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Abstract This work presents a typical optimization

technique i.e. Particle Swarm Optimization (PSO) to

achieve optimal design of Reinforced Concrete (RC)

beams. Optimal cross-sectional sizing of an RC beam

results in cost saving, but it (optimal sizing) cannot be

standardized for the various factors that influence a given

design. An algorithm has been developed to search for a

minimum cost solution that satisfies Indian codal require-

ments for RC beams. The objective function consists of the

cost of concrete and rebars as prevalent at the place of

construction. Successful implementation of the algorithm

clearly establishes PSO’s ability of performance in the case

of RC beams. A number of examples have been presented

to show the effectiveness of this formulation for achieving

optimal design.

Keywords Optimum design � Reinforced concrete beam �
Particle swarm optimization � Minimum cost

Introduction

Constantly increasing need for economical structures has

enhanced the interests of designers in developing supe-

rior methodologies for optimum design of structural

members. The structural design codes do not primarily

dwell on the optimization front and this factor is mostly

based on the experience of a particular designer—which

in any case cannot be considered a substitute for the

tested and validated principles of optimization tech-

niques. This paper considers the provisions of IS

456-2000 and intelligent search technique to identify the

optimum solution of RC beams. Undoubtedly, opti-

mization of RC beams in smaller projects may not be

financially viable due to unconventional cross-sectional

size, however in large scale projects where the same

design may be used several times, the savings compound

and the optimization is viable [1].

Weight and cost are the two objective criterions

commonly employed for structural optimization, but for

RC structures ‘weight minimization’ may not necessarily

lead to ‘cost minimization’ [2]. As regards to RC

structures, the pioneer application of heuristic algorithm

includes the work of previous researchers [3] who used

Genetic Algorithm (GA) for economic optimization of

RC beams. Furthermore, many more evolutionary

methods have been developed during last many years for

solving linear and non linear optimization problems such

as genetic algorithm, simulated annealing, harmony

search, particle swarm optimization and ant colonies, to

explore solutions for constrained problems. Among all,

GA is an artificial intelligent method, inspired by bio-

logical phenomenon has been widely used for structural

design problems. The researchers have [4] efficiently

used GA for optimizing RC continuous beams. Cost

optimization models for RC and PC beams using GA

have also been proposed by several investigators [5].

An Artificial Neural Network (ANN) with GA for opti-

mum design of singly and doubly reinforced beams has

been presented by some of the previous investigators

[6, 7] who recommended the optimum steel ratios for

beams and columns in their work of optimization of RC
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flat slab using GA. Many researchers have tried to use

GA to carry out optimization process of RC frames

[8–10]. Some of the previous studies for optimizing RC

frames—based on Indian specifications—have also

implemented the capability of GA [11, 12].

PSO has mostly been studied for steel structures [13–15]

and has found limited application for reinforced concrete

structures [16–18]. PSO is widely acknowledged for its

simplicity and convergence speed. The features of PSO

which make it attractive for use are the adjustment of only

a few parameters of the algorithm, as compared with other

algorithms, and its applicability for non-differentiable,

non-convex and highly nonlinear problems. Also it is

considered to be a relatively powerful tool with high search

speed for exploring optimal solution [19–21]. Recently,

performance of PSO has been evaluated by combining it

with other algorithms for optimum design of RC frame

structures [22, 23]. This work is concerned with optimum

cost of the simply supported rectangular beams using

standard PSO technique and is organized as follows.

Particle Swarm Optimization

Particle swarm optimization is basically a ‘population

based’ stochastic optimization technique [19] with the

traits of simplicity and fair search potential. The interaction

between different particles to determine their best positions

is the crux of PSO. All particles communicate with each

other in search of best position and adjust their velocities

accordingly.

Each ith particle vector from a set of moving particles

represents a potential solution based on a fitness function,

and has a position Poski and velocity Velki at the kth itera-

tion in the problem space. Each ith vector keeps a track of

its individual best position Poski , which is related with its

own best fitness achieved so far at kth step in the iteration

procedure. This value is identified as ‘pbest’. Likewise, the

optimum position obtained so far in the swarm is stored as

the global best position gbestk and identified as ‘gbest’.

The new velocity of the particle is modernized as follows:

Velkþ1
i ¼ wkVelki þ c1rand1 pbestki � X

k

i

� �

þ c2rand2 gbestk � X
k

i

� �
ð1Þ

Poskþ1
i ¼ Poski þ Velkþ1

i ð2Þ

where wk is inertia weight at kth iteration in the first part

and represents the memory of a particle during search. The

inertia weighting function at each iteration is given as:

wk ¼ wmax � wmax � wminð Þ � kth iter=itermax ð3Þ

wmax and wmin represent maximum and minimum values of

w respectively, where itermax represents maximum number

of iterations and kth iter represents current iteration num-

ber. The first right hand term in (1) helps each particle to

perform a global search by exploring a new search space,

whereas the last two terms represent cognitive and social

parts respectively in which c1 and c2 are the learning fac-

tors illustrating the weights of the acceleration terms that

guide each particle toward the personal best and the global

best positions respectively. rand1 and rand2 are uniformly

distributed random numbers in the range 0–1, and N rep-

resents number of particles in the swarm. Each particle

decides its position based on the updated velocity accord-

ing to (2) which is known as flight formula. In this way,

‘velocity updating’ (1) and ‘flight formula’ (2) help the

particles to locate the optimum solution in the search space.

Figure 1 explains the algorithm as developed for the cur-

rent problem.

In order to keep the particles within the search space,

their velocities have been constrained by restricting the

maximum velocity of each particle. Normally, the value

of maximum velocity is selected empirically as per the

characteristics of the given problem. When the value of

this parameter is high, the particles start moving errati-

cally and thereby go past a good solution, whereas when

the value is small, the particle’s movement is restricted

and they fall well short of the optimal solution. In the

current optimization problem, the search space is boun-

ded by ½Posmin;Posmax], and Velmax has also been limited

to 4.

Optimal Design Model

In the current optimization problem some of the parameters

are considered as pre-assigned or fixed while others are

variable. The design variables are determined such that the

cost (objective function) becomes minimum. Some

restrictions—called design constraints—limit the values of

these design variables.

Objective Function

The total cost of the material used, which includes the cost

of reinforcement (longitudinal and shear) and concrete, is

taken as the objective function. Since the proposed algo-

rithm is pertinent to an unconstrained and continuous

optimization problem, the formulation of penalized objec-

tive function—including imposed penalties due to violation

of constraints—is done to translate the constrained problem

into an unconstrained one.
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Development of Objective Function

The cost of RC beam is given as:

C ¼ CstVst þ CCVC ð4Þ

where, C = total cost of beam, Cst = cost of steel per unit

volume of steel (rate of steel), Vst = total volume of steel,

CC = cost of concrete per unit volume of concrete (rate of

concrete), VC = total volume of concrete.

Divide Eq. (4) by CC;

C

CC

¼ Cst

CC

Vst þ VC

and substitute

C

CC

¼ Z;
Cst

Cc

¼ a cost ratioð Þ

and

VC ¼ VG � Vst

Loop until all 
particles 
exhaust

Loop until max 
iterations

properties, cost ratio, swarm size and max No.of iterations)

constraints ( ……., )

terms of , and equal to swarm size i.e. 
( , , ….., ) , i = 1 to in dimensions.

considering velocity eq. (1) & position eq. (2)

position from and find out best of i.e. pbest

Fig. 1 Flow chart for design optimization of RC beam
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where, VG is the gross volume of beam. Thus, objective

function Z is defined as:

Minimize Z ¼ ða� 1Þ Vst þ VG ð5Þ

Volume of steel Vst depends upon area of steel and its

provided length. Similarly gross volume of concrete

depends upon cross sectional area and length of beam.

Fixed Parameters

In the present model, all input design parameters have been

considered fixed. These include span of beam, grade of

reinforcement and concrete, intensity of dead and live

loads, effective cover of concrete and cost ratio (ratio of

unit cost of reinforcement to unit cost of concrete).

Design Variables

Independent design variables considered in the present

model are width (b) and effective depth (d) of the beam.

Cross-sectional area of longitudinal reinforcement (Ast)

and shear reinforcement (Asv) have been calculated as

dependent design parameters.

Constraints

Designs constraints considered in the present model not

only considers Indian codal provisions for RC beam design

(IS 456: 2000), but also few other publications [24, 25]

(Table 1).

Constraint Normalization

All the constraint functions have been normalized—to

speed up convergence and to prevent undue dominance of

any particular constraint—as follows:

g1 ¼ 1� b

bmin
� 0

g2 ¼
xu
d

.
xu;max
d

n o
� 1\0 where

xu

d
¼ 0:87fyAst

0:36fckbd

g3 ¼
Ast

Ast;max
� 1� 0

g4 ¼ 1� Ast

Ast;min
� 0

g5 ¼ 1� Mr

Mn

� 0

g6 ¼
l� D

2

min 60b; 250b
2

d

� �� 1� 0

g7 ¼
l

20d
� 1� 0 ðwhen span� 10mÞ

g8 ¼
l2

200d
� 1� 0 ðwhen span[ 10mÞ

The constraint function values have been kept negative

so that all constraints meet at optimal point. In case of any

violation, a penalty has been imposed according to the

‘‘Constraint Handling Approach’’.

Constraint Handling Approach

A non-linear constrained optimization problem defined

below has been converted to an unconstrained one by the

use of dynamically modified penalty function approach,

where penalties imposed are not stationary but gets modi-

fied during the process.

Minimize Z xð Þ

Subjected to inequality constraints:

gi xð Þ� 0 i ¼ 1; 2; 3. . .m

and equality constraints:

hi xð Þ ¼ 0 i ¼ mþ 1; . . .l

Z xð Þ is the objective function, gi xð Þ represents

inequality constraints, and x is a ‘n’ dimensional vector

of design variables.

In the PSO algorithm, objective function value indicates

the favorability of two positions (old and new).

The penalized objective function (fitness function)

Z 0 xð Þ has been considered as in [21]:

Z 0 xð Þ ¼ Z xð Þ þ h kð ÞH xð Þ; x 2 S � Rn ð6Þ

where, H xð Þ ¼ r �
Pm

i¼1 h qi xð Þð Þqi xð Þc qi xð Þð Þ
, qi xð Þ ¼

0; gi xð Þf g; i ¼ 1; 2. . .m, h kð Þ ¼ k
ffiffiffi
k

p
, Z 0 xð Þ = penalized

objective function, Z xð Þ = original objective function,

h kð Þ = dynamically modified penalty value, k = algorithm

current iteration number, r = penalty multiplier,

H xð Þ = penalty factor.

Function qi xð Þ is a relative violated function of the

constraints, h qi xð Þ½ � is a multi-segment assignment func-

tion, c ½ðqi xð ÞÞ� is a power of the penalty function, and

gi xð Þ are the constraint functions.

If qi xð Þ\ 1, then c½qi xð Þ� = 1, otherwise

c½ðqi xð ÞÞ� = 2.

Moreover,

if qi xð Þ\0:001 then h½ qi xð Þð Þ� ¼ 10

else, if 0:001\qi xð Þ\0:1 then h ðqi xð Þ½ Þ� ¼ 20

else; if 0:1\qi xð Þ\1; then h ðqi xð Þ½ Þ� ¼ 100

otherwise h ðqi xð Þ½ Þ� ¼ 300:

Parameter r is problem dependent, which shall be a

suitably large constant. In the current study, value of r has

been set to 1012).
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Optimal Design Solution

The design procedure coded in C?? gets the design

solution through conventional limit state method as well as

through proposed PSO algorithm. The constant parameters

used in Standard Particle Swarm Optimization (SPSO) are

given in Table 2.

For investigating the performance of PSO, different

design examples were considered and two of them are

given here to compare the results with conventional Limit

State Method (LSM). The necessary input parameters for

these design examples of singly reinforced concrete beam

carrying uniformly distributed load over the entire span are

given in Table 3.

In the examples discussed below, population size of the

swarm i.e. swarm size is taken as 25.

In the present study, the optimization procedure was

terminated when one of the following two stopping criteria

was met:

1. No. of iterations become equal to maximum specified

number.

2. No significant improvement in the solution.

The objective function (Z) gets reduced from

2.96964 9 109 in conventional LSM to 2.77124 9 109 in

optimum beam design and consequently, percentage saving

in cost is achieved by 6.7% in beam design (Example 1,

Table 4). Similarly, the objective function obtained in

design example 2, gets reduced from 1.47696 9 109 to

1.35332 9 109 and 8.4% saving in cost has been achieved

(Table 4). It has also been observed that the effective depth

to width ratio gets increased during the process, from 1.87 to

2 in example 1 and 1.84 to 2.5 in example 2 which indicate

that optimization of the section is associated with rise in

depth to width ratio. Two design examples with different

range of input parameter i.e. ‘depth to width ratio’ indicate

that greater the d=b ratio, greater is the percentage saving in

cost. Furthermore, rise in depth to width ratio was restrained

by the constraint put on minimum width of beam.

To study ‘convergence performance’ of the algorithm,

progress of design improvements has been illustrated in

Figs. 2 and 3.

Parametric Study

Swarm Size

In PSO, best swarm size depends upon optimization

problem. Different swarm sizes were considered to study

their effect on performance of algorithm and optimum

design solutions. Example 2 was optimized by taking

Table 1 Design constraints for optimal design of RC beam as per IS 456:2000

Constraint type Particular constraint Expression Description

Geometric constraints g1 b� bmin Minimum width constraint

g2 xu=d\xu;max=d Ductility constraint

g3 Ast\Ast;max Maximum tensile steel constraint

g4 Ast [Ast;min Minimum tensile steel constraint

Behavior constraints g5 Mr [Mn Moment capacity constraint

g6 l� D=2ð Þ\min 60b; 250b2=dð Þ Lateral stability constraint

g7 l=d� 20 Deflection constraint (for span up to 10 m)

g8 l=d� 20 	 10=lð Þ Deflection constraint (for span above 10 m)

Table 2 Constant parameters used in standard particle swarm

optimizer

Parameters Values for SPSO

Swarm size 25

Maximum iteration number 500

Velmax 4

wmax 0.9

wmin 0.4

c1 2

c2 2

Table 3 Input parameters for design

Input parameters Input values

Example 1 Example 2

Effective span, m 6 5

Load, kN/m 65 50

Grade of concrete M20 M25

Grade of steel Fe415 Fe500

Limits of d=b ratio 1.5–2.0 1.5–2.5

Effective cover, mm 40 40

Bearing of support, mm 300 300

Cost ratio Cst

Cc
100 100
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swarm sizes equal to 5, 10 and 25. Effect of swarm size on

required number of iterations for convergence has been

shown in Fig. 4.

Although the optimum result largely remains unaffected

by the swarm size, larger swarm size needs more iteration

to get to the global optimum solution up to desired preci-

sion because the algorithm has to explore a greater area in

each iteration resulting in more number of evaluations.

Also the computational time is more for large swarm size.

On the other hand, swarm sizes smaller than 5 have a risk

of getting trapped into local minima.

Acceleration Coefficients

The relative values of acceleration coefficients c1 (cogni-

tive acceleration coefficient) and c2 (social acceleration

coefficient), when combined with the random numbers

determine the exploratory nature of particles. The effect of

acceleration coefficients has been studied for example 2

and shown in Table 5.

It has been shown in Table 5 that when cognitive

acceleration coefficient has lower value than social accel-

eration coefficient, its convergence is slow. Even at higher

values of c1, particles tend to wander randomly. While if c2
has much lower value than c1 and much higher value than

c1, particles do not reach global optima for example 2. But

both cognitive acceleration coefficient and social acceler-

ation coefficient equal to 2 give fairly good results.

Concluding Remarks

The PSO has proved to be a relatively robust tool for

exploring optimal solutions for reinforced concrete beams.

Undoubtedly, this study is specifically carried out for

simply supported beams, but the scope of proposed algo-

rithm is wide enough to seek the optimum solution for

other beams and structures. The algorithm has not proved

to be very sensitive to the variation of parameters like

swarm size and acceleration coefficients. A considerable

percentage of saving in cost of RC beam has been found

using proposed optimum design approach. As the entire

optimum design algorithm has been coded in C??, time

Table 4 Simulation results

Beam design example Method d, mm b, mm Ast, mm2 Z (109) % Saving

Example 1 LSM 620 330 1958.45 2.96964 6.7

PSO 616 308 1816.09 2.77124

Example 2 LSM 460 250 1094.48 1.47696 8.4

PSO 509 204 988.23 1.35332
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Fig. 4 Convergence curves with different swarm sizes for Example 2
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taken to get the optimum design values has almost become

an insignificant dimension. The limitations and restrictions

of the Indian code IS 456: 2000 have been considered as a

series of constraints in the current optimization problem

and applied as penalties on the fitness function of the PSO.

Two design examples have been presented to demonstrate

the effectiveness and efficiency of the procedure. It has

been viewed that reduction in both steel area as well as

concrete volume contributes towards optimization of rein-

forced concrete beams and cost optimization is directly

proportional to the ratio of depth to width of a beam.
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