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Abstract The power and energy consumption of computer

systems have posed challenges to the environment. Few

researchers focused on energy consumption of software,

some have measured the energy consumption of hardware.

Software energy consumption deals with amount of power

consumed over time for a particular software. We know

that, software testing is now moving towards automation.

We use different testing tools to perform testing on pro-

grams and software. We propose our approach in regards to

contribute in the field of Green Software Testing. Modified

condition/decision coverage and concolic testing are very

critical practices in Aerospace and Nuclear safety critical

systems. However, these methodologies do not take into

consideration the amount of energy and power consump-

tions, which is an important issue in Green Software

Testing. In this article, we propose an energy consumption

analysis for modified condition/decision coverage using

concolic testing. We have developed a testing tool called

Green-J3 Model (Green-JPCT JCUTE JCA Model). Our

experimentation with forty-five Java programs shows that

our approach makes on an average 21.32% increase in

modified condition / decision coverage. Green-J3 Model

consumes 747.51 kJ of energy for forty-five programs.

Keywords Energy consumption � Concolic testing �
MC/DC

1 Introduction

In 2007, a report by ITCs-Liteary published that IT industries

were responsible for more than 2% of global carbon emis-

sion. One more report by 1E in 2007 estimated that a com-

pany using 10,000 PCs wasted approximately $165,000 in

electricity bill every year due to the computer systems being

left on overnight. The report concluded that the company

could reduce atmospheric Carbon Dioxide (CO2) content by

approximately 1381 tons by switching off their computer

systems. Consumption of power and energy of PCs is a very

important issue that should be taken into consideration

seriously. Green IT tries to minimize the energy consump-

tion of Information and Communication Technologies,

which are induced during software development life cycle.

Now a days, the current practices mainly emphasized on the

data centers. Green Information Technology idea deals with

decreasing the environmental impacts. This is done through

Information Technology solutions. Most of the Information

and Communication Technology solutions are based on

software, so the power and energy consumption of software

are very crucial to analyze.

To improve software quality, software testing targets to

detect and rectify possible bugs in a software. Tradition-

ally, software testing engineers couldn’t detect all possible

errors in a software through software testing techniques. It
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was a technically big challenge to produce test data that

cover all execution paths in an automated testing approach,

due to presence of many complex conditional expressions

and loops. To address these issues, Dynamic Symbolic

Execution analysis or CONCOLIC (Concrete and Sym-

bolic) testing to produce test data for finding maximum

possible paths of a program, is introduced. In accordance

with DO178B/RTCA standard, code coverage testing is

one of the acceptable types of testing. Coverage based

testing is a white-box testing technique. There are several

coverage based testing techniques such as Statement

Coverage(SC), Condition Coverage(CC), Branch Cover-

age(BC), Modified Condition/Decision Coverage (MC/

DC), and Multiple Condition Coverage (MCC) testing.

Modified Condition/Decision Coverage (MC/DC) is

mandatory for Aerospace and Nuclear safety critical sys-

tems. Energy Consumption is a core area of concern for

Green IT, Green Software Engineering, and Green Soft-

ware Testing, whereas energy consumption of concolic and

MC/DC testing are not yet proposed.

In this paper, we propose a framework to measure the

modified condition/decision coverage and the amount of

energy consumption in this process. We have named our

tool Green JPCT JCUTE JCA Model (Green-J3 Model).

The Green-J3 Model consists of mainly five modules. (1)

Java Program Code Transformer (JPCT), (2) Java Concolic

Tester (JCUTE), (3) Java Coverage Analyzer(JCA), (4)

JouleMeter, and Energy Calculator. In this proposed

approach, we develop JPCT to improve the MC/DC of Java

programs by converting the original Java program into a

transformed version. Our tool Green-J3 Model uses JCUTE

to generate test data. We have developed JCA to compute

MC/DC percentage of the original and transformed Java

programs. To measure the energy consumption in this

process, Green-J3 Model uses the tool JoulMeter. The

abbreviations, we used in our work are listed in Table 1 for

easy reference.

The rest of the paper is organized as follows: Sect. 2

deals with some of the fundamental concepts. Section 3

explains the proposed Green-J3 Model and discusses the

proposed algorithms. Section 4 explains the experimental

study of our proposed work. In Sect. 5, we present some

important threats to validity. In Sect. 6, we compare our

work with some of the existing related work. Section 7

concludes the paper with some insights into our future

work.

Table 1 Abbreviations used in

our approach
Sl. no. Short-form Full-form

1 AC Ammeter clamps

2 APCT Advanced program code transformer

3 BC Branch coverage

4 BCT Binary code transformer

5 CA Coverage analyzer

6 CONBOL CONcrete and symBOLIic testing

7 CONCOLIC CONCrete ?symbOLIC

8 DAE Data aggregator and evaluator

9 EC Energy consumption

10 EDTSO Energy directed test suite optimization

11 Green-ABCE Green architecture model for branch coverage enhancement

12 Green-IT Green Information Technology

13 Green SE Green Software Engineering

14 ICTs Information and communications technologies

15 JPCT Java program code transformer

16 PC Power consumption

17 PCT Program code transformer

18 PM Power model

19 Power TOP Power temporal optimization

20 SCORE Scalable COncolic testing tool for reliable embedded software

21 SUT System under test

22 VIM Virtual instrument machine

23 WG Workload generator

24 WLS Work loader simulator

25 XNCT Exclusive-NOR code transformer
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2 Fundamental concepts

In this section, we discuss some important fundamental

concepts which are required to understand our work.

2.1 Green Software Engineering

To classify and sort some concerns of green and sustain-

able software and their engineering technology, Kern et al.

[1] developed GREENSOFT Model as shown in Fig. 1.

GREENSOFT Model consists of the following four parts:

Life cycle of software products, Sustainability criteria for

software products, Procedure models, and Recommenda-

tions for Action and tools. Green Software Engineering

was the attempt to apply the ‘‘green’’ principles known

from hardware products on software products, software

development processes and their underlying software pro-

cess models. For more detail knowledge on Green Software

Engineering, the readers are suggested to refer [1, 2].

2.2 Energy consumption

The System Under Test (SUT) is the computer hosting the

application whose induced energy consumption will be

computed. The power readings define the energy con-

sumption recorded with respect to timestamps. The total

energy consumption for the entire run may be simply

obtained by summing up the power values measured in

Watts for the duration of interest. Since each value repre-

sents the power used in one second, the sum gives the total

energy consumption in Joules.

2.3 Branch coverage

For achieving branch coverage, each decision in a program,

should take all possible outcomes at least once, i.e. either

true or false.

2.4 MC/DC

The RTCA standard of DO-178B stands for Radio

Technical Commission for Aeronautics [3]. It is manda-

tory to achieve Modified Condition /Decision Coverage

(MC/DC) for Level A certificate of safety critical appli-

cations [4]. MC/DC necessitates satisfaction of the

followings:

• All the entry and exit points of the input programs must

be invoked at least once.

• All possible outcomes of a decision must be affected by

the changes made to each condition.

• All possible outcomes of every decision must execute.

• All the conditions in a decision must execute.

Let us discuss MC/DC with an example. Consider a

program containing only one complex condition

‘‘if(A
V
B)’’. Table 2 shows the truth table for ‘‘if(A

V
B)’’

and Table 3 shows the Extended truth table for the con-

dition taken, which represents the core idea of MC/DC.

From Table 3, we can observe that the test cases (TC)

numbers {1,2,3} are the unique test cases that satisfy the

MC/DC criterion for the given condition. Thus, the resul-

tant test cases are {(T, T), (T, F), (F, T)}. Here, both the

conditions ‘‘A’’ and ‘‘B’’ are independently affected by

changing the value of each condition and by observing the

fact that the final outcome of the whole decision is chan-

ged. Therefore, two independently affected conditions out

of two simple conditions, show that 100% MC/DC is

achieved. It may be noted that the test suite to achieve MC/

DC for a given program is in general not unique. It may be

observed that the test cases (T, T) is needed as it is the only

one that returns a true output value. The test case (F, T) is

needed as it is the only test case that modifies the value of

A and also it affects the outcome of the complex condition,Fig. 1 GREENSOFT Model [1, 2]

Table 2 Truth table for

‘‘if(A
V
B)’’

TC

no.

A B A
V
B

1 T T T

2 T F F

3 F T F

4 F F F

Table 3 Extended truth

table for ‘‘if(A
V
B)’’

TC

no.

A B A
V
B A B

1 T T T 3 2

2 T F F 1

3 F T F 1

4 F F F
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by establishing the independent influence of A. In a similar

way, the test cases (T, T) and (T, F) are nedded to show the

independent influence of B.

2.5 Concolic testing

Concolic testing is the combination of concrete and

symbolic execution, that performs exhaustive testing.

Concolic testing was proposed to automatically generate

test data that can execute all the reachable branches of a

program [5]. It first generates a random input value.

Then, it simulates execution of the program with the

input values. Simultaneously, the symbolic constraints at

every branch point with the execution path are collected.

A set of selected input values corresponding to each of

the branch point is made available at the end of the

execution path. A path constraint is the conjunction of

all these constraints. A component from a path constraint

is chosen and it is negated to explore a new path. The

last branch point from a path is generally chosen for

negation but the selection can also be done randomly. A

constraint solver is used to solve a new path constraint

to generate some concrete input values that satisfy these

paths. For more information on this approach, the reader

is referred to [5].

We explain the concolic testing approach using an

illustrative example. Consider the function weightCategory

shown in Fig. 2. The process starts by executing the pro-

gram with randomly generated inputs. Suppose the

parameters mass and length are randomly set to 22.0 and

-5.0. During execution, both the concrete and symbolic

values (22.0 and mass0) are selected for the specific

executed path. The first branch instruction is encountered at

Line 2. Here, the output of thepredicate evaluates to true

because mass is set to 22.0. For an input value to take the

same branch, it is necessary that the branch constraint

ðmass[ 0:0Þ holds.
The next branch point is detected when executing the if

expression in line 6. Now the predicate evaluates to false,

because length is set to a negative value. The branch

constraint associated with this branch is:

:ðlength[ 0:0Þ ð1Þ

This branch constraint value is merged with the preceding

branch constraint value to form the following new path

constraint:

ðmass[ 0:0Þ ^ :ðlength[ 0:0Þ ð2Þ

After line 8 is executed, the else expression of the function

weightCategory exits. The path constraint is obtained by

negating one of the branch constraints. When the last

branch constraint is negated, the resultant path constraint

becomes:

ðmass[ 0:0Þ ^ ðlength[ 0:0Þ ð3Þ

This new path constraint is then passed to a constraint

solver to check if there exists a set of input values that

makes the constraint true. A solution that satisfies this

constraint is length = 1.0 and mass = 50.0. In the next loop

iteration, the function is exercised with this set of input

values and the path constraint value is again collected. The

execution affects the function to return the VALUE

OVERWEIGHT. This execution path corresponds to satis-

faction of the following constraint:

ðmass[ 0:0Þ ^ ðlength[ 0:0Þ ^ :ðbmi\18:5Þ ^ :ðbmi\25:0Þ
ð4Þ

This step of manipulating the symbolic path constraint

values, solving them to generate concrete inputs, and

executing the resulting test inputs is repeated until a pre-

declared stopping criterion is met. The stopping criterion is

usually either when the number of iterations exceeds a pre-

specified threshold or when all the reachable branches are

covered.

The constraint solver is invoked with another modi-

fied path constraint when it fails to calculate a set of test

cases that satisfy the modified path constraints. The new

modified path constraint is found by negating some other

branch constraint value of the previous path constraint

value. When a constraint solver is failing to evaluate any

test cases for a path, the path is considered to be

infeasible, i.e. no input exists that can satisfy the

constraint.

1 static int weightCategory (double mass, double length) {
2           if (mass > 0.0 )
3               continue;
4           else
5               return ;
6           if (length > 0.0 )
7               continue;
8           else
9               return;
10
11           double bmi = mass / (length * length);
12
13           if (bmi < 18.5)
14               return UNDERWEIGHT;
15
16           else if (bmi < 25.0)
17               return NORMAL;
18
19           else
20               return OVERWEIGHT;}

Fig. 2 A sample program
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3 Proposed approach: Green-J3 Model

In this section, we discuss about the proposed Green-J3

Model in detail. First, we discuss the block diagram of

Green-J3 Model. Then, we present the algorithmic

description in detail.

3.1 Block diagram of Green-J3 Model

Figure 3 represents the schematic representation of Green-

J3 Model. The block diagram consists of mainly five

modules: JPCT, JCUTE, JCA, JouleMeter and Energy

Calculator. The flow starts with the initiation of recording

power consumption for each 1 second of JPCT, JCUTE,

and JCA by JouleMeter. JPCT takes a Java program as

input and converts it into its transformed version. Then, the

transformed program is supplied to JCUTE to generate test

cases automatically. Now, the original program and the

generated test cases are fed into JCA to compute the MC/

DC. After these steps are performed, we stop recording the

power consumption. Finally, using the total time taken by

the above process and total power consumed by the tech-

nique, our tool Green J3-Model measures the total energy

consumption in Joules through Energy Calculator. There-

fore, through Green-J3 Model, we measure the time taken,

power consumed, and energy consumed for our proposed

software testing technique.

3.2 Algorithmic description of our proposed

approach

In this section, we discuss the algorithmic description of

the Green-J3 Model and J3 Model in more detail.

3.2.1 Green-J3 Model

The overall pseudo-code for the proposed approach is

mentioned in Algorithm 1. We can observe from Algo-

rithm 1 that the proposed process requires the follow-

ings: (1) a Java program, (2) JPCT to transform the Java

program, (3) JCUTE concolic tester to generate test

cases, (4) JCA to measure MC/DC percentage, (5) Jou-

leMeter to measure energy consumption and (6) Energy

Calculator. Finally Algorithm 1 results in the total

Energy Consumption(EC).

First two steps of Algorithm 1 are performed by Joule-

Meter to start the process. Step 3 deals with generation of

Test_Suite_1 (TS_1) using JCUTE and measuring MC/

DC_1% using JCA. The first experiment shows the exe-

cution of Java program without JPCT. Step 4 shows the

execution of Java program through JPCT to convert it into

transformed version. Step 5 shows the generation of

Test_Suite_2(TS_2) using JCUTE and measures MC/

DC_2% using JCA. It may be noted that in Step 5, the test

suite is generated for the transformed Java program and

computation of MC/DC_2% is done for the original Java
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program and TS_2. Step 6 finds the time taken to compute

MC/DC, speed of test case generation, and difference of

two MC/DCs. Steps 7 and 8 stop saving the energy con-

sumption values and execution of JouleMeter. Step 9 finds

the total time taken and power consumption. Step 10 finally

computes the total energy consumption in Joules.

Here, we discuss about JouleMeter. JouleMeter [6] is a

Microsoft developed open source tool. It is easily available

on Internet1. It is used to measure the power consumption

of a software application, running in the computer system.

JouleMeter computes the power usage of an application

through a Power Model. The Power model relates the

hardware power state and the computer resource usage in

power consumption calculation. The hardware power state

consists of processor frequency, monitor off/on state,

screen brightness, process utilization and disk utilization.

But in our proposed work, we have considered only a

specific software application’s power usage. JouleMeter

sets some power number parameters for the proper running

of Power Model. The power number parameters are: Pro-

cessor Peak Power (PPP—high frequency), Base Power,

Processor Peak Power (PPP—low frequency) and monitor

power. The power consumption of any application program

indicates only the power consumption of the specific

application program. The energy consumption of any

software application is computed by adding the power

usage per time stamp from the start of the application to the

end of execution of the application. Then, the total power

usage is multiplied with the time interval to get the energy

consumption, which is defined in Energy Calculator.

Fig. 3 Schematic

representation of Green-J3

Model

1 http://research.microsoft.com/en-us/projects/joulemeter/.
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3.2.2 J3 Model

Algorithm 2 presents the concept of J3 Model, that accepts

a Java program as input and produces the MC/DC per-

centage as output. Steps 1–7 of Algorithm 2 are executed to

perform JPCT. Initially program J is fed into JPCT to result

in the transformed program. Step 2 identifies the predicates

in the Java program under test. Steps 3 and 4 form sum of

product (SOP) for each and every identified predicate. This

SOP may be complex in nature, therefore we apply Quine–

McCluskey method to minimize the SOP. Now, to test the

parts of predicate more exhaustively and rigorously, we use

Boolean Derivative Method. By using this method we

insert empty nested if-else conditional expressions in the

original Java program. These extra conditional expressions

contribute to enhance MC/DC, since they help to generate

more test cases so that they cover more branches and

explore maximum paths of the execution tree while com-

piling and executing through concolic tester. Step 7 gathers

all the statements and original programs that form the

transformed version of the original Java program. Step 8

deals with execution of the transformed program through

JCUTE and generates test cases. Steps 9–14 deal with JCA

to measure MC/DC. In Step 9, we supply the generated test

cases and original Java program into JCA. In Step 10, the

Test case reader reads each test case and subsequently the

predicate identifier identifies all predicates in the input Java

program in Step 11. Now, in Step 12 we apply the concept

of MC/DC to identify the independently affected condi-

tions (I) and Number of Simple Conditions (C). Coverage

Calculator uses these two values I and C, to compute MC/

DC percentage as presented in Step 13. In Step 14, the

algorithm exits.

Let us consider the function testLogical shown in

Fig. 4. The function accepts three Boolean values as

parameters and based on the satisfaction of the decision

(a&& (b || c)) (Line 2), the true and false branches are

executed. This technique transforms the function

testLogical into the code with the dummy branches as

shown in Fig. 5 to achieve MC/DC. The expressions

shown in Lines 2–13 ensure to reach each branch, due to

which we achieve high MC/DC.
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4 Experimental studies

We did our experimentation on forty-five benchmark Java

programs taken from the OSL Repository2 and some stu-

dents assignments. We have our experimental setup as

follows: We ran our programs on Windows-7 operating

system with 4 GB RAM and Intel(R) Core(TM) i5 CPU

having 2.40 GHz as processing speed. We have performed

our experiments in Java environments JDK 1.6.0 and JRE

1.6.0. Table 4 explains the different properties of the Java

programs which we have considered. Column 3 shows

LOCs of original Java program and Column 4 shows LOCs

of the transformed Java program. Here, we have considered

programs up to a maximum of approximately 3000 LOCs.

Columns 5 and 6 deal with the number of functions

invoked and number of classes present in a Java program,

respectively. In our proposed work, we basically work on

concolic and MC/DC testing that strictly require predicates

and branches covered. Columns 7 and 8 present the number

of identified predicates and branches of the execution tree,

respectively. Some important properties such as number of

variables, DFS (Depth First Search) information, and errors

are reported in Columns 9, 10, and 11 respectively.

For our experimentation, we have considered two sce-

narios. These two scenarios are defined below:

Scenario 1 It is the process of test case generation and

measuring MC/DC percentage through JCUTE and JCA

respectively.

Scenario 2 It is the process of transforming a Java

program into it’s transformed version, generating the test

cases, and measuring the MC/DC percentage through

JPCT, JCUTE and JCA respectively.

Table 5 presents the important parameters for our

experiments. We use JCUTE to test a Java program in a

concolic manner. JCUTE automatically selects input values

for different constraints to explore the possible paths in a

execution tree. These different input files are the test cases,

that are generated automatically through JCUTE tool. Total

number of test cases generated for Scenarios 1 and 2 are

reported in Column 3. It may be observed that for thirty-

seven programs, Scenario 2 produces more test cases as

compared to Scenario 1 due to the transformation of Java

programs. In support to MC/DC percentage metric to

improve quality of software, we measure total computa-

tional time to compute MC/DC and speed of test case

generation. Column 4 presents the computational time for

both the Scenarios 1 and 2. In Scenario 1, we have two

modules i.e. JCUTE and JCA. We record the time values

individually, then sum up them for getting the total time.

On the other hand for Scenario 2, we have three modules

i.e. JPCT, JCUTE, and JCA. Again, we record the time

values individually, then sum up them for setting the total

time. It may be observed that for almost thirty-two pro-

grams, Scenario 2 takes little more time as compared to

Scenario 1. The reason is the use of additional module for

obtaining the transformed version of the program in Sce-

nario 2. It may be that, since we have two scenarios,

therefore, we have executed our experiments for two times.

Different execution of modules take different times.

We have already mentioned that, we record time con-

straints individually for each modules. So, using time

values through JCUTE and JPCT?JCUTE, we compute

the speed of test case generation for Scenarios 1 and 2

respectively. Column 5 reports the speed of test case

generation for Scenarios 1 and 2. We observed that for

thirty programs Scenario 2 is delayed as compared to

Scenario 1, due to the extra module JPCT added in Sce-

nario 2.

Column 6 deals with MC/DC percentage analysis. We

compute MC/DC_1% and MC/DC_2% for Scenario 1 and

2 respectively. To show enhancement in MC/DC, we take

the difference of both the MC/DCs and this has been shown

in third sub-column of Column 6. Here, we may observe

that for thirty-one programs, we successfully achieved

increased MC/DC. Among forty Java programs,in an

average we achieved 24.03% high MC/DC. Figure 6 shows

the MC/DC percentage analysis of the forty programs. In

Fig. 6, the program are taken along X-axis. Y-axis repre-

sents the MC/DC percentage. Figure 7 presents the com-

parison of the two MC/DCs i.e. MC/DC_1 and MC/DC_2.

1. void testLogical(bool a, bool b, bool c){
2. if(a)
3. {
4. if(b){}
5. else{}
6. }
7. else{}
8. if(a)
9. {
10. if(c){}
11. else{}
12. }
13. else{}
14. if(a && (b||c))
15. {..........}
16. else
17. {..........}
18. }

Fig. 5 Transformed code of the example function given in Fig. 4 to

achieve MC/DC

1. void testLogical(bool a, bool b, bool c){
2. if(a && (b||c))
3. {..........}
4. else
5. {..........}
6. }

Fig. 4 Example function with a boolean expression

2 http://osl.cs.illinois.edu/software/jcute/index.html.
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Table 4 Characteristics of different experimental programs

SL.

no.

Program name LOC

invoked

LOC0 # of function

classes

# of

predicate

# of

branches

Total

#

# of

variables

DFS

information

Errors

1 Condition 21 32 1 1 2 15 3 0/0/1 0

2 Weight 24 42 1 1 1 20 4 1/0/3 0

3 QuickSort 68 76 3 4 2 18 8 1/1/2 0

4 Nonce 286 350 10 11 25 146 14 0/2/3 1

5 StringBuffer 421 466 8 4 17 56 6 0/0/2 0

6 SwitchTest 59 71 2 3 4 15 5 1/1/3 0

7 Producer Consumer 20 27 4 2 2 8 4 2/1/4 2

8 BSTree 255 297 3 5 6 28 8 1/3/1 0

9 ArraySort 27 33 2 2 2 15 3 0/0/2 0

10 Static InstanceProblem 24 32 1 1 1 5 2 1/0/3 1

11 CAssume 43 65 1 1 1 2 1 0/0/1 0

12 CTest3 94 117 2 3 2 4 2 0/0/2 1

13 Deadlock 91 125 1 1 1 2 1 0/0/0 0

14 Demo 50 72 1 1 1 2 2 0/0/1 0

15 DemoLock 67 95 1 2 1 2 2 0/0/1 0

16 CTest2 96 114 2 3 2 4 4 0/0/2 0

17 CTest1 96 126 0 3 2 2 4 0/0/2 3

18 DemoL0ck2 60 97 1 1 1 2 2 1/1/4 0

19 DSort 95 121 5 3 4 18 4 16/1/18 1

20 ErrorTest 71 98 0 1 4 9 3 0/0/0 0

21 If-Else 77 118 1 2 1 6 2 1/1/3 2

22 InterfaceJava 51 350 1 1 1 2 1 1/1/1 0

23 LockHeld 73 97 2 1 4 12 4 0/0/0 0

24 MultiLock 62 106 1 1 2 4 3 3/3/3 0

25 NewJava 61 118 1 1 1 4 2 0/0/0 0

26 NoPredictive 69 108 2 3 3 8 2 0/0/1 0

27 NoPredictive2 58 84 2 3 2 4 2 0/0/2 4

28 NS 313 715 10 4 24 146 15 28/1/43 0

29 NS2 403 806 11 4 28 188 19 0/0/46 0

30 FinallyTest 45 45 0 1 0 0 2 0/0/0 0

31 OneWrite 45 45 0 1 0 3 1 0/0/3 24

32 Regression 176 256 1 1 15 8 24 2/1/5 0

33 SampleXA-CMLPolicy 90 125 2 1 1 24 5 0/0/6 0

34 StackTest 33 47 0 1 1 0 1 0/0/0 0

35 Static InstanceProblem2 51 68 1 1 1 4 2 0/0/2 0

36 StringBuffer Module 1364 1896 7 3 9 52 15 0/0/8 0

37 StringBuffer1 486 976 8 3 8 60 18 13/4/21 1

38 StringBuffer2 541 1012 8 3 10 64 22 13/4/21 1

39 Struct 47 95 1 1 2 8 3 2/1/5 1

40 Testme 51 78 1 1 1 4 3 0/0/2 1

41 Copeca 2043 2744 24 6 118 433 102 19/3/72 48

42 Smup 1849 2102 17 3 78 392 83 28/0/5 6

43 Pbct 708 1284 8 2 46 128 28 0/0/56 13

44 Gecco 1512 1931 15 3 53 272 75 1/14/3 37

45 JExj 1246 1764 13 3 62 188 96 2/19/33 19
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Table 5 Result analysis for different programs

Sl.

no.

Program # of generated test

cases

Computational time

(ms)

Speed of test case

generation (# of TCs/

s)

MC/DC% analysis

Scenario

1

Scenario

2

Scenario

1

Scenario

2

Scenario

1

Scenario

2

Scenario

1

Scenario

2

Difference

1 Condition 4 5 4827 6159 3.41 2.13 100 100 0

2 Weight 5 6 6278 9174 3.15 1.39 66.66 100 33.33

3 QuickSort 1 1 7118 8841 3.36 0.88 50 66.66 16.66

4 Nonce 24 24 28533 32585 1.51 0.87 66.66 76.47 9.81

5 StringBuffer 8 8 135081 164548 0.06 0.04 75.51 83.67 8.16

6 SwitchTest 6 7 4229 5244 6.06 5.16 75 100 25

7 ProducerConsumer 1 2 3060 3616 2.02 3.12 60 80 20

8 BSTree 6 8 12323 13031 2.22 2.42 61.90 76.19 14.29

9 ArraySort 4 5 7903 8642 3.69 3.59 42.85 71.42 28.37

10 StaticInstanceProblem 3 3 4220 4847 8.08 6.12 100 100 0

11 CAssume 2 2 6025 5797 6.62 1.29 100 100 0

12 CTest3 2 3 6453 6796 6.66 2.96 40 80 40

13 Deadlock 1 2 2693 6021 5.68 0.75 100 100 0

14 Demo 1 3 3629 5545 6.53 1.60 50 100 50

15 DemoLock 1 3 3408 3702 6.49 2.54 33.33 66.66 33.33

16 CTest2 2 5 5153 4775 6.36 5.06 50 75 25

17 CTest1 1 2 6199 5812 2.36 1.94 33.33 66.66 33.33

18 DemoL0ck2 3 7 5303 6724 6.65 4.69 100 100 0

19 DSort 5 12 7651 7176 2.73 4.81 50 83.33 33.33

20 ErrorTest 1 2 1257 976 7.14 7.81 0 0 0

21 If-Else 4 6 4269 5260 4.98 2.30 66.66 83.33 16.67

22 InterfaceJava 2 3 4056 5719 6.57 2.43 50 100 50

23 LockHeld 1 2 2546 3528 6.57 1.56 33.33 66.66 33.33

24 MultiLock 1 1 4924 6132 5.10 1.75 20 60 40

25 NewJava 1 1 5825 6982 4.95 0.43 66.66 100 33.33

26 NoPredictive 2 5 5832 8556 6.92 1.77 42.85 85.71 42.86

27 NoPredictive2 4 6 5382 6015 6.71 2.56 25 80 55

28 NS 43 53 208538 202172 0.21 0.26 56.45 75.80 19.35

29 NS2 30 47 196481 190121 0.15 0.25 54.43 77.21 22.78

30 FinallyTest 1 1 1234 1133 6.66 5.34 0 0 0

31 OneWrite 1 1 7179 4618 0.30 0.41 0 0 0

32 Regression 5 12 2919 3653 6.53 5.74 73.07 94.23 21.16

33 SampleXACMLPolicy 11 19 8347 9042 5.21 4.92 33.33 100 66.66

34 StackTest 1 2 1565 1390 7.14 4.03 100 100 0

35 StaticInstanceProblem2 3 4 4127 3055 6.81 8.51 50 100 50

36 StringBufferModule 6 11 7150 31933 3.10 0.40 51.51 77.75 24.24

37 StringBuffer1 8 17 74966 83003 0.11 0.22 77.77 92.59 14.82

38 StringBuffer2 8 19 75591 88166 0.11 0.22 54.54 81.81 27.27

39 Struct 5 7 3849 4857 6.80 3.04 60 100 40

40 Testme 3 5 5688 5548 6.60 3.51 33.33 66.66 33.33

41 Copeca 71 33 12385 13013 5.732 7.146 73.52 93.13 19.61

42 Smup 68 75 9783 10713 6.950 7.008 3253 5060 1807

43 Pbct 27 38 5431 6615 4.971 5.744 66.07 71.42 5.35

44 Gecco 35 47 7677 7137 4.559 6.585 50 50 0

45 JExj 49 62 6321 6793 7.751 9.127 78.12 83.33 5.21
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It is clearly reflected from Fig. 7 that we get significant

increase in MC/DC.

Table 6 discuses total energy consumption analysis of

both the scenarios for forty-five programs as discussed in

Algorithm 1. Columns 3 to 5 present timestamps recorded

from, to, and total time in milliseconds respectively. Col-

umn 6 presents the consumption of power of an application

in watt over the time taken. Figure 8 shows the correlation

between time and energy consumption. Here, X-axis shows

the input programs and Y-axis shows the total Power

consumed by program. This is the graph of consumption of

power vs time taken. We may observe three programs

consume power more than 100 watts as reported in Column

6. We present energy consumption for all forty-five

Fig. 6 Comparison of MC/DC for different programs

Fig. 7 Difference between the

two MC/DC percentages

Fig. 8 Recorded power consumption over time of interest
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programs in Column 7. The range of energy consumption is

from 379.8578 to 162100.0568 J. Figure 9 shows the

comparison of consumption of energy for all forty-five

programs. We have scaled down the value of energy con-

sumption to show the comparison of all Java programs. In

this graph we have taken 1000 J as threshold value. In

Fig. 9, the programs are taken along X-axis. Y-axis rep-

resents the energy consumption in Joules. Here, we con-

clude that the total energy consumption for forty-five

programs is 747.51 kJ.

5 Threats to validity

Here, we present some important threats to the validity of

Green-J3 Model.

1. The programs taken for experimental studies are

amenable to concolic testing, this is our first threat to

the proposed work.

2. Our second threat to validity is related to some

shortcomings of symbolic execution engine that is

used in JCUTE. Some possible shortcomings of

concolic tester are given below:

• It may not scale up if the domain of input is large.

• If the program exhibits non-deterministic behavior,

it may follow a difference path than the intended

one. This can lead to non-deterministic of the

search and poor coverage.

• Even in a deterministic program, a number of

factors may lead to poor coverage, including

imprecise symbolic representations, incomplete

theorem proving, and failure to search the most

fruitful portion of a large or infinite path tree.

3. The third threat to validity is that the system config-

uration JCUTE and JolueMeter are developed for

windows 7 operating system only.

4. The proposed program transformation using Quine

McCluskey technique works fine for small and mod-

erate sized programs. But, for very large programs with

many-many alternative paths, the time complexity and

space complexity will significantly increase. When we

compare QM technique with K-Map, then QM results

in better output because K-Map is able to handle only

upto four or five variables in a decision and QM is

capable of handling n number of variables present in a

decision. But, for very large programs, we have to bear

this overhead, w.r.t. space and time.

6 Comparison with related work

In this section we discuss some existing related work to

compare our proposed work.

Li et al. [7] proposed an approach for Energy-Directed

Test Suite Optimization (EDTSO). EDTSO is a new test

suite minimization approach that allows software testers to

generate energy-efficient, and minimized test suites. Their

proposed technique is based on encoding minimizing

problems as integer linear programming problems. In our

proposed work, we have achieved higher code coverage

and computed energy consumption for the whole process.

Amsel and Tomlinson [8] have proposed a tool called

Green Tracker. Green Tracker estimates the energy con-

sumption of software in order to help the concerned users

in taking suitable decisions about the software they use.

Amsel and Tomlinson [8] aimed at creating awareness

about the potential environmental hazards associated with

Fig. 9 Comparison of computed energy consumption for different programs
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Table 6 Power consumption and energy consumption of different programs

Sl. no. Program name Timestamps Application Energy

From To Total time (ms) Power (W) Consumption (J)

1 Condition 63569135723137 63569135838565 115428 21.4 2470.1592

2 Weight 63569172791592 63569172893971 102379 24.4 2498.0476

3 QuickSort 63569187653423 63569187910201 256778 15.6 4005.7368

4 Nonce 63569187589724 63569187693480 103756 48.8 5063.2928

5 StringBuffer 63569188734218 63569188829946 95728 22.4 2144.3072

6 SwitchTest 63569188811419 63569188964976 153557 38.7 5942.6559

7 ProducerConsumer 63569189642109 63569189730062 87953 13.2 1160.9796

8 BSTree 63569189841239 63569189915821 74582 18.9 1409.5998

9 ArraySort 63569190842256 63569190907903 65647 22.5 1477.0575

10 StaticInstanceProblem 63569190981435 63569191064177 82742 15.6 1290.7752

11 CAssume 63569191523451 63569191560327 36876 11.3 416.6988

12 CTest3 63569191662352 63569191747875 85523 12.6 1077.5898

13 Deadlock 63569191813578 63569191886269 72691 14.4 1046.7504

14 Demo 63569191921478 63569191996091 74613 13.3 992.3529

15 DemoLock 63569210099898 63569210138659 38761 9.8 379.8578

16 CTest2 63569210257963 63569210328445 70482 15.2 1071.3264

17 CTest1 63569210425916 63569210484492 58576 7.1 415.8896

18 DemoL0ck2 63569210495431 63569210551276 55845 8.2 457.9290

19 DSort 63569210613798 63569210689054 75256 14.3 1076.1608

20 ErrorTest 63569210724516 63569210798836 74320 8.3 616.8560

21 If-Else 63569210813556 63569210875797 62241 13.4 834.0294

22 InterfaceJava 63569210914213 63569211002665 87852 14.5 1273.854

23 LockHeld 63569211035467 63569211116969 81502 9.3 757.9686

24 MultiLock 63569211249862 63569211295400 45538 23.8 1083.8044

25 NewJava 63569211332584 63569211379961 47377 14.2 672.7534

26 NoPredictive 63569211546891 63569211612024 65133 14.6 950.9418

27 NoPredictive2 63569211731542 63569211806923 75381 15.4 1160.8674

28 NS 63569211917241 63569212309578 392337 336.8 132139.1016

29 NS2 63569212405213 63569212869417 464204 349.2 162100.0368

30 FinallyTest 63569212971345 63569213036686 65341 18.2 1189.2062

31 OneWrite 63569213125721 63569213211048 85327 21.3 1817.4651

32 Regression 63569213245798 63569213291627 45829 14.5 664.5205

33 SampleXACMLPolicy 63569213310728 63569213420967 110239 24.8 2733.9272

34 StackTest 63569213521668 63569213558640 36972 12.3 454.7556

35 StaticInstanceProblem2 63569213613792 63569213656897 43105 14.2 612.0910

36 StringBufferModule 63569213799811 63569214190883 391072 352.3 137774.6656

37 StringBuffer1 63569214281997 63569214438211 156214 94.5 14762.223

38 StringBuffer2 63569214534425 63569214656207 121782 98.2 11958.9924

39 Struct 63569214735421 63569214789443 54022 13.2 713.0904

40 Testme 63569214898526 63569214972368 73842 14.5 1070.709

41 Copeca 63569214981235 63569215006733 25498 200.67 5626.6436

42 Smup 63569215013241 63569215033837 20596 205.32 4228.770

43 Pbct 63569215033989 63569215046135 12146 133.36 1619.79

44 Gecco 63569215051013 63569215065927 14914 186.35 2779.22

45 JExj 63569215071032 63569215084246 13214 153.32 2025.97
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software and improving software engineering techniques to

reduce the energy consumption of software. Like Amsel

and Tomlinson [8], we also intend to spread the awareness

on Green Software Testing. In our work, we have discussed

the energy consumption analysis of a testing tool.

Dick et al. [9] presented a method to compute and rate

software-induced energy consumption of stand-alone soft-

ware applications on desktop computers as well as inter-

active transaction-based software applications on servers.

They have intended to support software developers,

administrators, purchasers, and users in making informed

decisions on software architecture and implementation as

well as on software products they use or plan to use. In our

proposed approach, we measure the performance of a

software testing tool by computing some metrics. Like,

Dick et al. [9], we also intend to advice software testers to

choose energy efficient software testing tools. We advice

the testers to choose a software which performs the same

objectives as others, but with less power, and less energy.

Chen et al. [10] proposed and developed a tool called

StressCloud to measure the performance and energy con-

sumption for cloud based applications. In our proposed

work, we also measure the energy consumption, but for a

software testing tool J3-Model through Green J3-Model.

Capra et al. [11] have developed the hardware kit that

used ammeter clamps and a workload simulator tool.

Ammeter clamps were used to measure the energy

absorbed by the server machine. Workload simulator tool

generated benchmark workloads for different categories

of applications. Capra et al. [11] measured the energy

efficiency of software applications. In our proposed

work, we have developed Green-J3Model, that takes a

software testing tool and measures the energy con-

sumption, as Capra et al. [11] has measured.

Table 7 Comparison of different works on concolic and coverage based testing

S. no Authors Framework Description

1 Li et al. [7] EDTSO Based on encoding minimization problem as integer linear programming

problem

2 Amsel and Tomlinson [8] GreenTracker Estimates the energy consumption of software in order to help concerned

uses make informed decision about the software they use

3 Dick et al. [9] PM,WG,DAE How to measure the energy consumption of software

4 Chen et al. [10] StressCloud Analyzing the performance and energy consumption of a cloud

application

5 Capra et al. [11] WLS, AC, VIM Proposed method for software energy efficiency for application software

6 Brown and Reams [12] – Article suggests an overview of all approaches to energy efficiency in

computing system

7 Saxe [13] PowerTOP This work shows the extent of the waste, while also showing which

software is responsible

8 Das et al. [14] BCT,CREST, CA Based on concolic testing and MC/DC testing. BCT uses K-Map as

minimization technique

9 Bokil et al. [19] AutoGen Analysis of all all coverage criteria with time effort

10 Godboley et al. [15, 17] PCT,CREST,CA Based on concolic testing and MC/DC testing. PCT uses QM as

minimization method

11 Burnim et al. [20] BC CREST Worked on heuristic concolic testing and branch coverage

12 Godboley et al. [15, 18] XNCT,CREST,CA Approach deals with concolic testing and MC/DC testing. EX-NCT uses

Exclusive-NOR operation

13 Kim et al. [22] CREST Based on concolic testing

14 Godboley et al. [15, 16] APCT,CREST,CA Approach based on concolic testing and MC/DC testing. APCT uses

Modified–QuineMcMluskey method

15 Kim et al. [25] CONBOL Based on concolic testing. Analysis for branch coverage and time taken

16 Majumdar et al. [23] CUTE Worked on HCT and branch coverage

17 Kim et al. [24] SCORE Approach is build on distributed concolic testing

18 Sen et al. [5] CUTE,JCUTE Concolic tool developed for C and Java programs

19 Kim et al. [21] SMT Solver,CREST Based on HCT and analysis on reduction ratio

20 Hoing et al. [26] SEEP Spread the awareness on energy consumption on programming using

symbolic execution

21 Godboley et. al.[27] Green-JEXJ Spreading awareness on energy consumption using JEXJ framework

22 Proposed Work Green-J3 Model Spread the awareness on energy consumption analysis on Software

testing techniques
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Brown and Reams [12] discussed some approaches to

achieve energy efficiency in computing systems. This is

nothing but a literature survey on power consumption and

energy consumption. In our work, we presented a detailed

experimental study on energy consumption on a software

testing tool.

Saxe [13] proposed and developed a tool called Pow-

erTOP. Their work shows the explanation of e-waste. Also,

they suggested which application was responsible for this

e-waste. In our proposed approach, we have computed

energy consumption of a testing tool. When our tool can

compute, the energy consumption of different testing tools,

then our tool can suggest the most energy efficient testing

tool.

Das et al. [14] and Godboley et al. [15–18] have proposed

several code transformation techniques which supported to

achieve higher code coverage. They have considered

CREST tool as concolic tester which generated the test cases.

Also, they have developed a coverage analyzer which

accepts a program alongwith test cases as input and produces

to measure MC/DC% as output. In our work, we also pro-

posed the same core idea but using different technique i.e.

Java Program Code Transformer (JPCT). In addition, we

spread the awareness on green analysis.

Bokil et al. [19] have proposed and developed an

AutoGen tool. This tool produced test cases and computed

code coverages. When it compares the execution time of

automated testing tools as compared to manual testing

strategy, then they found that automated testing tools save

one third time. In our work, we also computed the execu-

tion time of the process.

Burnim et al. [20], Kim et al. [21, 22], Majumdar et al.

[23], Kim et al. [24], Sen et al. [5], and Kim et al. [25] have

proposed and developed several concolic testers. Some of

them have been implemented in C language and some of

them have used Java language to implement the tool. Some

of the works were implemented in distributed environment.

In our proposed work, we have used jCUTE as the concolic

Table 8 Characteristics of different approaches on concolic and coverage based testing

S. no Authors Generated

test cases

Measuring

coverage%

Determined time

constraints

Measured

speed

Computed power

consumption

Computed energy

consumption

1 Li et al. [7] U U U X X U

2 Amsel and

Tomlinson [8]

X X X X U U

3 Dick et al. [9] X X X X U U

4 Chen et al. [10] X X X X X U

5 Capra et al. [11] X X U X U U

6 Brown and

Reams [12]

X X X X U U

7 Saxe [13] X X X X U U

8 Das et al. [14] U U X X X X

9 Bokil et al. [19] U X U X X X

10 Godboley et al.

[15, 17]

U U X X X X

11 Burnim et al. [20] U X X X X X

12 Godboley et al.

[15, 18]

U U X X X X

13 Kim et al. [22] U X X X X X

14 Godboley et al.

[15, 16]

U U U X X X

15 Kim et al. [25] U U U X X X

16 Majumdar et al.

[23]

U X X X X X

17 Kim et al. [24] U U X U X X

18 Sen et al. [5] U U U X X X

19 Kim et al. [21] U X X X X X

20 Hoing et al. [26] U X X X U U

21 Godboley et al.

[27]

U U U U U U

22 Proposed Work U U U U U U

CSIT (September 2017) 5(3):217–233 231

123



tester to produce test cases. It may be noted that jCUTE is

compatible with Java.

Hoing et al. [26] and Godboley et al. [27] have proposed

and developed some tools that spread the awareness on

energy consumption analysis of software applications. Our

proposed work also targets the same objective to spread the

awareness regarding the energy consumption.

Table 7 summarizes the comparison of some related

work. We present the frameworks developed and used by

various authors in the third column of Table 7. Brief

description of various mentioned research work is provided

in the fourth column of Table 7. We can observe from

Table 7 that authors mentioned in sl. no. 1 to 7 proposed

their research work based on power consumption and

energy consumption. These work help to spread awareness

for GREEN IT and GREEN Software Engineering. Authors

listed in sl. no.number 8 to 19 explain about concolic

testing and coverage based testing. Last row of Table 7

shows our proposed work. Here, we present Green-J3

Model, which is based on Concolic Testing, Branch

Coverage, and Green Software Engineering. Green-J3

Model helps to enhance awareness about the importance of

energy consumption in software testing.

Table 8 presents the comparison of different character-

istics of existing approaches. These characteristics are Test

Cases, Coverage%, Time Constraints, Speed, Power Con-

sumption, and Energy Consumption. Among all the exist-

ing works, only Li et al. [7] have done the analysis of

energy consumption for software testing. Please note that

authors listed sl. no. 2–7 proposed approaches only for

energy consumption and power consumption. They have

not focused on software testing techniques. Again please

note that the authors listed sl. no. 8–19 have only focused

on software testing since they are unaware of Green IT and

Green Software Engineering. Last row in Table 8 shows

our proposed work. We have done our research on all the

characteristic mentioned in Table 8. Our proposed work

deals with software testing as well as Green IT, and Green

Software Engineering.

7 Conclusion and future work

We proposed a tool named Green-J3 Model to measure the

energy consumption of modified condition/decision coverage

using concolic testing. We discussed Green-J3 Model along

with the model overview, the block diagram, and algorithmic

description in detail. The experimental results show that the

proposed approach of test case generation achieved better

MC/DC in comparison to the existing methods. Green-J3

Model achieved 21.32% of average enhancement in MC/DC

for forty-five programs. The total energy consumption of the

whole experimental process is 747.51 kJ.

In the future, we will rectify some of the significant

identified threats to validity of our work. We will develop

other code transformers to experiment with Java program

to achieve high MC/DC as compared to existing approa-

ches. It is very important to compute the energy con-

sumption of each modules of a software testing tool,

therefor in our future work we will extend our work by

computing individual energy consumptions. We will try to

work on comparison of energy consumption of difference

software testing techniques in concolic and MC/DC testing.
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