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Abstract Plants and most of the microorganisms in the

rhizosphere have symbiotic relationships. While rhizode-

posits (root exudates having lysates, mucilages) provide the

food and influence the structure and number of microor-

ganisms in the rhizosphere, the latter benefit the plants

through secretion of a number of growth promoting hor-

mones, organic acids and siderophores that help in

increased availability and uptake of nutrients by plants.

The interactions of roots and microflora may influence the

plant growth positively through a variety of mechanisms,

including fixation of atmospheric nitrogen by different

classes of proteobacteria, increased biotic and abiotic stress

tolerance imparted by the presence of endophytic microbes,

and direct and indirect advantages imparted by plant

growth-promoting rhizobacteria. The soil microorganisms

affect plant growth, and are affected by plant growth, but

there is incomplete understanding of their cumulative and

interactive effects on plant performance, especially under

varied crop production regimes. The diversity of cropping

systems in both time and space (by rotations, intercropping,

and so on) creates a mosaic of soil resources and niches,

which in turn, enhances belowground biodiversity and

improves the resilience of the system as a whole. There-

fore, agronomic practices such as crop rotation, tillage,

addition of organic manures, chemical fertilizers and

mulches influence the structure and number of microor-

ganisms in the rhizosphere. However, very little data are

available on this subject. There is a need to generate such

data to develop a strategy for sustainable agriculture.

Keywords Agronomic practices � Bacteria � Exudates �
Fungi � Plant growth hormones � Rhizobium �
Rhizodeposits � Rhizosphere � Root nodules

Introduction

Rhizosphere is defined as the volume of soil around living

plant roots that is influenced by root activity. The whole

range of root activities makes the rhizosphere a unique

environment. The underlying changes in biochemical,

chemical and physical properties of soil surrounding the

root, compared with the bulk soil, arise from either pro-

cesses for which roots are directly responsible, and/or

activities of microorganisms that are stimulated in the

vicinity of the roots as a consequence of the release of

rhizodeposits by roots [1]. This is the so-called rhizosphere

effect-stimulation of microorganisms that may be either

beneficial or deleterious (e.g. pathogenic microorganisms).

Much attention has been focused on the biological prop-

erties of the rhizosphere [2, 3] and there is a rich literature

on the bacterial and fungal colonization of roots and root
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surfaces, and on pathogens. Advances in understanding the

movement of water and nutrients to roots has led to the

realization that roots may alter the immediate environment

to assist the capture of these resources [4, 5].

The roots of living plants fuel a complex network of

microbial interactions, involving both root-infecting and

free-living microorganisms and connected food-webs of

microbial grazers. These microorganisms affect plant

growth, and are also affected by plant growth, but cur-

rently there is only limited understanding of their cumu-

lative and interactive effects on plant performance, since

the present knowledge is mainly based on isolated

investigations of single organism groups. In recent years,

the recognition of bacterial communication networks, the

common exchange of microbial signals with roots and the

fact that these signals are used to enhance the efflux of

carbon from roots has revolutionized the views on rhi-

zospheric processes. Plants allocate a great portion of

their photosynthetically fixed carbon to root-infecting

symbionts [6], such as mycorrhizal fungi, while some part

is released as exudates fuelling mainly free-living rhizo-

bacteria. Rhizobacteria are strongly top-down regulated by

microfaunal grazers, particularly protozoa. Most impor-

tantly, effects of rhizobacteria on root architecture seem to

be driven in large by protozoan grazers and the protozoan

effects on plant root systems stand in sharp contrast to

effects of mycorrhizal fungi.

Plant Roots and Rhizospheric Flora

The root system is fundamentally important for plant

growth and survival because of its role in water and

nutrient uptake. It attracts many soil organisms in its

vicinity. Major rhizospheric flora are bacteria, fungi, acti-

nomycetes and algae. In general, root growth leads to

substrate loading in the root zone, which in turn promotes

rhizobacterial proliferation, leading to the root growth, a

concomitant increase in root exudation that leads to sub-

strate loading, and so on. Root–microbial exchanges can be

considered a form of allelopathy [7] and include those

biochemical interactions, both inter- and intraspecifically,

that involve microbial- or plant-produced secondary

metabolites (allelochemicals) that influence growth and

development of biological systems in the soil. Conse-

quently, phyto-microbially governed plant growth is a form

of beneficial allelochemical response that shares many of

the characteristics of a ‘‘feedback’’ system. The plant ini-

tiates an allelopathic cascade of which it is also the final

recipient. An analogous process can be found in autotox-

icity, where phytochemical autoinhibitors collect in the

root zone and inhibit similar or dissimilar species’ growth

and development [8].

The term allelopathy was originally introduced to

describe the injurious effects of one plant upon the other

[9]. However, the term has now been generally accepted to

include both inhibitory and stimulatory effects, and the

definition has been extended to include ‘‘any process

involving secondary metabolites produced by plants,

microorganisms, viruses and fungi that influence the

growth and development of agricultural and biological

systems (excluding animals), including positive and nega-

tive effects’’ [10]. Thus in its broadest sense ‘‘plant-direc-

ted’’ microbial communities can provide the host plant with

a distinct ecological advantage through the increase of

beneficial allelopathies [11]. Microbially generated sec-

ondary metabolites have been shown to aid plant growth

[12, 13], increased availability of minerals and nutrients

[14], improve nitrogen economy [15, 16], change plant

susceptibility to frost damage [17], enhance plant health

through the direct biocontrol of phytopathogens [18],

induce systemic forms of plant disease resistance [19], and

secure plant establishment [20].

By contrast, detrimental allelopathies occur where bac-

terially produced secondary metabolites adversely affect

plant growth and development. These detrimental effects

occur in the absence of any pathogenic symptomology

[21], although affected plants, in their weakened state, can

subsequently become susceptible to phytopathogen attack

[22]. Accordingly, such organisms have been termed del-

eterious rhizosphere microorganisms and include the del-

eterious rhizobacteria.

Rhizodeposition and Soil Microflora (Root–Microflora

Interaction)

Some microbes have a direct interaction with crop plants in

a mutually beneficial manner, whereas others colonize the

plant only for their own benefit. In addition, microbes can

indirectly affect plants by drastically altering their sur-

roundings. Understanding the complex nature of plant–

microbe interactions can potentially offer new strategies to

enhance plant productivity in an environmentally friendly

manner [23].

Rhizodeposition has received considerable attention

considering its major impact on soil microorganisms and

on the fate of carbon in terrestrial (and even aquatic)

environments [1, 2]. Rhizodeposition includes exudates

(small soluble or volatile organic molecules released pas-

sively by living cells), lysates (compounds actively

released by plant roots) and mucilages (organic compounds

such as polysaccharides, amino acids, etc. of diverse ori-

gin) [24]. After secretion mucilages are modified by

microorganisms in the rhizosphere and the final substance

consists of high molecular weight gelatinous material
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containing mineral soil particles, soil organic matter and

sloughed root tissues [25].

Rhizodeposition from roots stimulate the growth of the

microorganisms in the rhizosphere. Generally the microbial

diversity is higher in the rhizosphere than in the bulk soil

and it can be expressed as rhizosphere: soil (R:S) ratio. The

different groups of microorganisms may be classified on

the basis of R:S ratio and these are with decreasing

ratio:bacteria [ actinomycetes [ fungi [ proto-

zoa [ algae. The R:S ratio for bacteria may range between

10 and 20, but may reach as high as 100 [26]. Thus

chemical components of rhizodeposits may deter one

organism while attract another, or two very different

organisms may be attracted with differing consequences to

the plant. A concrete example of diverse meanings for a

chemical signal is the secretion of isoflavones by soybean

roots, which attract a mutualist (Bradyrhizobium japoni-

cum) and a pathogen (Phytophthora sojae) [27].

Root-microflora interactions can positively influence plant

growth through a variety of mechanisms, including fixation

of atmospheric nitrogen by different classes of proteobacteria

[28], increased biotic and abiotic stress tolerance imparted by

the presence of endophytic microbes [29], and direct and

indirect advantages imparted by plant growth-promoting

rhizobacteria [30]. Bacteria can also positively interact with

plants by producing protective biofilms or antibiotics oper-

ating as biocontrols against potential pathogens, or by

degrading plant- and microbe-produced compounds in the

soil that would otherwise be allelopathic or even autotoxic.

However, rhizosphere bacteria can also have detrimental

effects on plant health and survival through pathogen or

parasite infection. Secreted chemical signals from both plants

and microbes mediate these complex exchanges and deter-

mine whether an interaction will be malevolent or benign.

Root colonization is important as the first step in infection

by soil-borne pathogens and beneficial associations with

microorganisms. In addition to providing a carbon-rich

environment, plant roots initiate cross talk with soil

microbes by producing signals that are recognized by the

microbes, which in turn produce signals that initiate colo-

nization. Chemical attraction of soil microbes to plant roots,

or chemotaxis, is a well understood mechanism involved in

initiating cross talk between plant roots and microbes [31].

Root–microflora interactions may be positive or negative.

Positive Root–Microflora Interactions

Nodulation of Legumes by Rhizobia

Rhizobium–legume interactions represent one of the most

important entry points of nitrogen into terrestrial ecosys-

tems. Nitrogenase from rhizobia and other N-fixing

bacteria reduces atmospheric dinitrogen. Rhizobia form

symbiotic associations with leguminous plants by fixing

atmospheric nitrogen in root nodules. Scientists have

always wondered whether plants outside the Fabaceae

family might be manipulated to form associations with

rhizobia. However, rhizobia-legume interactions are very

specific, allowing specific rhizobial strains to nodulate with

specific host legumes. Sinorhizobium meliloti effectively

nodulates species of the genera Medicago, Melilotus, and

Trigonella, whereas Rhizobium leguminosarum bv viciae

induces nodules in the genera Pisum, Vicia, Lens, and

Lathyrus. Not all members of the legume family form

nodules. Of the three subfamilies of legumes, Caesalpi-

noideae, Mimosoideae, and Papilionoideae, members of

the basal subfamily Caesalpinoideae are mainly non-no-

dulating. The signal components largely responsible for

these specific host-microbe relationships belong to a class

of compounds termed flavonoids [32]. More than 4,000

different flavonoids have been identified in vascular plants,

and a particular subset of them is involved in mediating

host specificity in legumes [33].

Biological nitrogen fixation may act as a sustainable

source of N and can complement or replace fertilizer inputs

[34]. The two main cultural practices to benefit from bio-

logical N fixation are crop rotation involving legumes and

intercropping legumes with cereals or other non-N fixing

plants. These have been practised since the ancient times,

even if the basis for the benefit derived was not understood

[35]. Most of the N fixed in legumes is harvested and fed to

animals, but evidence from a number of experiments using

different methodologies indicates that legumes can deposit

significant amounts of N in the soil during growth [36, 37].

Fixed N can also be transferred to associated intercropped

nonlegumes in the case of mixed cropping systems, or to

the succeeding crops in the case of crop rotation. Not only

N fixation benefits, but the leguminous cover crops also

have a significant influence on the soil chemical and

microbial properties [38]. Besides the use of legumes in

crop production, other biological sources to take advantage

of N2-fixing micro-organisms include the utilization of the

symbiosis between the fern Azolla azollae and the N2-fix-

ing cyanobacterium Anabaena azollae as a green manure in

rice wetlands, and the use of free-living N2-fixing bacteria

such as Azopirillum inoculated into the rhizosphere of

grasses [39].

Mycorrhizal Associations

Unlike the selective legume-rhizobial associations, arbus-

cular mycorrhizal fungi (AMF) and plant roots form asso-

ciations in more than 80 % of terrestrial plants. AMF are

able to extend plant root systems and increase root acces-

sibility to nutrients with low mobility in soils, including
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phosphorus [40]. Plant roots are interconnected by mycor-

rhizal hyphal networks that allow the exchange of resources

[41], and up to 90 % of phosphorus and 80 % of nitrogen

demands can be supplied by mychorrhizal fungi [42].

This symbiotic relationship increases nutrient uptake,

improves plant fitness, and in turn, the associated fungi

extract lipids and carbohydrates from the host root [43].

AMF may recognize the presence of a compatible host

through root exudates, similar to recognition by rhizobia

[44]. The ability of AM fungi to enhance host–plant uptake

of relatively immobile nutrients, in particular P, and several

micronutrients, has been the most recognized beneficial

effect of mycorrhiza. Rhizosphere interactions occur

between AM fungi and other soil micro-organisms with

effects on plant nutrient balances, such as nitrogen-fixing

bacteria and plant growth-promoting rhizobacteria [45].

AM colonization may furthermore protect plants against

pathogens. AM fungi interact with heavy metals/micronu-

trients. They can restore the equilibrium of nutrient uptake

that is misbalanced by heavy metals [46]. AM fungi can

alleviate Al toxicity. AM fungi improve water relations,

especially under nutrient limitation. The extraradical

hyphae of AM fungi contribute to soil aggregation and

structural stability. Therefore, mycorrhizas are multifunc-

tional in (agro) ecosystems, potentially improving physical

soil quality (through the external hyphae), chemical soil

quality (through enhanced nutrient uptake), and biological

soil quality (through the soil food web).

Plant Growth-Promoting Rhizobacteria (PGPR)

Bacteria thrive on abundant nutrients in the rhizosphere

and some of these rhizobacteria provide benefits to the

plant, resulting in plant growth stimulation [30, 47, 48].

Root exudates also influence flagellar motility in some

rhizospheric bacteria. Plants get benefit from microbes

mainly through enhanced nutrient acquisition by fixing

nitrogen [49, 50], solubilization of inorganic phosphate

[51, 52] mineralization of organic phosphorus [53], and/or

production of siderophores for iron uptake [54]. In addi-

tion, PGPR can increase root accessibility to minerals and

water by synthesizing growth regulators including auxin

[55] and gibberellins [56].

Some PGPR produce phytostimulators, which directly

enhance plant growth. In addition to fixing atmospheric

nitrogen, Azospirillum spp. secrete phytohormones such as

auxins, cytokinins, and gibberellins [57–59]. There is the

exciting possibility that most PGPR are capable of pro-

ducing growth regulators continuously, provided that pre-

cursors of phytohormones are available in the rhizosphere.

Some bacteria (and fungi) produce siderophores, which

contain reactive groups such as hydroxamates that chelate

iron (Fe) and make them available to plants [60].

Physiological responses of PGPR on growth and yield

parameters of selected crop plants are given in Table 1.

Plant diseases can be controlled by certain rhizobacteria

through the production of antagonistic compounds against

phytopathogens (e.g. antibiotics, siderophore competition)

[75, 76] and/or by priming. Priming is the process whereby

the plant defense metabolism is enhanced and resistance

against pathogens is induced [77]. When this mechanism is

mediated by non-pathogenic rhizobacteria, it is referred to

as induced systemic resistance (ISR) [78]. Numerous bac-

terial traits have been identified as triggers of ISR, such as

flagellae, components of the cell envelope, siderophores,

phenolic compounds, quorumsensing molecules and anti-

biotics [79].

Certain rhizobacteria create ‘‘suppressive soils’’ by

controlling plant diseases caused by soil fungi and bacteria.

The biocontrol agents that are best characterized at the

molecular level belong to the genus Pseudomonas. Most of

the identified Pseudomonas biocontrol strains produce

antifungal metabolites, of which phenazines, pyrrolnitrin,

2,4-diacetylphloroglucinol, and pyoluteorin are most fre-

quently detected. However, antifungal metabolites

belonging to the class of cyclic lipopeptides, such as vi-

scosinamide [80] and tensin [81], have also been discov-

ered. Viscosinamide prevents infection of Beta vulgaris L.

(sugar beet) by Pythium ultimum [82]. Arabidopsis thali-

ana ecotype Columbia plants (Col-0) treated with the

PGPRs Serattia marcescens strain 90–166 and Bacillus

pumilus strain SE34 developed minor disease symptoms

upon infection with the Cucumber mosaic virus [83]. Also,

it was reported that some of the known gram-positive

biocontrol PGPRs (such as B. subtilis 6051 strain) assist

plants in evading a gram-negative plant pathogen, Pseu-

domonas syringae pv. tomato DC3000, by forming a pro-

tective biofilm on A. thaliana roots limiting pathogen

access to the root surface and by producing an antimicro-

bial cyclic lipopeptide surfactin [84]. Microorganisms

produce variety of phytohormones, which in turn influence

the plant growth (Table 2).

Negative Root–Microflora Interactions

Antimicrobial Effects

The survival of physically vulnerable root cells under

continuous attack from pathogenic microorganisms

depends on ‘‘underground chemical warfare’’ mediated by

plant secretion of phytoalexins, defense proteins, and other

as yet unknown chemicals [93, 94]. Arabidopsis, rice, corn,

soybean, and the model legume Medicago truncatula,

which have been subject to intensive sequencing efforts,

are, collectively, rich sources of antimicrobial indole,
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Table 1 Physiological responses of PGPR on growth and yield parameters of crop plants

Species of PGPR Crop Crop parameter/response Reference

Azospirillum brasilense REC3 (S1) Rice Improvement in grain yield [61]

Azospirillum brasilense CD 4 Rice Increased shoot growth, root growth

and NPK uptake

[62]

P. fluorescens Pearl

millet

Growth [63]

P. putida strains R-168 and DSM-291; P. fluorescens strains R-98 and

DSM-50090; A. brasilense DSM-1691 and A. lipoferum DSM-1690

Maize Improved seed germination, seedling

growth and yield

[64]

P. putida strain R-168 Maize Increased seed germination, growth parameters

of seedlings in greenhouse and also increased

grain yield of field grown crop

[65]

Azospirillum brasilense, Azospirillum irakense Maize and

wheat

Growth [66]

R. leguminismarum (Thal-8/SK8) and Pseudomonas sp. strain 54RB Wheat Improved yield and phosphorus uptake [67]

Cyanobacterial strains CW1, CW2 and CW3 (Anabaena sp., Calothrix

sp. and Anabaena sp. respectively)

Wheat Enhancement in grain yield, harvest index and

protein content

[68]

Pseudomonas, Azotobacter and Azospirillum Chickpea Stimulated growth and yield [69]

Rhizobium leguminosarum Canola,

lettuce

Direct growth promotion [70]

Mixed inoculations with N2-fixing bacteria (Bacillus OSU-140 and

Bacillus OSU-142) and a strain of phosphorus solubilizing Bacillus
(M-13)

Sugar beet

and

barley

Significantly increased root and sugar yields of

sugar beet, and grain yield of barley

[71]

P. putida Tomato Growth stimulation [72]

P. fluorescens strains, CHA0 and Pf1 Banana Increased growth, leaf nutrient

contents and yield

[73]

85G (Escherichia fergusonii), 161G, 163G, 160G, 150G (Acinetobacter

calcoaceticus) and 109G (Salmonella enterica)

Coffee Increased plant growth [74]

Table 2 Production of phytohormones by microorganisms and their influence on plant growth

Phytohormones

detected

Microorganisms Plants Responses

Auxin-indole-3

acetic acid (IAA)

Rhizobacteria Wheat Rhizobacterial strains active in IAA production had relatively

more positive effects on inoculated seedlings [85]

Rhizobacteria Brassica juncea Significant correlation observed between auxin production by

PGPR in vitro and growth promotion of inoculated seedlings

[86]

Pseudomonas putida GR12-2

an IAA-deficient mutant

Canola and

mungbean

Primary roots of canola seeds treated with wild-type strain

35-50 % longer than roots from seeds treated with the IAA-

deficient mutant and roots from un-inoculated seeds.

Exposing mungbean cuttings to high levels of IAA by

soaking in a suspension of wild-type strain stimulated

formation of many adventitious roots [87]

Azotobacter Maize Inoculation with strains efficient in IAA production had

significant growth-promoting effects on maize seedlings [88]

Rhizobium Azospirillum Rice Inoculation with diazotrophs had significant growth promoting

effects on rice seedlings [89]

Rhizobium leguminosarum
(strain E11)

Rice Growth promoting effects open inoculation on axenically

grown rice seedling [90]

Bacillus cereus Sorghum Significant increase in shoot and root biomass [91]

Cytokinins (CKs)

and indol-acetic

acid (IAA)

Azotobacter chroococcum Az

d10, Bacillus megaterium PI-

04, and Bacillus
mucilaginosus B-1574

Cucumber Stimulated seed germination and increase in the growth rate,

the biomass of shoots, the number of lateral roots, and the

root hair area [92]
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terpenoid, benzoxazinone, and flavonoid/isoflavonoid nat-

ural products. The unexplored chemodiversity of root

exudates in all these genetically tractable species is an

obvious place to search for novel biologically active

compounds, including antimicrobials.

Influence of Microflora on Plant Roots

Mycorrhizae

Unlike Arabidopsis, more than 80 % of higher plants asso-

ciate with mycorrhizal fungi, which elicit profound changes

in the root morphology of host plants [95]. In particular,

ectomycorrhizae suppress root elongation and induce

dichotomous branching of short lateral roots, culminating in

the formation of coralloid structures resulting from higher-

order dichotomous branching. All of these anatomical

structures are variable depending on the plant and fungal

species. Once the fungus is established, root branching is

suppressed, which makes the plant more dependent on the

nutrients provided by the fungus [95, 96]. Whether this

modification of root system architecture (RSA) is a direct

consequence of symbiosis or an indirect effect of improved

nutrient status of the plant is not clear. However, it appears

that symbionts can trigger RSA changes by promoting lateral

root initiation very early in the interaction [97]. Moreover,

the maize mutant lrt1 normally lacks lateral roots, but dis-

plays extensive lateral root development following inocula-

tion with the mycorrhizae Glomus mosseae [98]. Notably,

many microorganisms that interact with plants can produce

plant hormone analogs. Thus, symbiotic association might

employ hormone signaling pathways to regulate RSA.

Nodulation

The second most important symbiosis of plant roots is their

association with N-fixing bacteria in legumes, a process

termed nodulation. Nodules and lateral roots share some

common features. For instance, both organs form adjacent to

xylem poles, develop meristems, and break cell layers to

emerge. In support of this idea, the lateral root organ-

defective mutant of Medicago truncatula initiates both

nodule and lateral root formation, but does not complete

either process. Moreover, nodule formation shares common

molecular processes with lateral root development [99, 100].

Agronomic Practices vis-à-vis Plant Roots

and Rhizosphere Flora Interactions

In cultivated soils, the activity of soil microorganisms is an

important determinant of effective nutrient cycling and

plant growth. Decomposition of organic materials by soil

organisms is the largest source of nutrients for plants in

systems with low input of mineral fertilizers, and some

agricultural practices positively affect soil microbial

activity and diversity. [101, 102]. The long-term cultivation

history influences the microbial community structure in

agricultural fields [102]. Management practices affect soil

microbial communities, which mediate many processes

essential to the productivity and sustainability of soil.

Hence, proper understanding of agronomic practices for

enhancement of microbial activity and diversity in soil is

necessary to achieve sustainable crop production.

Crop Rotations/Diversification

Crop diversification is considered as an important tool for

acceleration of agricultural growth by promoting food and

nutritional security, income and employment generation,

poverty alleviation, judicious use of natural resources and

ecological management [103]. Different crops exploit soil

resources in different ways. Maximizing the diversity of

cropping systems in both time and space (by rotations,

intercropping, and so on) creates a mosaic of soil resources

and niches, which in turn, enhances belowground biodi-

versity and improves the resilience of the system as a

whole. Certain cropping sequences, for example, favour the

build-up of various beneficial bacteria that promote plant

growth, while the availability of the host crop is known to

be the biggest single factor influencing the number and

diversity of plant parasitic nematodes in the soil [104].

Differences in root morphology and biomass, and in pat-

terns of root exudation and carbon allocation, can all

influence the population density and activity of other

members of the soil biota. Furthermore, maintaining some

kind of continuous plant cover through the use of living

crops or mulches moderates fluctuations in soil temperature

and moisture, and further enhances stability [104].

The increased use of cereal/legume crop rotation has

been advocated as a strategy to increase cereal yields.

Research at multiple sites have suggested a complex

interaction of chemical and biological factors, including

increased mineral N, available P, elevated pH and arbus-

cular mycorrhizal infection, and a decrease in plant para-

sitic nematodes as causal mechanisms for rotation-induced

increases in cereal yields [105–107]. In principle, these

chemical and biological changes should be accompanied

by concomitant changes in the rhizosphere microflora.

However, it is unknown how cropping systems affect the

composition and structure of rhizosphere microbial com-

munities. In subsistence agricultural systems, crop yields

are directly dependent on the inherent soil fertility and on

microbial processes that govern the mineralization and

mobilization of nutrients required for plant growth.

6 D. Kumar et al.
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Furthermore, the impact of different crop species that are

used in various combinations is likely to be an important

factor in determining the structure of plant beneficial

microbial communities that function in nutrient cycling,

the production of plant growth hormones, and suppression

of root diseases.

During the colonization of plant roots by soil bacteria,

microorganisms from the bulk soil undergo selective

enrichment in the plant rhizosphere in response to different

root exudate components. Because different plant species

release different types and quantities of exudates, plants

exert species-specific effects on the soil microbial com-

munity that result in broad shifts in the microflora [2]. In

practice, crop rotations have been explicitly used to disrupt

disease cycles [108], or in the case of legumes to fix

atmospheric N2 for the subsequent non-leguminous crop

[109, 110]. When examined at the community level, crop

rotations can cause changes in substrate utilization patterns,

which suggest that soil bacterial communities under crop

rotation have greater species diversity than under contin-

uous cultivation with the same crop [111]. Therefore, crop

rotation can cause significant shifts in rhizosphere bacterial

communities.

Generally, cropping system have a significant effect on

community structure (P \ 0.005), irrespective of plant

species (maize, pearl millet, sorghum, cowpea and

groundnut) or sampling time [112]. Continuous cereal-soil

grown plants had highly similar rhizoplane communities

across crop species and sites, whereas communities from

the rotation soil showed greater variability and clustered

with respect to plant species. AM colonization in cereals

(sorghum, pearl millet (Pennisetum glaucum) in rotation

with legumes (cowpea, peanut) increased than in continu-

ous cropping [107]. Nematode densities on cereals also

were decreased in rotation with legumes.

Crop rotation effects on mycorrhizal functioning have

repeatedly been observed. A 13 % reduction in mycorrhizal

colonization after 1 year cropping with a non-mycorrhizal

crop and a 40 % reduction after fallowing have been

observed [113]. Lack of inoculum or inoculum insufficiency

after a long bare fallow (especially in climates with an

extended dry, vegetation less season) may result in low

uptake of P and Zn and in plants with nutrient deficiency

symptoms that have been described as long-fallow disorder.

Evidence was found for increased mycorrhizal colonization

of soybean if the preceding crop was maize, and increased

colonization of maize if the preceding crop was bradyrhi-

zobium-inoculated soybean in the savanna of Nigeria [114].

Tillage and Crop Residue Management

Conventional tillage immediately changes the structure of

the soil microbial community, even if total microbial

biomass is little affected. Under conventional tillage

regimes, bacteria-based food webs predominate, and flu-

shes of mineralization related to cultivation can lead to

increased losses of nutrients and organic matter from the

soil. In this way, tillage can increase the potential both for

nitrate leaching and the emission of greenhouse gases such

as carbon dioxide and nitrous oxide. In the long term, it can

have deleterious effects on soil structure and biodiversity

[104].The use of tillage techniques in seed bed preparation

and land use management not only impose a physical stress

on the soil structure but also on the soil microbial com-

munities that inhabit that soil [115]. Conventional man-

agement based on agricultural practices such as straw-

burning and excessive tillage increases soil erosion and

compaction, which contributes to loss of soil quality [116].

In an effort to minimize such stresses, modern arable

farming systems are attempting to reduce excessive culti-

vation in favour of limited or strategic tillage practices.

Conventional tillage system involves a preliminary deep

primary cultivation followed by some secondary tillage

system for seedbed preparation. In contrast, conservation,

or reduced tillage, can encompass any tillage practice that

reduces loss of soil and water as compared to unridged or

clean tillage. This can include (a) minimum tillage, con-

sidered to be the minimum amount of tillage required for

seed bed preparation and plant establishment; (b) no-til-

lage/zero-tillage/direct drilling, which involves no seedbed

preparation other than chemical preparation and soil

opening for seed placement [117]; and (c) high-residue

mulched beds [118].

Compared to conventional tillage systems, reduced-till-

age practices offer not only long-term benefits from soil

stability, reduced soil erosion, and sustainable agriculture

[119], but they can also enhance soil microbial diversity

[111, 120, 121]. Thus, minimizing the mechanical uphea-

val associated with tillage operations tends to maximize

soil microbial diversity because the disruption of food

substrate at the trophic level, desiccation and soil com-

paction are reduced, and optimum pore volume is main-

tained [122]. Paradoxically, fallow periods in a crop

rotation can reduce soil microbial diversity [123], an effect

probably associated with food substrate depletion over

time. Thus, heterogeneity in soil microbial populations

tends to coincide with heterogeneity of food resources,

which is often greatest in crops under conservation or zero

tillage management, where the residue of the preceding

year’s crops adds sequentially to the variety of food sub-

strates available for utilization. Clearly, while the act of

mixing soil during tillage increases seedbed homogeneity,

it simultaneously destroys the diversity of trophic micro-

sites that occur down the soil profile together with the

assemblages of soil microorganisms that occupy them. The

result is a reduction in both the structural and functional
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diversity of the soil microbial community [124] and the

efficiency of those microbially mediated processes that

sustain the agricultural productivity of soil, e.g., nutrient

recycling, degradation of toxic residues, maintenance of

soil structure, and aggregation [125].

Tailoring amendments and cultural practices to promote

beneficial soil microbes has been an underappreciated area

of crop production science that offers potential for

increasing agricultural productivity in a natural and sus-

tainable manner. It is already well established that sugars

and amino acids are released by decomposing plant mate-

rial and can serve as carbon sources for soil microbes

[126]. However, in modern crop production monocultures

that rely on mineral fertilizers, carbon sources can become

limited, especially where crop residues are removed from

fields and soil organic matter is kept low. Consequently,

the diversity of microbial activity is likely to be reduced.

This is not meant to imply that soil applications of N–P-K

primarily intended to provide essential nutrients to crop

plants do not also benefit soil microbes. The point is that

traditional fertilizer inputs are intended primarily for crop

plants and not the microbes that sustain them. Even when

soil organic matter is low, relatively few agriculturalists

would fertilize their fields specifically to benefit soil

microbes [126].

Mineral and Organic Fertilization

Plants modify their environment at several spatial scales;

the global, the ecosystem, the soil horizon, and the rhizo-

sphere. In all ecosystems, plants transform the surrounding

soil making and maintaining a habitat more favourable for

growth [127]. Root mediated changes to the soil are mainly

associated with the ways to increase their potential for

nutrient and water acquisition. Plants have evolved an array

of mechanisms to increase the solubility, diffusion poten-

tial and uptake of nutrients from soil. These mechanisms

are particularly important in low nutrient environments

where plant demand can only be met by mobilizing nutri-

ents from non-soluble sources.

The availability of nutrient elements can be a major

constraint to plant growth in many environments of the

world, especially the tropics where soils are extremely low

in nutrients. Plants take up most mineral nutrients through

the rhizosphere where micro-organisms interact with plant

products in rhizodeposits [128]. Plant roots strongly influ-

ence C and N availability in the rhizosphere via rhizode-

position and uptake of nutrients [129]. Plant rhizodeposits

consist of a complex mixture of organic acid anions,

phytosiderophores, sugars, vitamins, amino acids, purines,

nucleosides, inorganic ions (e.g. HCO3
-, OH-, H?), gas-

eous molecules (CO2, H2), enzymes and root border cells

which have major direct or indirect effects on the

acquisition of mineral nutrients required for plant growth.

Phenolics and aldonic acids exuded directly by roots of N2-

fixing legumes serve as major signals to Rhizobiaceae

bacteria which form root nodules where N2 is reduced to

ammonia [128]. Some of the same compounds affect

development of mycorrhizal fungi that are crucial for

phosphate uptake. Plants growing in low-nutrient envi-

ronments also employ root exudates in ways other than as

symbiotic signals to soil microbes involved in nutrient

procurement. Extracellular enzymes release P from organic

compounds, and siderophores increase iron availability

through chelation. Organic acids from root exudates can

solubilize unavailable soil Ca, Fe and Al phosphates. Plants

growing on nitrate generally maintain electronic neutrality

by releasing an excess of anions, including hydroxyl ions.

Legumes, which can grow well without nitrate through the

benefits of N2 reduction in the root nodules, must release a

net excess of protons [128].

Fertilization is one of the major factors controlling the

population densities and activity of soil organisms.

Application of inorganic and organic fertilizers can indi-

rectly but positively affect soil microbes and animals by

increasing plant growth and stimulating root exudation,

both of which lead to a greater input of organic substrates.

Community structure and body size of soil organisms are

also affected by fertilization [130]. Most fertilizers can

inhibit local microbial activity, especially when they are

applied in high concentrations. Some nitrogenous fertiliz-

ers can produce biocidal levels of ammonia. Furthermore,

high levels of inorganic fertilizer, particularly in tropical

soils, tend to reduce populations of mycorrhizal fungi

[104]. Some species may even disappear under such cir-

cumstances. For example, root nodulation in legumes by

rhizobium is highly influenced by N supply in soil. It is a

strongly suppressive effect of combined N (especially

NO3
-) which legumes will utilize as a N source in pref-

erence to forming the N-fixing symbiosis [131]. Nitrate

inhibition of nodulation has been one of the clearest and

most intensively studied examples of the nutritional control

of plant development. Unlike other factors that inhibit

nodulation (such as pH, temperature or toxicity), NO3
-

does so in a very specific way without interfering with

plant growth [131]. However, the sensitivity of nodulation

to NO3
- is strongly dependent on the plant species and

genotype [131].

Farmyard manure (FYM) and mineral fertilizers (NPK)

have been reported to have significant effects on the size of

microbial biomass and activities [132]. The application of

fertilizers can also cause shifts in the soil microbial com-

munity structure, as indicated by changes in soil

phospholipid fatty acid profiles [123]. There is much

interest in understanding the factors which influence and

regulate their activities and structure under different
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conditions and locations during decades or even centuries.

The German long-term field experiments provide infor-

mation on important functional and structural soil micro-

bial properties as influenced by organic and mineral

fertilization [133]. Responses to the fertilizer treatments

over decades differed at the four sites and led to alterations

of the soil ecosystems. Development of functional diversity

confirmed that fertilization stimulate microbial biomass

and enzyme activities in the investigated soils. The

increase of microbial biomass and enzyme activities was

higher in FYM than in NPK fertilized soils [133].

Inoculation of Legumes by Rhizobia

Legume inoculation with root-nodule bacteria is an estab-

lished and successful practice. When a new legume is

introduced into a region, some soil will contain appropriate

rhizobia, and inoculation is usually needed. Under soil

conditions of low nitrogen, yield increases following

inoculation which can exceed 50 %, with clear differences

evident between inoculated and uninoculated plants. With

rare exceptions [134], re-inoculation in subsequent years

will not be needed, and over time even uninoculated soils

will tend to accumulate rhizobia, limiting inoculation

response. A consequence, as shown for soybean in Thai-

land, is that there will be greater interest in inoculation and

inoculant technologies in the newer areas of production

than in regions where the crop has been grown for some

time [135]. Where inoculation is needed, the inoculant

must supply adequate number of rhizobia and use inocu-

lant-quality strains having the following characteristics

[136]: the ability to form highly effective nodules with all

commonly used cultivars and species for which it is rec-

ommended; be competitive in nodule formation and per-

sistent in the soil; the ability to tolerate soil environmental

stresses such as acid soil pH and temperature; display good

growth in simple, inexpensive culture media; be geneti-

cally stable and not be subject to mutation; and the ability

to survive well on the seed prior to seed germination.

Inoculant strains are required to survive in stressful soils

in sufficient numbers to provide a population able to no-

dulate under environmental constraints such as pH, tem-

perature and competition from less effective indigenous

and naturalized strains. This last problem of competition is

significant in many areas, not the least in soils of the tropics

and sub-tropics. Several research programs around the

world are addressing the problems of stress tolerance in

root-nodule bacteria. Improvements in the understanding of

the molecular and physiological mechanisms of stress-

sensitivity in both symbionts will be important if legume

nitrogen fixation and productivity are increased. In addi-

tion, there will be a clear benefit to legume production from

increasing the survival of the inoculant root-nodule

bacteria on seed, or when delivered directly into soil.

Enhanced formulations, granular inoculants, and seed

coating techniques that protect the bacteria from environ-

mental stress or physically separate them from toxic

chemicals, such as fungicides applied to seed, offer new

research directions [137].

Addition of Organic Matter

Organic matter can help modify soil structure and is of

fundamental importance to many soil functions, including

carbon cycling, sequestration and nutrient storage. Incor-

poration of rich and varied sources of organic matter not

only supplies plant nutrients, but also helps to increase

below-ground biodiversity by providing an array of sub-

strates capable of supporting diverse soil organisms.

Increased biodiversity in turn contributes to the ability of

the soil to suppress plant pests and diseases. Suitable

sources of organic matter include animal wastes, green

manures, crop residues, and composted vegetation. It is

important to note, however, that the effects of organic

amendments can vary not only with the nature of the

material added, but also with soil pH [104].

Green manuring is an arable-farming practice in which

undecomposed green material is incorporated into soil in

order to increase its immediate productivity [138]. This

material may either be obtained from quick-growing green

manure crops grown in situ or harvested elsewhere, and

brought into soil. Green manure crops can be leguminous as

well as non-leguminous [139]. Green manuring is known to

have a significant positive influence on different soil prop-

erties [140–142] and eventually on crop production. Green

manuring promotes colonization by mycorrhizae on the

roots of succeeding crops. They may also suppress plant

pests such as nematodes [143]. A fast increase in growth of

soil microorganisms occurs after a young, particularly lush

green manure crop or green twigs are incorporated into the

soil. The microbes start multiplying to attack the freshly

incorporated plant material in the soil. During the microbial

breakdown process, nutrients held within the plant tissues in

complex forms are released and made available to the suc-

ceeding crop. Factors influencing the microbial activity to

break down complex organic matter include soil tempera-

ture, soil moisture, and carbon to nitrogen (C:N) ratio of the

plant material. The C:N ratio of plant tissue reflects the kind

and age of the plants from which it was originated. The

optimum C:N ratio for rapid decomposition of organic

matter lies between 15:1 and 25:1. As plants get older,

fibrous plant material increases and protein (nitrogen) con-

tent decreases [144].

Green manuring may also drive long-term increase of

soil organic matter and microbial biomass [145–148].

Combinations of inorganic fertilizer and organic
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amendments (wheat straw, animal manure, or sesbania

green manuring) generally increased soil organic C, total

N, microbial biomass C, and enzyme activity more than

inorganic fertilizer alone in the top 15 cm of soil [145,

146]. In some widely spaced crops, like sugarcane, green

manures can be grown and incorporated into the soil. Also,

the cane trash can be mulched on to the soil. In a field study

it was found that soil microbial biomass C and dehydro-

genase activity at the end were at a maximum with trash

burning ? green manure (GM) mulch and trash remo-

val ? GM mulch treatments [149]. Compared to trash

removal and trash burning, counts of bacteria in soil after

sugarcane ratoon and wheat crops were significantly more

only with different GM treatments; however, all GM and

trash application treatments recorded significantly higher

counts of fungi and actinomycetes. Application of sugar-

cane trash and GM increased the soil microbial biomass

carbon measured at 75 days after ratooning [149].

Mulching

A mulch is defined as any form of covering applied to the

soil surface. By this broad definition, it includes crop res-

idues, weeds, GMs, and other plant material cut and carried

in from elsewhere, as well as artificial materials such as

paper and plastic. The organic mulches, which are more

relevant to resource-poor farmers in developing countries,

are quite common in the traditional farming systems of the

humid tropics. Besides reducing soil erosion and improving

nutrient cycling, mulching can also help suppress weeds,

pests, and diseases. Herbicide use or time spent weeding by

hand may be significantly reduced by mulching, and

notable successes have been achieved by using mulches to

suppress soil-borne plant pathogens [104].

In Kenya, for example, black rot of cabbage caused by

the bacterium Xanthamonas campestris was controlled by a

grass mulch applied immediately after transplanting [104].

In such cases, it is thought that the effect of the mulch is

due to a combination of its role as a physical barrier

(reducing rain splash of the pathogen onto the crop),

together with its ability to change the microclimate at the

soil surface and enhance the activity of beneficial soil

microorganisms capable of suppressing pathogens.

Mulching has also been used to divert termites from crops,

and in various parts of Africa, mulching with the weed

Tithonia diversifolia has been shown to reduce nematode

damage and improve crop growth. In Uganda, mulching of

banana plantations appeared to reduce number of the

nematode Radopholus similis, possibly because the mulch

reduced soil temperatures, thereby slowing nematode

feeding and reproduction. Conversely, the presence of crop

residues on the soil surface may enhance the biological

control of insect pests by entomopathogenic nematodes. It

has been shown, for example, that such residues increase

the persistence of Steinernema carpocapsae, probably by

protecting it from desiccation or ultraviolet light [104].

Conclusion

Soil flora resources are indispensable for establishing sus-

tainable agriculture. Abuse and unscientific use of microbial

resources seem to hamper the wholesome popularization of

them. One needs to understand the utility and limit of their

effects in agriculture scientifically. Very few data have been

generated on the effect of agronomic practices on soil

microflora. It is important that the accurate, scientific evi-

dence of the fate of microbial resources as well as their effect

on plant growth are understood well. The knowledge of soil

microflora can be successfully utilized in managing the field

crops through suitable and appropriate agronomic practices.
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