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Abstract To understand brain activity relating neurons to

circuits to learning and behavior, we explored a bottom-up

computational reconstruction of population signals arising

from cerebellum granular layer. As a first implementation,

using bio-realistic computational models of cerebellum

granule cell, in vivo spike train patterns were computed

and then translated into functional Magnetic Resonance

Imaging, Blood Oxygen-Level Dependent (BOLD) signals.

The BOLD response was generated from averaged activity

arising from center-surround organization modeled by

using excitatory-inhibitory ratios related to experimental

data. The averaged responses were converted to BOLD

signals using the balloon and modified Windkessel models.

Although both models generated BOLD responses corre-

sponding to neural activity, the temporal mismatch was

attributed to the response by the delayed compliance

parameter in the Windkessel model. The modeling suggests

that experimental variability observed in the cerebellar

micro-zones could be related to compliance chances, acti-

vation patterns and number of neurons. Although detailed

neuro-vasculature information was not modeled, the

advantage in this methodology is that cerebellar cortex may

allow seemingly linear transformations of underlying

spiking that could be then used to validate network

reconstructions.

Keywords Computational neuroscience � fMRI � BOLD �
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1 Introduction

With complexity from nonlinear responses attributed to

neural activity and their emergent behaviors, computa-

tional modeling in neuroscience relates translational and

clinically-relevant interpretations through bottom-up and

top-down approaches. With experimental data, mathemat-

ical reconstructions also impact testing treatment para-

digms for neurodegenerative disorders. Among human

brain activity imaging techniques, the functional magnetic

resonance imaging (fMRI), is often used to understand

circuit function through correlations of hemodynamic

changes for inter-connecting tasks or resting-states related

brain function and dysfunction. Changes in CBV (cerebral

Blood volume) CMRO2 (cerebral metabolic rate oxygen)

cerebral blood flow (CBF) and dhb (deoxyhemoglobin) in

the activated region of the brain [1, 2] coupled with

metabolic changes are seen through fMRI Blood Oxygen-

Level Dependent (BOLD) signals with respect to neural

activity [3].

To reconnect cellular activity to neuronal population

activity and further to BOLD responses relating to obser-

vations in clinical settings [4], cellular activity to ensemble

response need to be modeled from a bottom-up approach.

Predictions arising from neural activity allow analyzing

phases of BOLD signal including onset of the stimulus [5],

overshoot, and post stimulus undershoot with respect to the

neural activity [6]. Experimentally, BOLD responses not

only depends on the oxygenated blood but also the CBV

(cerebral blood volume), CBF Cerebral blood flow changes

[7–9].

Cerebellum, a brain structure in all vertebrates, is criti-

cally attributed to how timing and motor strategies are

implemented in the brain and related to motor coordination

[10], timing [11–13], movement execution [14, 15] among
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other roles and functions. Failures in cerebellar circuits are

attributed to several cognitive and movement-related dis-

orders and conditions [16] including spino-cerebellar

ataxia [17], Alzheimer’s dementia [18], Parkinson’s dis-

ease [19] and autism [20]. Previous studies had developed

detailed and spiking models of cerebellum cells [21, 22]

and circuits relating input signals entering the cerebellum

granular layer. Neuronal pathways and circuits that con-

trols the blood supply in the cerebellum are unclear. Also,

granule cells are numerous and most energy consuming

neurons in the cerebellum [23]. The activated granular

neurons with metabolic demand causes vasodilation

through neuronal nitric oxide synthase (nNOS) and NMDA

receptors expression helps in effective cerebellar neuro

vascular coupling [24–26]. Capillary diameter changes in

mossy fiber stimulated acute rat cerebellar slices have been

demonstrated in [27].

Towards the goal of connecting modeled neural

behavior to dynamics at the behavioral level as seen in

fMRI, a dynamic model that predicts the volume changes

in the venous compartment was modelled. Temporal mis-

matches happen due to changes in blood flow-neural

activity relations. Rate change of volume was modelled as

a difference in inflow and outflow of the compartment with

respect to time [1]. Flow volume relationship was modelled

as a capacitance and resistance [28]. However, a modifi-

cation by incorporating delayed compliance was able to

capture the dynamic changes of CBF and CBV in increase

and while returning to the baseline [29]. As alternatives to

bottom-up methods, dynamic causal modeling, another

biomechanical modeling approach helps to understand the

brain function from the hidden neural states [30, 31].The

dynamic causal model was introduced for fMRI data

analysis helps to model the neuronal population responses

[31, 32]. In literature, to reduce complexity, two-state

DCM approach have also been used to model hemody-

namic response changes among neuronal regions [33].

However, unlike detailed reconstructions in bottom-up

methods, top-down causal models need several

assumptions.

Extracting spatio-temporal activity in the cerebellum

granular circuitry help reveals the functional features of the

input layer network with respect to time [34, 35]. Towards

that goal, this paper focusses on relating a bottom-up

approach in computational neuroscience, i.e., by recon-

structing large-scale fMRI BOLD signals from detailed

biophysical neurons and experimentally validated circuit

topographies in order to relate cellular activity to ensemble

responses.

2 Methods

2.1 Modeling neuronal response from granular

layer network

Detailed multicompartmental granule cell model [21]

consisting 52 active compartments, namely, a soma, 4

dendrites with 4 compartments, 5 hillock compartments

and 30 compartment axon based on electrophysiological

data from p19-23 Wistar rats was employed. The model

was simulated for 1000 ms.

In this study, a common spatio-temporal organization of

the cerebellum granular layer, namely the center-surround

pattern showing that excitation and inhibition spreading

from the center to the periphery [36] was reconstructed.

The excitatory inputs from the mossy fibers and inhibitory

stimuli from Golgi cells were modeled to reconstruct

in vitro (acute brain slices) and in vivo (anaesthetized)

activity [21]. As in in vivo experiments [37], it was con-

sidered that (15%) of the neurons from the center shared 4

inhibitory and excitatory mossy fiber inputs, 35% of cells

receives 3 inhibitory and excitatory mossy fiber synapse,

15% receives 2 mossy fiber inhibitory and excitatory inputs

and 35% of cells receives 1 inhibitory and excitatory mossy

fiber inputs simulated different firing frequencies and inter-

spike intervals at invivo condition for 1000 ms. For each of

the inhibitory synapses, inter-spike interval and inter-burst

interval was maintained at 10 ms and 300 ms with delay of

24 ms (attributing the time-window in mossy fiber- Golgi

cell-granule cell loop, see [38]). Whereas for excitatory

synapse inter-spike interval and inter-burst interval was set

at 2 ms and 300 ms with delay of 20 ms.

2.2 Estimating averaged responses from neural

spike trains

Spike trains were extracted for each model neuron (see

Fig. 1a) in order to generate the averaged spike responses

that were used to relate to BOLD response (Fig. 1b).

Average spike trains were calculated by mapping each

spike train to a specific kernel function and then averaging

each function to get the best corresponding spike train.

Given a spike train

s = s1; s2; . . .; smf g ð1Þ

Spike trains are then mapped into a real function f(t; s)

Eq. 2, using a kernel k (t). Where t is the time with respect

to spike s. Kernel function is defined as Eq. 3
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A collection of spike trains are taken and are averaged to

Eq. 4. Where fðtÞ represents the average of all the spike

trains, ‘n’ represents the number of spike trains.
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2.3 Reconstructing BOLD response in cerebellar

granular layer

BOLD responses were calculated using Balloon and

modified Windkessel models [28, 39]. Hemodynamic

model was developed that correlates the neural activity and

corresponding BOLD response. The current model was a

combination of balloon and Windkessel model and inclu-

ded a set of ordinary differential equations that governed

the BOLD response, y(t), in terms of, blood flow (fin) total

cerebral blood volume (V), total deoxyhemoglobin (q) and

v(f) recovery of Vi after stimulus. The change in the vol-

ume was modelled as the difference between the flow in

and flow out of the compartment. In the modified Wind-

kessel model by adapting the delayed compliance helps to

model pressure flow mechanism into the compliant vessels

[4].

3 Results

3.1 Electroresponsiveness properties attribute

to population activity in the granular layer

The multicompartmental granule cell model was simulated

for 1000 ms using the centre-surround activation pattern

(See Fig. 2). Among 220 cells, 33 cells near centre

received the strong excitatory (E) and inhibitory (I) stimuli

(I4E4), and consecutive peripheral neurons receives I3E3

for 77 cells, 33 cells receive I2E2 and 77 cells receive

I1E1. Firing behaviour of the network was simulated pro-

viding in vivo like condition. The extracted granule cell

neural activity was taken and corresponding BOLD activity

was generated using modified Windkessel model with

different frequencies and bursts (Fig. 2) with same tem-

poral scale.

Presence of the delayed compliance in modified Wind-

kessel model showed a significance in volume and BOLD

responses, particularly during the return to the base line.

The strength of the BOLD signal was based on the stim-

ulation time. The initial dip and raise of BOLD signal

according to the stimulus and the post stimulus undershoot

was modelled through the compliance variable (Fig. 2b, d,

f, h). Not all of individual neural activity was seen in the

single neuron—BOLD reconstruction.

3.2 Reconstructed BOLD response from averaged

bio-realistic spike trains

The spike trains were mapped to a function using a kernel,

and summed up activity of all the spike trains were taken as

an averaged response (Fig. 3). BOLD response was mod-

elled using modified Windkessel model correlates the

averaged population activity of the granule cells (Fig. 3b).

Transient features of BOLD response was proportional to

Fig. 1 Schematic

representation of cerebellar

granular layer BOLD extraction.

a Representation of cerebellar

granular layer (GrC- Granule

cell, GoC-Golgic cell, and MF-

Mossy fiber, PF-Parallel fibers.

b BOLD estimation from

average spike trains
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the temporal changes in the flow and volume. The averaged

response also allowed to attribute similarities in blood

flow-related changes rather than single neuron responses

attributing a seemingly linear behavior of response at the

population scale. The averaging could also suggest a cor-

relation to changes observed in neuro-vascular coupling as

observed in [27]. Through modeling, neural activity (NA)-

induced NO was reconstructed by the synaptic excitation

patterns to the granule cell (data not shown). At steady-

state and nonactivated state, NO concentration remained

same, when neuronal nitric oxide synthase was activated by

increased neural activity changes to NO followed the

Fig. 2 Reconstructing Cerebellar granular layer neural activity and

the corresponding BOLD response. a Multicompartmental granule

cell activity by providing 1 inhibitory and 1 excitatory (I1E1)

synapse. b BOLD response for (I1E1) spike activity. c Multicom-

partmental granule cell activity by providing 2 inhibitory and 2

excitatory (I2E2) synapses. d BOLD response for (I2E2) spike

activity. e Multicompartmental granule cell activity by providing 3

inhibitory and 3 excitatory (I3E3) synapse. f BOLD response for

(I3E3) spike activity. gMulticompartmental granule cell activity for 4

inhibitory and 4 excitatory (I4E4) synapses. h BOLD response for

(I4E4) spiking activity
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duration of the stimuli with a delayed compliance for initial

activation.

3.3 Computational reconstructions of fMRI BOLD

and flow-related temporal mismatch

from neural activity

Translating neural activity to blood inflow (fin) was per-

formed using a trapezoidal function and convolved with the

hemodynamic response function to generate the BOLD

signal with a simulation time of 1 s using modified

Windkessel and balloon models. BOLD, CBV changes

were reconstructed during the onset of stimulation and after

the stimuli with respect to the baseline and peak values

(Fig. 4). Same stimuli was used for both balloon (Fig. 4a,

b) and Windkessel models to generate the temporal mis-

match of flow and volume as delayed compliance in the

model (Fig. 4c, d). The specific relation to various lobes of

cerebellum may involve variations through delayed com-

pliance as indicated through the comparison between bal-

loon (Fig. 4b) and modified Windkessel (Fig. 4d)

reconstructions.

4 Discussion

As part of this study, we explored reconstructing fMRI

BOLD responses in the cerebellar granular layer using the

balloon and modified Windkessel models. For densely

populated neural regions such as circuits in the cerebellum,

there may be a seemingly linear relationship between

overall activity and nature of generated BOLD response.

The subset of activation patterns within the context of

center-surround excitation geometries were relevant since

underlying granule neurons could elicit a simultaneous

shaping of Purkinje neuron’s response and this could

attribute to variations in BOLD across multiple regions in

the cerebellum granular layer.

A comparison was performed on the balloon and mod-

ified Windkessel models for cerebellum granular layer

inputs suggests blood volume and BOLD returns to the

baseline much slower than the blood flow. The modified

Windkessel model implementation suggests the temporal

mismatch variability in cerebellar microzones as suggested

in some studies could be also attributed to the delayed

compliance that may need to include circumference stress

relaxation models for blood vessels in the cerebellar cortex.

BOLD post stimulus undershoot phenomena seems related

Fig. 3 Averaged neural activity and corresponding BOLD response.

The reconstruction shows the depolarization of the BOLD response to

the neural timing whereas the shape of the response was shaped by

multiple parameters including number of spikes, compliance and time

delays. Averaged activity attributes similarities to nitric oxide

changes in the cerebellar granular layer [27]
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Fig. 4 Comparison of

reconstructed BOLD and blood

flow volumes using balloon and

modified Windkessel model.

While a and c represent changes
in blood volumes with neural

activity, the balloon model

reconstruction (b) and Modified

Windkessel model

reconstruction involving

delayed compliance (d) show
significant time delays in

reaching baseline
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to the delayed compliance and could be substituted with

simpler state variables for large-scale modeling.

With delayed compliance, the BOLD response in the

cerebellar cortex returned to the baseline much faster than

the data which was not significant using the balloon model.

It may be relevant for the densely-packed circuits such as

the cerebellar cortex in order to related neural activity to

emergent responses, a combined balloon and modified

Windkessel model need to be used with averaging taking

into consideration the jitter delays and excitation similarity

in neuronal subpopulations.

Towards bottom-up modelling, reconstructing temporal

structure will need more detailed experimental validations

of the neurovascular components that surface in BOLD

responses. With close approximations, it may be then

possible to reconnect top-down (dynamic causal) models

and bottom-up modelling approaches allowing a better

insight into translational neurosciences and specifically,

relating circuit functions and dysfunctions to underlying

cells and their activity.

5 Conclusion

As an ongoing study, using detailed mathematical models,

a bottom-up modelling, of cerebellar BOLD responses

suggests neural activity in cerebellar cortex can be scaled

and approximated while connecting multiple scales within

such circuits. This style of modelling has more than

physiological roles. It may help abstract large-scale brain

activity to validate network models, design experimental

interventions such as sodium channel modulations during

plasticity, effect of pharmacological drugs and as readouts

for robotic abstractions controlled by cerebellum-inspired

pattern recognition models.
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