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Coaxial waveguides have many applications and many 
studies have been done about them [4–7]. The high-fre-
quency eigenmodes of a coaxial waveguide including a mag-
netized annular plasma have been analysed [4]. Propagation 
of electromagnetic waves in a magnetized plasma coaxial 
waveguide has been studied [5]. Electron energy gain in the 
transverse electric mode of a coaxial plasma waveguide has 
been studied [6]. Furthermore, propagation of space-charge 
waves through a coaxial waveguide with circular cross sec-
tion and containing an annular magnetized plasma has been 
investigated [7].

Geometrically, waveguides have different cross sections, 
such as rectangles, circles and ellipses are filled with dif-
ferent materials and have different applications [8–13]. 
Furthermore, elliptical cross-sectional waveguides have 
advantages over circular cross-sectional waveguides. It has 
been shown that converting a dielectric waveguide with a 
circular cross section to an elliptical waveguide, consider-
ing the same cross-sectional area, reduces damping in the 
dominant mode [14] and modal degeneracy, allows practical 
guidance of traveling electromagnetic waves. In addition, 
attenuation and power flow effects are obtained in a surface 
wave transmission line with an elliptical cross section for 
wave propagation [15]. It has been recognized that some 
existing modes in an elliptical waveguide have less attenua-
tion than the corresponding modes in a circular waveguide.

On the other hand, by applying a constant and static mag-
netic field to an electron plasma, plasma is converted to mag-
netized plasma, and its dispersion curves find four branches 
as: an electron Langmuir and cyclotron modes, ordinary and 
extraordinary modes.

In this paper, we considered two configurations: one is 
a coaxial elliptical waveguide including an annular vac-
uum-magnetized plasma-vacuum and another is an ellipti-
cal waveguide filled by magnetized plasma. We consider 

Abstract In the present paper, the propagation of space-
charge waves through elliptical plasma waveguide in an axial 
magnetic field is investigated. First we consider a metallic 
coaxial waveguide with an elliptical cross section includ-
ing an annular vacuum-plasma-vacuum and then an ellip-
tical plasma waveguide is considered. In the electrostatic 
approximation, by using the Poisson, continuity and momen-
tum equations and so applying boundary conditions, disper-
sion relations of the waves are derived. The potentials, the 
components of the electric fields, the electron density, and 
electron velocity components in terms of Mathieu functions 
are introduced. The results of the numerical study and the 
discussion are presented as well.
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1 Introduction

Coaxial waveguide consists of a hollow conductive shell 
and a solid conductor rod that is coaxial with the shell. The 
cross section of the shell and rod can be designed in circular 
and elliptical shapes, etc. The coaxial devices are capable 
of generating higher power than conventional cylindrical 
devices. Recently, a method has been proposed to achieve 
high power at a given wavelength with lower beam energy. 
In this method, a free laser electron can be used using an 
annular electron beam in a coaxial waveguide [1–3].
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magnetized collisionless cold plasma. In two structures 
propagation of space-charge waves was studied. The poten-
tials for the annular plasma region and the two annular 
vacuum regions in the coaxial elliptical waveguide and in 
the plasma waveguide in terms of Mathieu functions in the 
electrostatic approximation were presented. Dispersion rela-
tion, components of electric field and electron velocity in 
two configurations were calculated. Numerical computations 
were made and results were graphically presented.

We study the propagation of space charge waves consid-
ering the appropriate approximations,including electrostatic 
approximation and ignoring the effects of ion motions and 
electron temperature. Then we calculate perturbed potential, 
electron density, electron velocity, and dispersion relation in 
the two considered structures.

In the previous work, the propagation of space-charge 
waves in a coaxial waveguide with circular cross section 
including an annular plasma in an axial magnetic field has 
been studied [7]. Here we consider the waveguide with 
elliptical cross section and examine the space charge waves 
in these configurations. The results obtained are different 
from the previous results and the calculated quantities are 
expressed in terms of Mathieu functions. In this work, the 
Introduction is presented as Sect. 1. In Sect. 2, we use the 
Poisson, continuity, and momentum transfer equations in 
the appropriate form, and combining these equations, we 
obtain dispersion relation. The appropriate solutions for the 
distribution of potentials as Mathieu functions in all spa-
tial regions are presented. In Sect. 3, space-charge waves 
in an elliptical magnetized plasma waveguide are studied. 
The perturbed potential, electron density, electron velocity, 
and dispersion relation in this configuration are calculated. 
In Sect. 4, numerical results are graphically presented. A 
conclusion is expressed in Sect. 5.

2  Electrostatic Space‑Charge in the Coaxial 
Elliptical Waveguide Including An Annular 
Magnetized Plasma

In this section, the configuration under study is a coaxial 
elliptical waveguide. This waveguide structure consists of 
a metallic elliptical shell as cladding, so that in its center is 
a solid metallic cylinder with an elliptical cross section and 
coaxial with it as a core. This coaxial elliptical waveguide 
contains an annular plasma in an axial magnetic field. The 
cross section of this configuration is shown in Fig. 1a.

Here it is noted that we can write the conversion relations 
between the elliptic coordinate system, (�, �, z)  and cartesian 
system (x, y, z) as following forms: [16]:

where d =
√

a2
bound.

− b2
bound.

 and abound. , bbound.  introduce 

the elliptic boundary as:  �bound. = tanh−1(bbound.∕abound.).
Therefore in Fig. 1 the boundary of inner solid metal is 

defined by: � = �a  and the boundary of metallic cylindri-
cal shell is indicated by: � = �b . We define the boundary of 
inner of elliptical annular plasma by: � = �i and the bound-
ary of outer of elliptical annular plasma by: � = �o.Further-
more the regions of 𝜉a < 𝜉 < 𝜉i and  𝜉o < 𝜉 < 𝜉b are vacuum 
and  B0ẑ is external magnetic field. It is mentioned that we 
consider the electrostatic approximation for investigations of 
the space-charge mode. In the considered approximation, the 
wavenumber in the axial direction is satisfied in: k ≫ 𝜔∕c

,and k is wavenumber. Therefore we consider  � = −�� as a 
relation between the electrostatic potential and electric field. 
We use the Poisson equation as follows:

and use the continuity and momentum transfer equations in 
the below forms:

x = d cosh � cos �, y = d sinh � sin �, z = z,

(1)∇2�� =
e

�0
�n ,

Fig. 1  Two different waveguide 
structures with elliptical cross 
section, a The cross section of 
the coaxial elliptical waveguide, 
b Metallic elliptical waveguide 
filled by plasma
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where ��, �n and �� are the perturbed potential, velocity and 
density of electrons.

Therefore, we obtain Helmholtz equations for the vacuum 
regions: 𝜉a < 𝜉 < 𝜉i and 𝜉o < 𝜉 < 𝜉b  in the following forms:

and for the plasma region: 𝜉i < 𝜉 < 𝜉o as:

with:

where �c and �p indicate the cyclotron and plasma frequen-
cies of electron, respectively.

�c and �p are the cyclotron and plasma frequencies of 
e l e c t r o n ,  r e s p e c t i v e l y,  a n d  a r e  d e f i n e d 
as �c =

eB0

me

 and �p =
√

ne2

�0me

 , where me and −e are defined 
as the electron mass and the electron charge and n0 is the 
unperturbed electron density that it is assumed uniform and 
constant throughout the plasma.

Here we study space-charge waves and thus the perturbed 
potential is introduced by: 𝛿𝜙 = 𝛿�̃�ei(kz−𝜔t) . By considering 
the z axis as propagating direction, the form of potential is 
𝛿𝜙 = 𝛿�̃�ei(kz−𝜔t) , where k and � indicate the wavenumber 
and the angular frequency. However in the elliptical cylinder 
coordinates  𝛿�̃� satisfies in the following equation:

where: h = d
√
cosh2 � − cos2 �, k2

(I,III)
= −k2 , k2

(II)
= �2 and  

q(I,II,III) = k2
(I,II,III)

d2∕4 . Equation (7)is a Mathieu equation 
and it has the even and odd solutions [15]. Therfore we 
obtain:

(2)
��n

�t
+ n0�.�� = 0 ,

(3)
𝜕𝛿�

𝜕t
=

e

me

�𝛿𝜙 − 𝜔c𝛿� × ẑ ,

(4)∇2
⊥
𝛿�̃�(I,III) − k2𝛿�̃�(I,III) = 0 ,

(5)∇2
⊥
𝛿�̃�(II) + 𝜅2𝛿�̃�(II) = 0,

(6)�2 =
k2(�2

c
− �2)(�2

p
− �2)

�2(�2
p
+ �2 − �2)

, �c =
eB0

me

, �2
p
=

n0e
2

�0me

,

(7)

1

h2
(
𝜕2

𝜕𝜉2
+

𝜕2

𝜕𝜂2
)𝛿�̃�(I,II,III)(𝜉, 𝜂) + k2

(I,II,III)
𝛿�̃�(I,II,III)(𝜉, 𝜂) = 0,

(8)

��(I,III)(�, �, z, t) =

∞∑
m=0

[C(I,III)
m

Cem(�,−q(I,III))

+ F(I,III)
m

Fekm(�,−q(I,III))]cem(�,−q(I,III)) exp[i(kz − �t)]

+

∞∑
m=1

[S(I,III)
m

Sem(�,−q(I,III))

+ G(I,III)
m

Gekm(�,−q(I,III))]sem(�,−q(I,III)) exp[i(kz − �t)],

and:

where cem(�, qi) ,sem(�, qi) are the even and odd solutions of 
the angular Mathieu equation, and Cem(�, qi) ,Sem(�, qi)  are 
the even and odd solutions of the radial Mathieu equation.

Cem(�, qi) ,Sem(�, qi) are the radial solutions of the first 
kind and  Feym(�, qi), Geym(�, qi)  are the radial solutions 
of the second kind,for qi > 0 and for qi < 0 the solutions 
of the second kind are converted to Fekm and Gekm [16]. 
We consider the even solution of Mathieu equation in three 
regions as follows:

Furthermore, it is mentioned that the potential must vanish 
at the surfaces  �a  and �b . Therefore:

where:

(9)

��(II)(�, �, z, t) =

∞∑
m=0

[C(II)
m

Cem(�, q(II))

+ F(II)
m

Feym(�, q(II))]cem(�, q(II)) exp[i(kz − �t)]

+

∞∑
m=1

[S(II)
m

Sem(�, q(II))

+ G(II)
m

Geym(�, q(II))]sem(�, q(II)) exp[i(kz − �t)],

(10)

��̃(I)
m =��̃(I)

m(even)(�, �) = [C(I)
m Cem(�,−q(I))

+ F(I)
m Fekm(�,−q(I))]cem(�,−q(I)) for �a < � < �i ,

(11)

��̃(II)
m =��̃(II)

m(even)(�, �) = [C(II)
m Cem(�, q(II))

+ F(II)
m Feym(�, q(II))]cem(�, q(II)) for �i < � < �o ,

(12)
��̃(III)

m =��̃(III)
m(even)(�, �) = [C(III)

m Cem(�,−q(III))

+ F(III)
m Fekm(�,−q(III))]cem(�,−q(III)) for �o < � < �b ,

(13)
𝛿�̃�(I)

m
= 𝛿�̃�

(I)

m(even)
(𝜉, 𝜂) = C(I)

m
[Cem(𝜉,−q(I))

− 𝛼aFekm(𝜉,−q(I))]cem(𝜂,−q(I)),

(14)
𝛿�̃�(II)

m
= 𝛿�̃�

(II)

m(even)
(𝜉, 𝜂) = [C(II)

m
Cem(𝜉, q(II))

+ F(II)
m

Feym(𝜉, q(II))]cem(𝜂, q(II)),

(15)
𝛿�̃�(III)

m
= 𝛿�̃�

(III)

m(even)
(𝜉, 𝜂) = C(III)

m
[Cem(𝜉,−q(III))

− 𝛼bFekm(𝜉,−q(III))]cem(𝜂,−q(III)),

(16)

�a =
Cem(�b,−q(I))

Fekm(�b,−q(I))
,

�b =
Cem(�b,−q(III))

Fekm(�b,−q(III))
.
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The latter boundary conditions are obtained from the fact 
that, the potential must be continuous in the interfaces of the 
plasma and vacuum at the elliptical boundaries of �i  and  �o.

Now we obtain another boundary condition to complete 
the calculations. Using Eqs. (2) and (3), we can obtain:

By integrat ing Eq.   (17)  ,  i t  can be shown 
that  −en0�v� +

i�

h

�

��
�� , must be continuous across interface 

of plasma-vacuum .
The components of velocity perturbations are:

and the density perturbation in the plasma region calculate 
in the following form:

Furthermore, the components of the electric field in vacuum 
and plasma regions are calculated as follows:

and

(17)−�.(en0�� + �0
�

�t
���) = 0

(18)
𝛿ṽ

(II)

𝜉
=

e

me(𝜔
2 − 𝜔2

c
)h

[
i𝜔[C(II)

m
Ce�

m
(𝜉, q(II)) + F(II)

m
Fey�

m
(𝜉, q(II))]cem(𝜂, q(II))

+ 𝜔c[C
(II)
m

Cem(𝜉, q(II)) + F(II)
m

Feym(𝜉, q(II))]ce
�
m
(𝜂, q(II))

]
exp[i(kz − 𝜔t)] ,

(19)
𝛿ṽ(II)

𝜂
=

e

me(𝜔
2 − 𝜔2

c
)h

[
i𝜔[C(II)

m
Cem(𝜉, q(II)) + F(II)

m
Feym(𝜉, q(II))ce

�
m
(𝜂, q(II))

− 𝜔c[C
(II)
m

Ce�
m
(𝜉, q(II)) + F(II)

m
Fey�

m
(𝜉, q(II))]cem(𝜂, q(II))

]
exp[i(kz − 𝜔t)] ,

(20)

�ṽ(II)z = ike
me

[C(II)
m Cem(�, q(II))

+ F(II)
m Feym(�, q(II))]cem(�, q(II)) exp[i(kz − �t)] ,

(21)

�ñ(II) =
�0
e
(�2 + k2)[C(II)

m Cem(�, q(II))

+ F(II)
m Feym(�, q(II))]cem(�, q(II)) exp[i(kz − �t)].

(22)

E
(I,III)

�
= −

1

h
C(I,III)
m

[Ce�
m
(�,−q(I,III))

− �a,bFek
�
m
(�,−q(I,III))]cem(�,−q(I,III))

exp[i(kz − �t)] ,

(23)

E(I,III)
�

= −
1

h
C(I,III)
m

[Cem(�,−q(I,III))

− �a,bFekm(�,−q(I,III))]ce
�
m
(�,−q(I,III))

exp[i(kz − �t)] ,

(24)
E(I,III)
z = − ikC(I,III)

m [Cem(�,−q(I,III))

− �a,bFekm(�,−q(I,III))]cem(�,−q(I,III)) exp[i(kz − �t)] ,

2.1  Dispersion Equation in the Considered 
Configuration

The dispersion function in the supposed elliptical coaxial 
waveguide is obtained by applying the mentioned suit-
able boundary conditions in the separating boundaries. 
By applying boundary conditions , the dispersion equation 
is achieved by setting the determinant of the coefficients 
equal to zero: By applying the right boundary conditions, 
we can achieve the dispersion relation in the coaxial ellipti-
cal waveguide, as:

The elements of above determinate are defined by: 

 where

(25)

E
(II)

�
= −

1

h
[C(II)

m
Ce�

m
(�, q(II))

+ F(II)
m

Fey�
m
(�, q(II))]cem(�, q(II))

exp[i(kz − �t)] ,

(26)
E(II)
�

= −
1

h
[C(II)

m
Cem(�, q(II)) + F(II)

m
Feym(�, q(II))]

ce�
m
(�, q(II)) exp[i(kz − �t)] ,

(27)

E(II)
z = − ik[C(II)

m Cem(�, q(II))

+ F(II)
m Feym(�, q(II))]cem(�, q(II)) exp[i(kz − �t)] .

(28)
||||

�11 �12 �13 �14
�21 �22 �23 �24
�31 �32 �33 �34
�41 �42 �43 �44

|||| = 0,

(29a)
�
11

= x
1

s
1

, �
12

= −x
2

s
2

, �
13

= −x
3

s
2

, �
14

= 0,

�
21

= 0, �
22

= −x
4

s
2

, �
23

= −x
5

s
2

, �
24

= x
6

s
1

,

(29b)
�31 = ix7s1, �32 = −iT1x8s2 − T2x2s4,
�33 = −iT1x9s2 − T2x3s4, �34 = 0,

(29c)
�41 = 0, �42 = −iT1x11s2 − T2x4s4,
�43 = −iT1x12s2 − T2x5s4, �44 = 0ix10s1,
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and: 

 and so:

3  Space‑Charge Waves in the Metallic Elliptical 
Waveguide Filled by Plasma

In this section, we consider an elliptical waveguide filled 
by plasma with elliptical boundary �b . The constant static 
magnetic field is along the axis of the waveguide, B0ẑ . This 
configuration is shown in Fig. 1. We use the linearized 
Poisson,continuity and momentum equations. Therefore, 
for space-charge waves propagating in the z direction,the 
perturbed potential, 𝛿�̃�, satisfies in the following equation:

(30)T1 =
�(�2 − �2

c
− �2

p
)

�2 − �2
c

, T2 = −
�c(�

2
p
)

�2 − �2
c

,

(31a)
x1 = Cem(�i,−q(I)) − �aFekm(�i,−q(I)),
x2 = Cem(�i, q(II)), x3 = Fekm(�i, q(II)),

(31b)
x
4

= Cem(�o, q(II)), x5 = Fekm(�o, q(II)),

x
6

= Cem(�o,−q(I)) − �bFekm(�o,−q(I)),

(31c)
x
7

= Ce�
m
(�i,−q(I)) − �aFek

�
m
(�i,−q(I)),

x
8

= Ce�
m
(�i, q(II)), x9 = Fek�

m
(�i, q(II)),

(31d)
x
10

= Ce�
m
(�o,−q(I)) − �bFek

�
m
(�o,−q(I)),

x
11

= Ce�
m
(�o, q(II)), x12 = Fek�

m
(�o, q(II)),

(32)s1 =∫
2�

0

cem(�,−q(I))cen(�, q(II))d� ,

(33)s2 =∫
2�

0

cem(�, q(II))cen(�, q(II))d� ,

(34)s3 =∫
2�

0

ce�
m
(�,−q(I))cen(�, q(II))d� ,

(35)s4 =∫
2�

0

ce�
m
(�, q(II))cen(�, q(II))d� .

(36)
1

h2
(
𝜕2

𝜕𝜉2
+

𝜕2

𝜕𝜂2
)𝛿�̃�(𝜉, 𝜂) + 𝜅2𝛿�̃�(𝜉, 𝜂) = 0.

Equation (36) has the even and odd solutions [11]as follows:

The boundary condition is �� = 0  at the boundary of ellip-
tical �b . It means Cem(�b, q) = 0 , Sem(�b, q) = 0 . Therefore 
the even solution is:

In the electrostatic approximation, the dispersion relation 
for space-charge waves in the considered structure for even 
mode is given by:

The solutions of Eq. (39) are expressed as higher and lower 
frequency:

In the electrostatic approximation, the electric field compo-
nents can be expressed as:

and the velocity perturbations are:

and so the density perturbation is calculated as follows:

(37)

𝛿𝜙(𝜉, 𝜂, z, t) =

∞∑
m=0

∞∑
r=1

CmCem(𝜉, qm.r)cem(𝜂, qm.r) exp[i(kz − 𝜔t)]

+

∞∑
m=1

∞∑
r=1

SmSem(𝜉, q̄m,r)sem(𝜂, q̄m,r) exp[i(kz − 𝜔t)]

(38)𝛿�̃�m(𝜉, 𝜂) = CmCem(𝜉, qm,r)cem(𝜂, qm,r)

(39)
k2(�2

c
− �2)(�2

p
− �2)

�2
p
(�2

p
+ �2 − �2)

−
4qm,r

d2
= 0 ,

(40)�2
±
=

1

2

⎡⎢⎢⎣
(�2

p
+ �2

c
) ±

�
(�2

p
+ �2

c
)2 −

4k2d2�2
p
�2
c

k2d2 + 4qm,r

⎤⎥⎥⎦
,

(41)E� = −
1

h
CmCe

�
m
(�, qm,r)cem(�, qm,r) exp[i(kz − �t)]

(42)E� = −
1

h
CmCem(�, qm,r)ce

�
m
(�, qm,r) exp[i(kz − �t)]

(43)Ez = − ikCmCem(�, qm,r)cem(�, qm,r) exp[i(kz − �t)]

(44)
𝛿ṽ𝜉 =

e

me(𝜔
2 − 𝜔2

c
)h

[
i𝜔CmCe

�
m
(𝜉, qm,r)cem(𝜂, qm,r)

𝜔cCmCem(𝜉, qm,r)ce
�
m
(𝜂, qm,r)

]
exp[i(kz − 𝜔t)],

(45)
𝛿ṽ𝜂 =

e

me(𝜔
2 − 𝜔2

c
)h

[
i𝜔CmCem(𝜉, qm,r)

�
m
(𝜂, qm,r)

𝜔cCmCe
�
m
(𝜉, qm,r)cem(𝜂, qm,r)

]
exp[i(kz − 𝜔t)],

(46)𝛿ṽz =
ike

me

CmCem(𝜉, qm,r)cem(𝜂, qm,r) exp[i(kz − 𝜔t)] ,
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4  Numerical Results

In this section, we investigate the numerical results for two 
considered configurations.

We consider the typical values for the elliptic boundary 
in the considered configuration and so we choose the special 
mode m = 1.

Figure 2a, b illustrates the dispersion curves for space-
charge waves in the elliptical magnetized plasma waveguide 
for �c

�p

= 1.86 and �c

�p

= 0.5, respectively.
Variations of the normalized frequency  �

�p

 as functions 
of  �c

�p

 and normalized wave number in a completely filled 
plasma elliptical waveguide for the normalized higher and 
lower frequency are seen in Fig. 3a, b, respectively.

The plots of the normalized potential as functions of �, � 
in the completely filled plasma elliptical waveguide, for even 
and odd modes are seen in Fig. 4a, b, respectively.

We plot the normalized � component of electric field, E� , 
versus �, � in the completely filled plasma elliptical wave-
guide, for even and odd modes, in Fig. 5a, b, respectively.

Figure 6a, b illustrates the normalized E�  as functions 
of  � , � in the completely filled plasma elliptical waveguide, 
for even and odd modes, respectively.

Figure 7a–c shows the plots of the normalized potential 
versus �, � in the coaxial elliptical waveguide including an 
annular vacuum-plasma-vacuum, for even mode, in I, II and 
III regions, respectively.

(47)

𝛿ñ =
𝜀0

e
(𝜅2 + k2)CmCem(𝜉, qm,r)cem(𝜂, qm,r) exp[i(kz − 𝜔t)].

Figure 8a, b illustrates the normalized E� and E� versus 
�, � in the coaxial elliptical waveguide including an annu-
lar vacuum-plasma-vacuum, for even mode in the vacuum 
region (I).

Figure 9a, b illustrates the normalized E� and E� ver-
sus � , � in the coaxial elliptical waveguide including an 
annular vacuum-plasma-vacuum, for even mode in the 
plasma region (II).

Figure 10a, b illustrates the normalized E� and E�  ver-
sus �, �  in the coaxial elliptical waveguide including an 
annular vacuum-plasma-vacuum, for even mode in the vac-
uum region (III).

For waves to propagate: it is necessary that 𝜅2 > 0 . For the 
case  𝜔c > 𝜔p , the mode 𝜔 < 𝜔p  is predicted from the case 
of  B0 = ∞ , and so the upper hybrid mode 𝜔c < 𝜔 <

√
𝜔2
p
+ 𝜔2

c
 

is appeared as a characteristic frequency in the plasma. This 
mode has is a backward wave. When the magnetic field is further 
reduced  𝜔p > 𝜔c , it is seen that waves propagate for 𝜔 < 𝜔c . 
The backward wave mode now propagates in the frequency 
range 𝜔p < 𝜔 <

√
𝜔2
p
+ 𝜔2

c
 . For the case of  B0 = 0 , the upper 

pass band reduces to the plasma resonance at �p and the lower 
pass band reduces towards � = 0 . In both cases, the waves cease 
to propagate. That is, surprisingly, a plasma-filled waveguide 
without an external magnetic field will not propagate a space-
charge wave. However, the waves will propagate even 
when B0 = 0  if the plasma does not fill the waveguide. This is 
because filling the waveguide had eliminated the possibility of 
surface waves [17].

5  Conclusions

In this paper, we considered two configurations: one is a coax-
ial elliptical waveguide, including an annular vacuum-magnet-
ized plasma-vacuum, and another is an elliptical waveguide 

Fig. 2  Plot of the dispersion 
curves in the elliptical plasma 
waveguide. The solid curve is 
for the normalized �+

�p

 and the 
dashed curve is for the 
normalized �− , a �c

�p

= 1.86 , b 
�c

�p

= 0.5
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Fig. 3  Plot of the normal-
ised �−  as a function of the 
normalized wavenumber 
and  �c

�p

 in the elliptical plasma 
waveguide, a higher normalized 
frequency, b lower normalized 
frequency

Fig. 4  Plot of the normalised 
potential versus  � , � in the 
elliptical plasma waveguide, a 
Even mode, b Odd mode

Fig. 5  Plot of the normal-
ised  E�  versus  �, � in the 
elliptical plasma waveguide 
for  m = r = 1 , a Even mode, b 
Odd mode
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filled by magnetized plasma. We considered magnetized colli-
sionless cold plasma and applied the electrostatic approxima-
tion and neglected the effects of ion motions and electron tem-
perature. In two structures, the propagation of space-charge 
waves was studied. The electric potentials and fields for the 
all spatial regions in the coaxial elliptical waveguide and the 

elliptical plasma waveguide in terms of Mathieu functions in 
the electrostatic approximation were presented. Dispersion 
relation, components of the electric field, and electron velocity 
in two configurations were calculated. Numerical calculations 
were done, and the results were plotted. We ignored from 
different effects. We considered the mode with m = 1 . It is 

Fig. 6  Plot of the normal-
ised E� versus �, � in the 
elliptical plasma waveguide 
for  m = r = 1 , a Even mode, b 
Odd mode

Fig. 7  Plot of the normalised potential versus  � , � in the coaxial elliptical waveguide consisting of vacuum-plasma-vacuum ,for even mode, a 
�(I) − � , � , b �(II) − � , � , c �(III) − � , �
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possible excitation of surface wave modes at the boundaries 
of structures, but in this investigation we ignored from effect 
of surface waves. Furthermore, we note that in this study, we 
investigated the space charge waves in the two elliptical struc-
tures only via the considered mode. We have assumed the 

different approximates and neglected the different effects and 
so the results are approximately analysed in these structures. 
Regardless of the fact that they are approximate, the results 
presented in this article are still useful for the analysis of the 
considered problem, although.

Fig. 8  Plot of the normalized components of electric field versus  �, � in the coaxial elliptical waveguide consisting of vacuum-plasma-vacuum, 
for even mode, a E(I)

�
− � , � , b E(I)

�
− � , �

Fig. 9  Plot of the normalized components of electric field versus   �, �  in the coaxial elliptical waveguide consisting of vacuum-plasma-
vacuum,for even mode, a E(II)

�
− �, � , b E(II)

�
− �, �
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