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Abstract Our initial research work was focussed on employ-

ing metaheuristic optimization techniques to design optimal

digital signal processing (DSP) systems such as the full band,

conventional infinite impulse response differentiators and

integrators meeting the accurate magnitude responses with a

smaller average group delay. Since, integer order systems are a

tight subset of the fractional order (FO) systems the researchhas

been extended towards the optimal design of FO differentiators

and integrators in the discrete domainwith improved frequency

response performances. Specific emphasis was laid on the

feasibility of the designed FO differentiators in controlling a

double-integrator plant. Analogue Butterworth filter with

fractional stepping in the transition band has also been realized

using an optimal integer-order rational transfer function. In

future, we intend to design and implement generalized frac-

tional-order filters on FPGA/DSP kit and FPAAs.

Keywords Digital filter � Analog filter � Fractional order
device � Signal processing

1 Introduction

The major research areas explored in the past 2 years are:

(a) Design of integer-order digital differentiators and

integrators;

(b) Design of fractional-order (FO) digital differentia-

tors and integrators; and

(c) Design of fractional-order analogue filters such as

the fractional order Butterworth filter (FOBF).

In the following sections, a brief outline of our major

achievements for each of the three research areas is presented.

2 Optimal design of conventional digital
differentiators and integrators

The application of traditional discrete-time differentiators

and integrators is well-known in the field of digital control

systems (e.g., digital PID controller), biomedical signal

processing (e.g., QRS complex detection of ECG signal),

image processing (e.g., detection of edges for the digital

images), and communication systems (e.g., radars). The

major findings which have been published by us in [1–3]

have employed various evolutionary algorithms to optimally

design wideband IIR discrete-time filter approximations of

the conventional integrators and differentiators exhibiting an

accurate magnitude response with a lower average group

delay. To reduce the computational complexity and data

latency for real-time signal processing applications, the

orders of the proposed designs are restricted between one to

four. Compared to the existing literature, issues associated

with the s-domain to z-domain discretization operation are

eliminated in our proposed works. A comparison of the

proposed hybrid flower pollination algorithm (HFPA) based

digital differentiator (DD) of order two published in [3] with

the recent literature [4, 5] in terms of the absolute magnitude

error (AME) is shown in Fig. 1 to demonstrate the improved

accuracy of the proposed method. While the maximum

AME (MAME) for the DDs in [4, 5] are 9.80 dB and

- 27.67 dB, respectively, the same for our HFPA-based

proposed design [3] is - 30.14 dB.
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For the proposed HFPA-based DDs of order 3, MAME

of - 32.18 dB is achieved in comparison to - 22.69 dB

achieved by the MPSO-based technique reported in [5].

Similarly, the proposed HFPA-based digital integrator (DI)

of order 3 achieves a MAME of - 41.92 dB and an

average group delay of 0.50 samples which outperforms

the DD reported in [5] where MAME of - 25.97 dB and

average group delay of 2.51 samples were reported.

In future, the practical realizations of these DD/DI

models will be conducted on a field programmable gate

array (FPGA) boards and DSP kits also the proto type will

be fabricated for some typical applications.

3 Optimal design of wideband fractional-order
digital differentiators and integrators

An ideal fractional order differentiator/integrator (FOD/

FOI) is characterized by infinite dimensions, and its fre-

quency response is given by (1).

HðjxÞ ¼ ðjxÞr ð1Þ

where r is the fractional-order of the FOD/FOI, r[(0,1) for
the FOD and r[(- 1,0) for the FOI, and x is the angular

frequency in radians per second (rad/s). Thus, the magni-

tude and phase responses of the ideal FOD/FOI are given

by (2) and (3), respectively.

HðjxÞj j ¼ xr ð2Þ
\HðjxÞ ¼ 90� � r ð3Þ

IIR rational models for the wideband FODs and FOIs

are designed using state-of-the-art evolutionary algorithms.

The major publications in this field by the author are cited

as [6–10]. From the viewpoint of the practical implemen-

tation, first to fifth orders of the filters are only realized.

The effects due to the finite word length for the models are

also evaluated by conducting robustness studies. The pro-

posed design approach eliminates the need for a dis-

cretization operator.

Comparison in terms of absolute relative magnitude

error (ARME) of the proposed adaptive g-best guided

gravitational search algorithm (GGSA) [6] with the recent

literature for the FOD of orders 3 and 5 are shown in

Figs. 2 and 3, respectively.

The design and application of the optimal fractional

order proportional integrator/derivative controller are also

investigated in [6]. Special emphasis is laid on the feasi-

bility of the designed fractional order differentiators in

controlling a double-integrator plant in [6]. Figure 4 shows

the unit step response for our proposed GGSA-based FOD

published in [6] compared to the responses of the FODs in

[11–13]. The fastest transient response and the best steady

state performance is demonstrated by the proposed FOD.

The FOIs designed by the authors in [9, 10] using col-

liding bodies optimization (CBO) algorithm and symbiotic

organisms search (SOS) algorithm, respectively, demon-

strate an improved accuracy compared to state-of-the-art.

Such FOIs may be used as building blocks for fractional

order PI/PID controllers. Comparison of the absolute

magnitude responses (AME) of the CBO-based FOI of

order 3 for the half integrator compared to the PSO-based

FOIs reported in [14, 15] are shown in Fig. 5. It is observed

that the best response is obtained by our proposed design.
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Fig. 1 Comparison of the absolute magnitude error (AME) responses

for the proposed HFPA-based DD [3] of order 2 with the recent

literature
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Fig. 2 Comparison of the absolute relative magnitude error (ARME)

responses for the proposed GGSA-based FOD [6] of order 3 with the

recent literature
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4 Optimal design of fractional order Butterworth
filter

We have carried out the integer order rational approxi-

mations of the fractional step analogue filters such as the

Butterworth filter [16–18] which provid precise control of

stopband attenuation. While most of the literature presents

the designs of such filters using a fractional order transfer

function approximation, however, they can only be prac-

tically implemented by using fractance devices (such as the

fractional order capacitors) which are commercially

unavailable. Our proposed approach eliminates the need for

such fractance devices to practically implement the frac-

tional order analogue filters. The proposed approach will

lead to the designs being realized practically using active

components such as operational amplifiers and passive

components such as resistors and capacitors. The design

technique employs metaheuristic nature-inspired global

search optimization algorithms instead of sub-optimal

approaches proposed in the literature since the design

optimization problem is a multimodal and non-uniform

one.

The magnitude response of the proposed fractional

Butterworth filter designed using gravitational search

algorithm (GSA) published in [16] is shown in Fig. 6. The

integer order, i.e., first and second order characteristics are

also shown in Fig. 6 for comparison purposes. The frac-

tional stepping beyond the cut-off frequency can be

observed for the figure. Percentage improvements in terms
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Fig. 3 Comparison of the absolute relative magnitude error (ARME)

responses for the proposed GGSA-based FOD [6] of order 5 with the

recent literature
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Fig. 4 Comparison of unit step responses for the GGSA-based FOD

[6] of orde 5 for the half differentiator with the state-of-the-art for

A = 1000 for the double integrator plant control system
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Fig. 5 Comparison of the absolute magnitude error (AME) responses

for the proposed CBO-based FOI [9] of order 3 with the recent

literature

Fig. 6 Magnitude responses for the proposed GSA-based fractional

order Butterworth filter [16]
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of the passband error (PE) and stopband error (SE) metrics

for GSA over genetic algorithm (RGA) and PSO based

fractional order low pass Butterworth filter (FOLBF) also

reported by the author in [16] are shown in Figs. 7 and 8,

respectively.

PSPICE simulations have also been carried out for

implementing the 1.2nd, 1.5th, 2.3rd, and 4.7th order

FOLBFs. The magnitude responses of the simulated filters

in comparison with the ideal filter are shown in Figs. 9, 10,

11, 12, respectively. It may be seen that the responses of

the ideal and the proposed filter nearly overlap.

Hence, our proposed models in [16] are accurate alter-

natives to the state of the art literature [19–21] as demon-

strated by percentage improvement plots in Figs. 13 and

14.

5 Conclusion

A generalized approach to determine the coefficients of the

filters is being investigated. Simulations have demonstrated

promising results in terms of both the pass band and the

stop band characteristics of the designed filters. Once

again, practical applications are kept in mind while

designing the filters. The lower orders of the proposed

designs will reduce the hardware overhead and data

latency. In future, the implementations of the proposed

models will be carried out on platforms such as field pro-

grammable analogue arrays in our lab.

Fig. 7 Percentage improvement on the basis of PE metric for GSA as

compared with RGA and PSO based FOLBFs
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Fig. 8 Percentage improvement in SE metric for GSA as compared

with RGA and PSO based FOLBFs
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Fig. 9 SPICE simulation results to demonstrate the Bode magnitude

plot for the proposed 1.2nd order FOLBF published in [16]
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Fig. 10 SPICE simulation results to demonstrate the Bode magnitude

plot for the proposed 1.5th order FOLBF published in [16]
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Fig. 12 SPICE simulation results to demonstrate the Bode magnitude

plot for the proposed 4.7th order FOLBF published in [16]

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

20

40

60

80

100

120

Order of fractional order lowpass Butterworth filter

Pe
rc

en
tag

e I
m

pr
ov

em
en

t i
n 

PE

[19](2010)
[20](2016)
[21](2016)
[21](2016)

Fig. 13 Comparison of percentage improvement in terms of PE

metric for the GSA based FOLBFs with the literature
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Fig. 14 Comparison of percentage improvement in terms of SE

metric for the GSA based FOLBFs with the literature
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