussed.

Keywords Geometric nonlinearity � Cantilever member �
Concentrated tip load � Large deflection � FEA �
Theoretical solution � Elastic strain limit � Parametric study

List of symbols

b Width of plate (mm)

E Modulus of elasticity (GPa)

I Area moment of inertia (mm4)

k Non-dimensional modulus parameter

L Length of plate (mm)

M Bending moment (N-mm)

P Concentrated load or reaction to applied tip

displacement (N)

s Arc length (mm)

t Thickness of plate (mm)

ux Horizontal displacement (mm)

uy Vertical displacement (mm)

x Arbitrary distance from fixed end (mm)

a Non-dimensional load parameter

/ Slope (rad)

/0 Maximum slope (rad)

r Normal stress (N/mm2)

e Normal strain

h Deflection angle (rad)

Introduction

The cantilever beams (members) under small deflection are

used as structural members. These members when sub-

jected to a concentrated tip load undergo a large deflection

beyond a certain load limit. They undergo large deflection

in applications where they are used as linear or torsional

springs in machines, mechanisms, vehicles, instruments,

etc. Plate springs in the form of cantilever undergoing large

deflections are finding a wide application in general and

precision engineering. In many systems, it eliminates the
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use of complicated mechanism for operation. Common

examples are files and folder locking mechanism, window

closing mechanism in fuel port of cars, hatch door mech-

anism in flight vehicles, etc. In all these mechanisms, a

simple plate spring satisfies the functionality and elimi-

nates the need for a torsional spring. Furthermore, can-

tilever plates/beams used in sports and recreations such as

pole vault, board jumps and fishing rod are subjected to

large deflections. There are numerous examples of such

cases which call for study of large deflection behavior of

cantilever beams for engineering design.

The classic example in day-to-day non-engineering

application for large deflection is the loaded fishing rod. In

its undeflected state, when the rod is lightly loaded, a small

amount of force will cause a certain downward deflection

at the tip. When the rod is heavily loaded however, a much

larger amount of force will be needed to cause the tip to

deflect downward by the same amount. This change in the

magnitude of force required to achieve the same change in

displacement implies that there is no linear relationship

between force and displacement at the tip. In a cantilever

undergoing small deformation, doubling the force results in

doubling the displacement. In the fishing rod case, there

exists a nonlinear system, i.e., a large deflection. One might

need to triple the force to double the displacement,

depending on how much the rod is loaded relative to its

size and other properties [1, 2]. Therefore, in cantilever

beams undergoing large deformation, one can observe an

increase in stiffness (stress-stiffening) of the beam with an

increase in geometric nonlinearity caused by progress of

large deflection.

Under this large deflection, the geometrically linear or

small deflection theory predicts unrealistic results because

the predicted tip deflection of the member may exceed its

length. In small deflection theory, the transverse (or verti-

cal) deflection of the tip of the cantilever member is linear

and is significant whereas the longitudinal (or horizontal)

deflection of the tip is negligible. On the other hand, large

deflection analysis predicts realistic and a nonlinear trans-

verse and longitudinal deflections. Predicting the behavior

of this cantilever member under small deflection is well

established using small deflection theory of structural

mechanics where certain assumptions are made in Euler–

Bernoulli flexural equations and higher-order terms are

neglected. In large deflections, the higher-order terms

cannot be neglected. Few mathematical solutions exist for

large deflections but are rather very complex for design

applications.

Solutions for large deflection of an initially straight

cantilever beam under a tip load have been studied theo-

retically by many researchers and reported in few litera-

tures. Gross and Lehr [1] were the pioneers in providing an

approximate theoretical solution for large deflection.

Bishop and Drucker [2] provided a classical mathematical

solution for the geometrically nonlinear large deflection of

elastic cantilever beam under tip vertical load. This theo-

retical solution was subsequently extended by many

researchers. Wang [3, 4] proposed numerical methods for

analyzing nonlinear bending of beam under tip and uni-

formly distributed loads, respectively. Love [5], Frisch-Fay

[6], Gere and Timoshenko [7] and Howell [8] considered

similar case of the elastica problem in their famous text

books. Other researchers such as Mattiasson [9], Bona and

Zelenika [10], Su [11], Tari [12] and Tari et al. [13] pro-

vided closed-form solutions of similar problem derived in

terms of elliptic integrals or Jacobi elliptical functions.

Belendez et al. [14, 15] elaborated the mathematical

solution of Bishop and Drucker [2] for ease of under-

standing and also studied experimentally. Zakharov [16]

and Batista [17] gave analytical solutions for equilibrium

configurations of a cantilever rod subjected to inclined

force and moment acting on its free end. Kumar et al. [18]

suggested genetic algorithm-based search strategies for

direct numerical solution of governing differential equation

and applied the principle of stationarity of the energy

functional in the equilibrium state. Dado and Al-Sadder

[19] developed an approach that approximates the angle of

rotation by a polynomial function and applied this method

effectively for complex load on non-prismatic beam with

very large deflection. Shvartsman [20] studied the large

deflections of a cantilever beam subjected to a follower

force, and Mutyalarao et al. [21] studied the uniqueness of

this large deflection under tip rotational load.

Rahman et al. [22] carried out nonlinear geometric

analysis of parabolic leaf spring. Banerjee et al. [23] pro-

posed nonlinear shooting and domain decomposition

methods to determine the large deflection of a cantilever

beam under arbitrary loading conditions. Chen [24] pro-

posed an integral approach for large deflection study of a

cantilever beam with complex load and varying beam

properties. Roy and Saha [25] provided a nonlinear anal-

ysis of leaf springs of functionally graded material using

variational method to find out deflection profiles. Large

deflection of beams made of functionally graded material

had been studied by different numerical approaches by

Almeida et al. [26], Sitar et al. [27] and Kien [28]. Few

others have studied the large deflection behavior of initially

curved beams. He et al. [29] proposed a new perturbation

method with two small parameters describing the effect of

load and geometry of the problem, to solve nonlinear large

deflection of initially curved beams under two different

boundary conditions. Nallathambi et al. [30] and Shvarts-

man [31] studied large deflection of a curved cantilever

beam under follower force, respectively, by direct numer-

ical method and fourth-order R–K method. Ghuku and

Saha [32] numerically solved the governing equations
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involving the geometric nonlinearity of initially curved

cantilever beams and compared the results with

experiments.

The differential equation governing the behavior of

large deflection problem contains nonlinear term which is

difficult to solve. Therefore, invariably all existing theo-

retical studies [1–17] involve a complex mathematical

procedure with elliptic integral formulation for a closed-

form solution to predict the behavior when subjected to

geometrically nonlinear large deflection. These solutions

are highly difficult to understand and apply for practical

engineering problems. Remaining studies rely on different

numerical approaches based on R–K method with shooting

technique, finite difference method and finite element

method (FEM) for solving the large deflection problems.

But none have given any solution or an approach that can

be adopted readily for engineering design. Further, the

results of Bishop and Drucker [2] are only adopted in

engineering design texts and handbooks (Wahl [33] and

Shigley [34]) and are available in the form of graphs for

ready use. This solution is limited to calculating the

coordinates and the slope for the end point. But do not

convey complete design guidelines, limitations and con-

straints. It is found that the cantilever members designed

under these limited guidelines fail in large deflection when

that exceeds elastic limit. Rather, they do not caution its

applications based on strain limits. These complexities and

limitations in existing solutions call for a thorough step-by-

step theoretical and numerical analysis of cantilever

members under large deflection that convey the practical

applicability of both theoretical and numerical solutions.

In this paper, initially, the theoretical solution for large

deflection is provided and compared with finite element

analysis (FEA) based on beam and shell elements to assess

the accuracy of element selection in FEA. The large

deflections thus predicted are compared with corresponding

predictions based on small deflection theory to show the

extent of applicability of small deflection theory. Further,

the effect of parametric variation in geometry and stiffness

of beam on large deflection and resulting reactions are

analyzed and discussed.

Research Objective

The objectives of this research on cantilever members are

summarized below.

• To provide a step-by-step theoretical solution for large

deflection analysis;

• To develop an appropriate FE model that matches well

with theoretical predictions;

• To compare the above predictions with well-established

small deflection theory and assess its extent of

applicability;

• To study the effect of parametric variation in geometry

and stiffness of cantilever member under large deflec-

tion; and

• To provide a clear understanding for engineering

design for large deflection.

Theoretical Solution for Large Deflection

Assumptions

• The material of cantilever beam is linear elastic,

homogeneous and isotropic;

• Bending of the beam do not alter its length;

• Although the deflection of cantilever beam is essen-

tially a three-dimensional problem where an elastic

stretching in one direction is accompanied by a

compression in two other perpendicular directions due

to Poisson’s effect, this effect can be ignored as the

length of cantilever beam is more than the thickness of

perpendicular cross section;

• The beam is non-extensible, and strains remain small

within elastic limit; and

• Plane cross sections normal to neutral axis remain plane

and perpendicular to the neutral axis before and after

deformation.

Formulation of Governing Differential Equation

The differential equation governing the behavior of large

deflection is derived based on the fundamental Euler–

Bernoulli theory which states that the curvature is pro-

portional to the bending moment. The small deflection

theory neglects the square of the first derivative in the

moment–curvature relation and provides no correction for

the shortening of moment arm as the plate deflects. Further,

under large finite loads, it gives deflection more than that of

the plate length which is impossible. Therefore, in large

deflection analysis, the square of the first derivative and

hence correction factor for shortening of the moment arm

must be considered. The nonlinear governing differential

equation is solved step by step using elliptical integrals,

i.e., by the use of change of variables. Let us consider a

thin cantilever beam of length L with prismatic or rectan-

gular cross section and constant modulus of elasticity

E subjected to a vertical point load P at the free end. The

small and large tip deflection of this beam is shown in

Fig. 1a, b.

J. Inst. Eng. India Ser. A (March 2019) 100(1):83–96 85

123



The Hooke’s law for the behavior of material is repre-

sented by the linear relation

r ¼ eE ð1Þ

where r is the normal stress and e is the normal strain.

Let ux and uy be the horizontal and vertical component

of displacement at the loaded end, respectively. Taking the

fixed end (x = 0, y = 0) as origin of Cartesian coordinate

system, let (x, y) be the coordinate of an arbitrary point A,

s be the arc length along the deflected beam between the

fixed end and point A, and / be the slope at point A.

The Euler–Bernoulli bending moment–curvature rela-

tionship for this beam is given by

EI
d/
ds

¼ M ð2Þ

where M and d/
ds

are the bending moment and curvature at

any point in the beam, respectively, and I is the second

moment of area of the cross section about the neutral axis.

Differentiating Eq. (2) with respect to s, we have

EI
d2;
ds2

¼ dM

ds
ð3Þ

where bending moment M at point A is

M ¼ PðL� ux � xÞ ð4Þ

From the geometry of deflected beam shown in Fig. 1,

for an infinitesimal arc length ds, we get

cos ; ¼ dx

ds
; and sin ; ¼ dy

ds
ð5Þ

Differentiating Eq. (4) w.r.t. s and substituting Eq. (5)

into the resulting expression give the nonlinear differential

equation that governs the deflection of this cantilever beam

under tip load, as

EI
d2;
ds2

þ P cos ; ¼ 0 ð6Þ

Solution for Slope and Deflections

Slope /0

Equation (6) is difficult to solve due to nonlinearity intro-

duced by cos ; term. This needs to be simplified to an

appropriate form that can be solved in closed form or by

numerical methods. Therefore, multiplying Eq. (6) by d;
ds

and rewriting the resulting expression give

d

ds

1

2
EI

d;
ds

� �2

þP sin ;
 !

¼ 0 ð7Þ

The boundary conditions at the free end are

;ðxÞx¼L ¼ ;0;
d;
ds

� �
x¼L

¼ 0 ð8Þ

Integrating Eq. (7) w.r.t. s and substituting Eq. (8), we

get

1

2
EI

d;
ds

� �2

þP sin ; ¼ P sin ;0 ð9Þ

Rewriting Eq. (9) gives

d;
ds

¼
ffiffiffiffiffiffi
2P

EI

r
sin ;0 � sin ;ð Þ

1
2 ð10Þ

Cross-multiplying the terms and integrating ds from 0 to

s, we get the equation for the arc length of beam s as a

function of slope / as

s ¼
ffiffiffiffiffiffi
EI

2P

r Z;

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ;0 � sin ;

p
 !

d; ð11Þ

Cross-multiplying the terms in Eq. (10) and integrating

ds from 0 to L (due to the inextensibility of the beam)

provide

Fig. 1 Cantilever beam under a tip load. a Small deflection. b Large deflection
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ffiffiffiffiffiffi
2P

EI

r ZL

0

ds ¼
Z;0
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ;0 � sin ;

p
 !

d; ð12Þ

Equation (12) helps to find maximum slope /0 at free

end of the beam as a function of parameters P, L, E and I.

In order to evaluate this elliptical integral on RHS, a non-

dimensional load parameter a is introduced where

a2 ¼ PL2=EI. This leads to

a ¼ 1ffiffiffi
2

p
Z;0
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ;0 � sin ;

p
 !

d; ð13Þ

Let

1þ sin ; ¼ 2k2 sin2 h ð14Þ

where k is given by

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin ;0

2

r
; or sin ;0 ¼ 2k2 � 1 ð15Þ

In order to apply change of limits of integration between

0 and /0 in Eq. (13) to h1 and h2, let us substitute / = 0

and / = /0 in Eq. (14) to obtain h = h1 and h = h2,
respectively, where h1 and h2 are given by

h1 ¼ sin�1 1ffiffiffi
2

p
k
; and h2 ¼

p
2

ð16Þ

Therefore, substituting Eqs. (14 and 16) into Eq. (13)

gives

a ¼ 1ffiffiffi
2

p
Z;0
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ;0 � sin ;

p
 !

d; ¼
Zp

2

h1

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h
� �q

ð17Þ

Vertical or Transverse Deflection uy

In order to arrive at a solution for the vertical deflection, let

us start with Eq. (5), which gives

sin ; ¼ dy

ds
¼ dy

d;
d;
ds

ð18Þ

Substituting Eqs. (10) into (18), we get

dy

d;

ffiffiffiffiffiffi
2P

EI

r
sin ;0 � sin ;ð Þ

1
2¼ sin ; ð19Þ

Cross-multiplying the terms in Eq. (19) and integrating

dy from 0 to y provide

uy ¼
Zy

0

dy ¼
ffiffiffiffiffiffi
EI

2P

r Z;

0

sin ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ;0 � sin ;

p
 !

d; ð20Þ

Simplifying Eq. (20), we further obtain

uy

L
¼

ffiffiffiffiffiffiffiffiffiffi
EI

2PL2

r Z;0
0

sin ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ;0 � sin ;

p
 !

d;

¼ 1ffiffiffi
2

p
a

Z;0
0

sin ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ;0 � sin ;

p
 !

d; ð21Þ

Using Eqs. (14 and 17) in Eq. (21), we get

uy

L
¼ 1

a

Zp
2

h1

2k2 sin2 h� 1
� �

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h
� �q ð22Þ

Now RHS of Eq. (22) can be split up into complete and

incomplete elliptical integrals of the first and second kinds.

In the notation of Jahnke and Emde [35] and short tables of

Peirce’s [36], this can be written as

uy

L
¼ 1

a
FðkÞ � Fðk; h1Þ � 2EðkÞ þ 2Eðk; h1Þ½ � ð23Þ

where

FðkÞ ¼
Zp

2

0

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h
� �q ð24Þ

Fðk; h1Þ ¼
Zh1
0

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2h
� �q ð25Þ

EðkÞ ¼
Zp

2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2h
� �q

dh ð26Þ

Eðk; h1Þ ¼
Zh1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h
� �q

dh ð27Þ

in which F(k) and F(k, h1) are the complete and incomplete

elliptical integrals of the first kind and E(k) and E(k, h1) are
the complete and incomplete elliptical integrals of the

second kind. Further, it can be shown that

FðkÞ � Fðk; h1Þ ¼
Zp

2

h1

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h
� �q ¼ a ð28Þ

Therefore, Eq. (23) becomes

uy

L
¼ 1� 2

a
EðkÞ � Eðk; h1Þ½ � ð29Þ

From Eq. (15), it can be seen that the value of k is

dependent on sin /0 which in turn can range from 0 to 1.

Slope at free end /0 = 0 refers to fully unloaded beam and

/0 = p/2 refers to very large deflection indicating uy = L

that is impractical. Therefore, k is bounded by the limits
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1ffiffiffi
2

p \k� 1 ð30Þ

Therefore by assigning values of k from 0.71 to 1 in

uniform steps and referring to short tables of Peirce’s [36]

given in ‘‘Appendix 1,’’ we can readily obtain the

corresponding values of elliptic integrals F(k), F(k, h1),
E(k) and E(k, h1). Substituting these values in Eq. (29), we

can get the complete variation of uy/L from 0 to 1 and

hence the vertical deflection. The parameters used in

computing the vertical deflection are given in ‘‘Appendix

2.’’

Horizontal or Longitudinal Deflection ux

In order to arrive at a solution for the horizontal deflection,

let us combine Eqs. (2, 4 and 10) and apply the boundary

condition that at x = 0, / = 0. This gives

P L� uxð Þ ¼ EI
d;
ds

����
;¼0

¼ EI

ffiffiffiffiffiffi
2P

EI

r
sin ;0ð Þ

1
2 ð31Þ

This can be written as

L� ux

L
¼

ffiffiffi
2

p

a
sin ;0ð Þ

1
2 ð32Þ

Substituting Eqs. (15) into (32) gives

L� ux

L
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2k2 � 1Þ

p
a

ð33Þ

Therefore by assigning values of k from 0.71 to 1 in

uniform steps and referring to short tables of Peirce’s [36]

given in ‘‘Appendix 1,’’ we can readily obtain the

corresponding values a, and substituting these values in

Eq. (33), we can get the complete variation of (L - ux)/

L from 1 to 0 and hence the horizontal deflection. The

parameters used in computing the horizontal deflection are

given in ‘‘Appendix 2.’’

Numerical Illustration: Horizontal and Vertical

Deflections

Let us consider a thin cantilever steel plate with

L = 100 mm, breadth b = 30 mm, thickness t = 1 mm and

E = 200 GPa which gives I = bt3/12 = 2.5 mm4. The

variation of a2 can be plotted against the variation of both

vertical uy and horizontal ux deflections calculated from

Eqs. (29 and 33) to get a complete representation of large

deflections of an elastic cantilever beam as shown in Fig. 2.

Further, the variation of a2 can be plotted against the

variation of end slope /0 calculated from Eq. (15) as

shown in Fig. 3.

Numerical Modeling and Analysis

The cantilever beam is further studied through numerical

simulations using finite element analysis (FEA) in ANSYS

15.0 [37]. This FEA helps to finalize the type of modeling

approach that predicts the behavior of large deflections

agreeing closely with that of theoretical solutions given in

Eqs. (29 and 33). The material and geometry described

above in numerical illustration are adopted. This cantilever

beam is modeled using Beam188 elements. This element

has two nodes each having three displacements and three

rotational degrees of freedom. An element size of 1 mm is

adopted to model the beam after a mesh convergence study

with varying element sizes. The left extreme node of the

Fig. 2 Comparison of deflections from (1) theory and (2) FEA with

two element types (under both large and small deflection approaches)

Fig. 3 Comparison of end slope from (1) theory and (2) FEA with

beam elements (under both large and small deflection approaches)
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model is constrained in all degrees of freedom to represent

a true cantilever. The beam is loaded with displacement

control by applying a vertical tip deflection of uy-
= - 80 mm gradually in 1000 sub-steps. The FEA solver

could provide a converged numerical solution only up to

80 mm of tip deflection. Initially, the problem is solved as

small deformation in FEA, and the corresponding tip forces

(reactions) are extracted. These results exactly matched

with the results calculated using popular theoretical small

deflection approach, i.e., P = 3EIuy/l
3 and P = 2EI /0/l

2,

as shown in Figs. 2 and 3.

Subsequently, the elements’ large deflection capability

is turned on to initiate a nonlinear solution involving

multiple passes through the solver using Newton–Raphson

method instead of single pass needed for a linear problem.

This takes care of an increase in stiffness (stress-stiffening)

of the beam with an increase in nonlinearity caused by

progress of large deflection. Further, it can be noted that

turning on large deflection in FEA in ANSYS [37] acti-

vates four different behaviors associated with large

deflection which includes large rotation, large strain, stress-

stiffening and spin softening. In one way or another, all

these behaviors involve change in stiffness due to defor-

mation. In the beginning, the tip has less stiffness and even

a small tip force would cause large deformation but as the

plate deflects more and more, its stiffness increases, and

therefore, to cause an additional small deformation, a large

amount of force is needed. The small deflection theory or

approach does not take care of this behavior, and stiffness

remains same throughout the loading, hence does not

provide an accurate result. In a linear or small deformation,

doubling the force results in double the displacement, but

in a nonlinear or large deformation, one needs to triple the

force to double the displacement, depending on how much

the beam is loaded relative to its size and other properties.

After completion of simulation with Beam188 elements,

the problem is again solved by modeling the cantilever

with shell elements using Shell181 in ANSYS 15.0 [37].

Shell181 is a four-node element with six degrees of free-

dom at each node: translations in the x, y and z directions,

and rotations about the x, y and z-axes. It is well suited for

linear, large rotation and large deformation nonlinear

applications, and it accounts for stress-stiffening (follower

effects) under load. This FEA with shell elements helps to

identify the right type of element (among beam and shell

elements) that best describes the large deflection behavior

very closely with that predicted by theoretical results, i.e.,

from Eqs. (29 and 33). This shell element modeling in FEA

is attempted because in many instances, plates having

width equal to 30–50 times of their thickness are also used

as beams in practical applications where spring back

effects are needed. Although they are called as plates, their

characteristics can easily be predicted appropriately using

beam formulations and FEA with beam elements.

Comparison of Theory and FEA Solutions

The results of vertical and horizontal large deflections

predicted from (1) large deflection theory (Eqs. 29 and 33),

(2) FEA with beam elements and (3) FEA with shell ele-

ments are compared with each other in a single graph as

shown in Fig. 2. Further, the predictions of small deflection

approach from (1) FEA with beam elements and (2) small

deflection theory are additionally plotted in same Fig. 2 to

know the extent of their applicability in comparison with

solutions of large deflection. Both small and large deflec-

tion results show the same trend that is initially the load

varies linearly with displacement but after some time the

curve of large deflection starts showing nonlinear behavior,

and hence, large load is needed to additionally deform the

beam even by a very little amount. It can be seen from

Fig. 2 that the results of FEA with beam elements match

very closely with the theoretical results as compared to that

of shell elements. This reveals the suitability of beam

elements in truly representing large deflection behavior of

cantilever plates under transverse loadings or beams. It can

be understood that this matching results are due to

matching approaches in large deflection theory and beam

element formulations of FEA. Similar match can be

observed between the results of small deflection approach

from FEA with beam elements and theory.

This comparison demonstrates that up to a limit of

0\ (uy/L)\- 0.275 for the present cantilever beam, the

predictions from both small and large deflection approa-

ches are one and the same and one can adopt the simple

small deflection approach itself for design applications

provided the induced longitudinal normal strains are within

the elastic limit. Notwithstanding this conclusion, one

needs to resort to large deflection approach only to get the

horizontal deflection however small it may be within this

limit, if needed, because small deflection approach cannot

predict it. Even FEA predictions with shell elements pro-

vide accurate results that match FEA predictions with beam

elements and theory only up to this limit of (uy/L) B 0.275,

beyond this limit shell element predictions drift from that

of predictions from theory and FEA with beam elements as

shown in Fig. 2. This limit for horizontal deflections pre-

dicted from FEA with shell elements to match with pre-

dictions from theory and FEA with beam elements is

- 1.0\ 1 - (ux/L)\- 0.9.

Further, the results of end slope predicted from (1) large

deflection theory (Eq. 15), (2) FEA with beam elements

with large deflection turned on, (3) small deflection theory

and (4) FEA with beam elements with small deflection are
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compared with each other in a single graph as shown in

Fig. 3. The predictions and end slope behaviors shown in

Fig. 3 are almost similar to that described above for ver-

tical deflections in Fig. 2. This comparison demonstrates

that up to a limit of 0\ (/0)\ 30� for the present can-

tilever plate, the predictions from both small and large

deflection approaches are one and the same. The variation

of elastic longitudinal strain with respect to (1) vertical

(i.e., transverse) and horizontal (i.e., longitudinal) large

deflections and (2) vertical deflection from small deflection

approach is shown in Fig. 4. The elastic limit of 0.2% for

typical engineering metallic materials is also shown in this

figure. This comparison of elastic strains from small and

large deflection approaches vis-à-vis typical elastic limit of

common engineering metals reveals that one can readily

adopt simplistic small deflection approach itself for engi-

neering design involving metals because within this elastic

design limit both results from small deflection and large

deflection approaches are same, instead of resorting to

complex large deflection approach.

Parametric Study and Discussion of Results

The parametric studies involving variation of beam lengths,

elastic strains and flexural rigidity of cantilever beam and

their effects on dependent parameters such as elastic strain,

vertical deflection, tip load with respect to normalized

vertical and horizontal deflections and length-to-thickness

ratios are examined. This study brings out the effect of one

important parameter on the other and is conducted by

changing only one parameter in a given study. It provides a

deeper understanding of the behavior of cantilever beam

under large deflections, its characteristics and applications.

Variation of elastic strain with respect to normalized

vertical large deflection for beam lengths varying from 100

to 300 mm is shown in Fig. 5. This figure also shows a

typical elastic limit (permissible limit) for engineering

metals. This demonstrates that the permissible vertical

deflection increases with the increase in beam length at the

elastic strain limit. Further, the induced maximum strain at

the fixed end increases with the decrease in beam length for

a given vertical deflection. Similar behavior is reflected in

Fig. 6 wherein the increase in beam length-to-thickness

ratio increases the vertical deflection for a given elastic

strain value. Therefore, the increase in vertical deflection is

directly proportional to induced elastic strain and L/t ratio.

Figure 7 shows the variation of bending stress with

respect to normalized vertical large deflection for different

beam lengths. This exhibits an increase in vertical deflec-

tion with the increase in beam length for a given induced

bending stress at the fixed end of cantilever. This study also

shows that the induced bending stress increases with the

Fig. 4 Comparison of elastic strains with respect to large and small

deflections against typical elastic limit for engineering metals

Fig. 5 Elastic strain versus normalized vertical large deflection for

different beam lengths; and a typical elastic limit for engineering

metals

Fig. 6 Vertical large deflection versus normalized length for differ-

ent elastic strains
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decrease in beam length for a given vertical deflection. The

variation of tip load (i.e., tip reaction for an applied tip

displacement) with respect to normalized vertical large

deflection for different beam lengths is shown in Fig. 8.

This demonstrates that the tip load increases with the

increase in vertical deflection. This increase in tip load is

inversely proportional to the beam length. The tip load

required to achieve a given uy/L ratio in a shorter beam is

more than that for a longer beam. This observation is due to

the effect of stress-stiffening under large deformation.

Similarly, the variation of tip load with respect to nor-

malized horizontal large deflection for different beam

lengths is shown in Fig. 9. The tip load is inversely pro-

portional to the beam length for a given ux/L ratio, and the

observations are very similar to that of vertical deflection

shown in Fig. 8.

The variation of tip load with respect to normalized

vertical large deflection and normalized horizontal large

deflections is shown in Figs. 10 and 11, respectively, for

different flexural rigidity EI of the beam. The variations in

EI range from 0.56 9 105 to 16.67 9 105 N mm2. The

minimum to maximum values are obtained by varying

width of the beam from 10 to 100 mm and keeping the

thickness constant at 1 mm for a cantilever beam made of

steel. This parametric study demonstrates that the tip load

increases with the increase in vertical and horizontal

deflection. The tip load required to achieve a given uy/L or

ux/L ratio in a flexurally stiffer beam is more than that

required for a flexurally weak beam. The increase in tip

load is directly proportional to the flexural stiffness of the

beam because the stiffer beam offers more resistance to

deformation in addition to the stress-stiffening effect

experienced in large deflections.

Fig. 7 Bending stress versus normalized vertical large deflection for

different beam lengths

Fig. 8 Variation of tip load versus normalized vertical large deflec-

tion for different beam lengths

Fig. 9 Variation of tip load versus normalized horizontal large

deflection for different beam lengths

Fig. 10 Variation of tip load with respect to normalized vertical large

deflection for different flexural rigidity of beam
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Conclusion

This paper presented a detailed step-by-step derivation of

theoretical solutions for prediction of large deflection

characteristics of a cantilever beam subjected to a tip load.

The problem is modeled and simulated in finite element

analysis (FEA) based on beam and shell elements. The

comparison of numerical results with theoretical solutions

has shown that the large deflections predicted by FEA

using beam elements accurately capture the theoretical

results as compared to shell elements. Both the above

theoretical and numerical solutions for large deflections are

compared with theoretical and numerical approaches based

on small deflection theory. Parametric studies with varia-

tions in beam geometry and flexural stiffness provided a

deeper understanding on the behavior of beam under large

deflection. Furthermore, the following conclusions can be

drawn from this research work.

1. Beam elements can capture the theoretical results more

accurately as compared to shell elements in FEA.

2. Within a limit of 0\ (uy/L)\ 0.275 and

0\ (/0)\ 30� for the cantilever beam, both small

and large deflection results are one and the same and

one can adopt the simple small deflection approach

itself for design applications provided the induced

longitudinal normal strains are within the elastic limit.

3. Only large deflection analysis can provide the hori-

zontal deflection, however small it may be within this

elastic limit because small deflection approach cannot

predict it.

4. The vertical deflection increases with the increase in

beam length at the given elastic strain limit; and this

increase is directly proportional to induced elastic

strain and L/t ratio.

5. The induced maximum strain and bending stress at the

fixed end increase with the decrease in beam length for

a given vertical deflection.

6. The tip load increases with the increase in vertical and

horizontal deflection.

7. The increase in tip load is inversely proportional to the

beam length. The tip load required to achieve a given

uy/L or ux/L ratio in a shorter beam is more than that

for a longer beam due to the effect of stress-stiffening

under large deformation.

8. The increase in tip load is directly proportional to the

flexural stiffness of the beam because the stiffer beam

offers more resistance to deformation.
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Fig. 11 Variation of tip load with respect to normalized horizontal

large deflection for different flexural rigidity of beam
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Appendix 1

See Tables 1, 2 and 3

Table 1 Values of F(k) and E(k) for certain values of k

sin-1k F(k) E(k) sin-1k F(k) E(k) sin-1k F(k) E(k)

0� 1.5708 1.5708 30� 1.6858 1.4675 60� 2.1565 1.2111

1� 1.5709 1.5707 31� 1.6941 1.4608 61� 2.1842 1.2015

2� 1.5713 1.5703 32� 1.7028 1.4539 62� 2.2132 1.1920

3� 1.5719 0.5697 33� 1.7119 1.4469 63� 2.2435 1.1826

4� 1.5727 1.5689 34� 1.7214 1.4397 64� 2.2754 1.1732

5� 1.5738 1.5678 35� 1.7312 1.4323 65� 2.3088 1.1638

6� 1.5751 1.5665 36� 1.7415 1.4248 66� 2.3439 1.1545

7� 1.5767 1.5649 37� 1.7522 1.4171 67� 2.3809 1.1453

8� 1.5785 1.5632 38� 1.7633 1.4092 68� 2.4198 1.1362

9� 1.5805 1.5611 39� 1.7748 1.4013 69� 2.4610 1.1272

10� 1.5828 1.5589 40� 1.7868 1.3931 70� 2.5046 1.1184

11� 1.5854 1.5564 41� 1.7992 1.3849 71� 2.5507 1.1096

12� 1.5882 1.5537 42� 1.8122 1.3765 72� 2.5998 1.1011

13� 1.5913 1.5507 43� 1.8256 1.3680 73� 2.6521 1.0927

14� 1.5946 1.5476 44� 1.8396 1.3594 74� 2.7081 1.0844

15� 1.5981 1.5442 45� 1.8541 1.3506 75� 2.7681 1.0764

16� 1.6020 1.5405 46� 1.8691 1.3418 76� 2.8327 1.0686

17� 1.6061 1.5367 47� 1.8848 1.3329 77� 2.9026 1.0611

18� 1.6105 1.5326 48� 1.9011 1.3238 78� 2.9786 1.0538

19� 1.6151 1.5283 49� 1.9180 1.3147 79� 3.0617 1.0468

20� 1.6200 1.5238 50� 1.9356 1.3055 80� 3.1534 1.0401

21� 1.6252 1.5191 51� 1.9539 1.2963 81� 3.2553 1.0338

22� 1.6307 1.5141 52� 1.9729 1.2870 82� 3.3699 1.0278

23� 1.6365 1.5090 53� 1.9927 1.2776 83� 3.5004 1.0223

24� 1.6426 1.5037 54� 2.0133 1.2681 84� 3.6519 1.0172

25� 1.6490 1.4981 55� 2.0347 1.2587 85� 3.8317 1.0127

26� 1.6557 1.4924 56� 2.0571 1.2492 86� 4.0528 1.0086

27� 1.6627 1.4864 57� 2.0804 1.2397 87� 4.3387 1.0053

28� 1.6701 1.4803 58� 2.1047 1.2301 88� 4.7427 1.0026

29� 1.6777 1.4740 59� 2.1300 1.2206 89� 5.4349 1.0008
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Table 2 Values of F(k, h1) for certain values of k and h1

h1 sin-1k

0� 10� 15� 30� 45� 60� 75� 80� 90�

1� 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174

2� 0.0349 0.0349 0.0349 0.0349 0.0349 0.0349 0.0349 0.0349 0.0349

3� 0.0524 0.0524 0.0524 0.0524 0.0524 0.0524 0.0524 0.0524 0.0524

4� 0.0698 0.0698 0.0698 0.0698 0.0698 0.0699 0.0699 0.0699 0.0699

5� 0.0873 0.0873 0.0873 0.0873 0.0873 0.0874 0.0874 0.0874 0.0874

10� 0.1745 0.1746 0.1746 0.1748 0.1750 0.1752 0.1754 0.1754 0.1754

15� 0.2618 0.2619 0.2620 0.2625 0.2633 0.2641 0.2646 0.2647 0.2648

20� 0.3491 0.3493 0.3495 0.3508 0.3526 0.3545 0.3559 0.3562 0.3564

25� 0.4363 0.4367 0.4372 0.4397 0.4433 0.4470 0.4498 0.4504 0.4509

30� 0.5236 0.5243 0.5251 0.5294 0.5356 0.5422 0.5474 0.5484 0.5493

35� 0.6109 0.6119 0.6132 0.6200 0.6300 0.6408 0.6495 0.6513 0.6528

40� 0.6981 0.6997 0.7016 0.7116 0.7267 0.7436 0.7574 0.7604 0.7629

45� 0.7854 0.7876 0.7902 0.8044 0.8260 0.8512 0.8727 0.8774 0.8814

50� 0.8727 0.8756 0.8792 0.8982 0.9283 0.9646 0.9971 1.0044 1.0107

55� 0.9599 0.9637 0.9683 0.9933 1.0337 1.0848 1.1331 1.1444 1.1542

60� 1.0472 1.0519 1.0577 1.0896 1.1424 1.2125 1.2837 1.3014 1.3170

65� 1.1345 1.1402 1.1474 1.1869 1.2545 1.3489 1.4532 1.4810 1.5064

70� 1.2217 1.2286 1.2373 1.2853 1.3697 1.4944 1.6468 1.6918 1.7354

75� 1.3090 1.3171 1.3273 1.3846 1.4879 1.6492 1.8714 1.9468 2.0276

80� 1.3963 1.4056 1.4175 1.4846 1.6085 1.8125 2.1339 2.2653 2.4362

85� 1.4835 1.4942 1.5078 1.5850 1.7308 1.9826 2.4366 2.6694 3.1313

86� 1.5010 1.5120 1.5259 1.6052 1.7554 2.0172 2.5013 2.7612 3.3547

87� 1.5184 1.5297 1.5439 1.6253 1.7801 2.0519 2.5670 2.8561 3.6425

88� 1.5359 1.5474 1.5620 1.6454 1.8047 2.0867 2.6336 2.9537 4.0481

89� 1.5533 1.5651 1.5801 1.6656 1.8294 2.1216 2.7007 3.0530 4.7414

90� 1.5708 1.5828 1.5981 1.6858 1.8541 2.1565 2.7681 3.1534 Inf.
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Appendix 2

See Table 4

Table 3 Values of E(k, h1) for certain values of k and h1

h1 sin-1k

0� 10� 15� 30� 45� 60� 75� 80� 90�

1� 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174

2� 0.0349 0.0349 0.0349 0.0349 0.0349 0.0349 0.0349 0.0349 0.0349

3� 0.0524 0.0524 0.0524 0.0524 0.0524 0.0523 0.0523 0.0523 0.0523

4� 0.0698 0.0698 0.0698 0.0698 0.0698 0.0698 0.0698 0.0698 0.0698

5� 0.0873 0.0873 0.0873 0.0872 0.0872 0.0872 0.0872 0.0872 0.0872

10� 0.1745 0.1745 0.1745 0.1743 0.1741 0.1739 0.1737 0.1737 0.1736

15� 0.2618 0.2617 0.2616 0.2611 0.2603 0.2596 0.259 0.2589 0.2588

20� 0.3491 0.3489 0.3486 0.3473 0.3456 0.3438 0.3425 0.3422 0.342

25� 0.4363 0.4359 0.4354 0.433 0.4296 0.4261 0.4236 0.423 0.4226

30� 0.5236 0.5229 0.5221 0.5179 0.512 0.5061 0.5016 0.5007 0.5

35� 0.6109 0.6098 0.6085 0.6019 0.5928 0.5833 0.5762 0.5748 0.5736

40� 0.6981 0.6966 0.6947 0.6851 0.6715 0.6575 0.6468 0.6446 0.6428

45� 0.7854 0.7832 0.7806 0.7672 0.7482 0.7282 0.7129 0.7097 0.7071

50� 0.8727 0.8698 0.8663 0.8483 0.8226 0.7954 0.7741 0.7697 0.766

55� 0.9599 0.9562 0.9517 0.9284 0.8949 0.8588 0.8302 0.8242 0.8192

60� 1.0472 1.0426 1.0368 1.0076 0.965 0.9184 0.8808 0.8728 0.866

65� 1.1345 1.1288 1.1218 1.0858 1.0329 0.9743 0.9258 0.9152 0.9063

70� 1.2217 1.2149 1.2065 1.1632 1.099 1.0266 0.9652 0.9514 0.9397

75� 1.309 1.301 1.2911 1.2399 1.1635 1.0759 0.9992 0.9814 0.9659

80� 1.3963 1.387 1.3755 1.3161 1.2266 1.1225 1.0282 1.0054 0.9848

85� 1.4835 1.4729 1.4598 1.3919 1.2889 1.1673 1.0534 1.0244 0.9962

86� 1.501 1.4901 1.4767 1.407 1.3012 1.1761 1.0581 1.0277 0.9976

87� 1.5184 1.5073 1.4936 1.4221 1.3136 1.1848 1.0628 1.0309 0.9986

88� 1.5359 1.5245 1.5104 1.4372 1.326 1.1936 1.0674 1.034 0.9994

89� 1.5533 1.5417 1.5273 1.4524 1.3383 1.2023 1.0719 1.0371 0.9998

90� 1.5708 1.5589 1.5442 1.4675 1.3506 1.2111 1.0764 1.0401 1

Table 4 Parameters used in computing theoretical solution of large deflection

k sin-1 k h1 F(k) F(k, h1) E(k) E(k, h1) a uy
L

L�ux
L

/0

Eq. (30) Eq. (16) Appendix 1 Eq. (28) Eq. (29) Eq. (33) Eq. (15)

0.7100 45.2350 84.8257 1.8576 1.7304 1.3485 1.2848 0.1272 - 0.0015 1.0067 0.4698

0.7400 47.7314 72.8526 1.8967 1.4636 1.3262 1.1210 0.4331 0.0524 1.0075 5.4628

0.7700 50.3538 66.6817 1.9421 1.3306 1.3022 1.0326 0.6115 0.1182 0.9968 10.7077

0.8000 53.1301 62.1144 1.9954 1.2334 1.2764 0.9657 0.7620 0.1845 0.9821 16.2602

0.8300 56.0987 58.4228 2.0594 1.1554 1.2483 0.9108 0.9040 0.2533 0.9616 22.1974

0.8600 59.3165 55.3073 2.1384 1.0903 1.2176 0.8641 1.0481 0.3254 0.9340 28.6331

0.8900 62.8732 52.6082 2.2396 1.0351 1.1890 0.8236 1.2045 0.3933 0.8974 35.7465

0.9200 66.9260 50.2278 2.3762 0.9854 1.1460 0.7883 1.3908 0.4856 0.8464 43.8521

0.9500 71.8051 48.1009 2.5902 0.9438 1.1027 0.7549 1.6464 0.5775 0.7707 53.6102

0.9800 78.5216 46.1815 3.0219 0.9012 1.0507 0.7249 2.1207 0.6927 0.6399 67.0433

0.9900 81.8900 45.5800 3.3573 0.8929 1.0225 0.7161 2.4640 0.7513 0.5624 73.7800

0.9950 84.2680 45.2900 3.7001 0.8865 1.0160 0.7120 2.8136 0.7839 0.4976 78.5360

0.9990 87.4300 45.0600 4.5124 0.8819 1.0041 0.7084 3.6259 0.8369 0.3892 84.8700

0.9995 88.1900 45.0300 4.8742 0.8814 1.0022 0.7078 3.9900 0.8525 0.3540 86.3760

sin-1 (k), h1 and /0 are expressed in degrees
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