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Abstract In this paper, the dispersion of a solute in blood

flow in a tube has been discussed. Treating blood as thix-

otropic fluid modell, the presence of homogeneous chem-

ical reaction has been considered in the analysis by

adopting Taylor’s approach, and the effects of various

parameters on the equivalent dispersion coefficient have

been studied. It is seen that the dispersion coefficient

decreases as the reaction rate constant increases, for given

parameters of non-Newtonian fluids. A comparative study

of the equivalent dispersion coefficient among Newtonian

and other non-Newtonian modells is made. One of the

remarkable results is that the increase in the scalar struc-

tural parameter of materials or thixotropic parameter leads

to yield a decreasing trend in the equivalent dispersion

coefficient. The present analytical study provides useful

information of the physiological process in the circulatory

system.
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1 Introduction

The dispersion (or diffusion) process of a soluble matter in

the flow of fluids plays a pertinent role in chemical industry

and biological systems, especially in the gel chromatog-

raphy, tubular flow reactors, indicator dilution technique

and in the study of blood circulation. It is well understood

that in blood, the substances such as nutrients, oxygen,

metabolic waste products, drugs, etc., are transported by

means of diffusive mechanisms. Motivated by the study of

Griffith [1], Taylor [2, 3] have mathematically developed

the modest approach to investigate the dispersion process

of a solute in a Newtonian fluid (a solvent) flowing slowly

through a circular tube. It is revealed that the coefficient of

effective dispersion of solute becomes a function of the

radius of the tube, mean velocity and molecular diffusion

coefficient, when it is diffused relative to a reference plane

moving with the average velocity of the fluid flow. Aris [4]

has extended the results obtained by Taylor [2, 3] and

predicted that the growth rate of the solute spreading is

directly proportionate to the sum of the molecular disper-

sion coefficient and Taylor dispersion coefficient. Further,

Aris [4] took an effort to remove the limitations imposed

by Taylor [2, 3]. In view of understanding the basic con-

cepts of physiological organisms, Wageningen [5] pro-

posed a novel generalised approach. In the aforementioned

studies, the rheology of solvents is assumed to obey the law

of Newtonian. It is of interest to note that the simple rhe-

ological behaviour of Newtonian fluid is inadequate to

represent the real characteristics of biological fluids and

several types of fluids used in industry, which are sus-

pensions of particulate substances in continuous fluids. In

view of this, a study on the dispersion of a solute in solvent

(fluid) flowing in a tube has to be made by taking into

account the rheology of solvent as a non-Newtonian fluid.
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Fan and Hwang [6] have examined the nature of dis-

persion in a power law fluid, whereas Fan and Wang [7]

explored this problem for Bingham plastic and Ellis mod-

ells by adopting Taylor’s approach [2]. Ghoshal [8] has

considered a Reiner-Philippoff modell fluid, and Shah and

Cox [9] have analysed the dispersion in Eyring modell

fluid. The values of effective dispersion coefficient for a

Newtonian fluid are higher than those for an Eyring modell

fluid [9]. Using Aris’ method, Prenosil et al. [10] have

solved the problem of dispersion of a soluble matter in the

flow of a power law fluid. Assuming the rheology of non-

Newtonian fluids (solvents) as power-law, Bingham plastic

and Casson modells, the performance of shear-augmented

dispersion of solutes in solvents is carried out by adopting

the dispersion theory developed by Taylor and Aris. Sharp

[11] has observed that the value of yield stress of the sol-

vent fluid has a predominate effect on the relative axial

diffusivity. Using the methodology developed by Sharp

[11], Sankar et al. [12] have studied the shear augmented

dispersion of a solute in blood flow by assuming the rhe-

ology of blood as a Herschel-Bulkley fluid modell. The

effective axial diffusivity of a solute is shown to be higher

for the flow of blood in a tube as compared to that of the

flow between two parallel plates. All the research works

mentioned above are regarded with flows where the solute

does not chemically react with the liquid through which it

is dispersed. It is practically significant to mention that one

has to deal with a broad assortment of chemical engi-

neering problems in which dispersion of a solute takes

place in the presence of irreversible chemical reactions,

namely, absorption of a frugally soluble gas in an agitated

tank with irreversible first-order chemical reaction, ester

hydrolysis, etc. [10].

Katz [13], Walker [14], Soloman et al. [15], Gill et al.

[16, 17], Gupta et al. [18] and Scherer et al. [19] examined

the dispersion of a soluble matter in the flow of a Newto-

nian fluid by taking into account both homogeneous and

heterogeneous chemical reactions. Shukla et al. [20] have

investigated the effects of homogeneous chemical reaction

on the Taylor dispersion in flowing non-Newtonian fluids

by considering Bingham plastic, power law and Casson

fluids. The effective dispersion coefficient is found to be

enhanced as the value of the rate of chemical reaction

decreases. Singh et al. [21] have developed a mathematical

modell to analyse the combined effects of the width of the

flow region and the chemical reaction on dispersion coef-

ficient in three types of non-Newtonian fluids (power law,

Bingham plastic and Casson) flowing through a channel.

The influences of chemical reaction and the rheology of

blood as a Herschel-Bulkley modell on the axial diffusivity

have been analysed by Jaafar et al. [22], and it is seen that

the effective axial diffusivity tends to increase with the

increase of Peclet number. Kumar et al. [23] have

examined the influence of both types of chemical reactions

(homogeneous and heterogeneous) on the solute dispersion

in composite porous medium by taking into account

immiscible fluids with different viscosities. Further, they

perceived that dispersion coefficient is decreased as the

value of chemical reaction rate parameter increases, and

they indicated that the concept of solute dispersion with the

chemical reaction has wide physiological applications in

the circulatory system.

It is well understood that several circulatory medications

are therapeutic when the concentration is stumpy, but toxic

at higher concentration, hence, it is of interest to identify

the dispersion rate of medicines in the cardiovascular

system. The injection of medicines (solute) into the flow of

blood causes the remarkable disorders in the normal blood

flow through an artery or veins. Blood exposes anomalous

viscid behaviour when it flows in the arteries of numerous

diameters. Chien [24] has experimentally revealed that

under some diseased conditions, e.g. patients suffering

from hypertension, myocardial infarction, cerebrovascular

diseases and renal ailment, blood shows remarkable non-

Newtonian properties. Hence, a more or less realistic rhe-

ological modell for blood is to be considered while

investigating the problem of dispersion of passive species

(solute) with the chemical reaction in flowing blood in

order to have crystal clear understanding of the physio-

logical process of the hemodialysis and molecular transport

of oxygen from blood plasma to the living tissues of brain,

heart and lungs.

As mentioned above, numerous investigators have

extended the mathematical technique developed by Taylor

[2] to various types of non-Newtonian fluids including

Herscel-Bulkley fluids. As compared to rheological beha-

viour of Hershel-Bulkley fluid, the constitutive equation of

thixotropic fluids has one more parameter known as a

thixotropic parameter a1 (a scalar structural parameter of

materials) in addition to yield stress, shear thinning and

shear thickening property [25]. For other values of a1
(0\a1\1Þ, the degree of complexity or severity of the

combined rheological behaviour of yield stress, consis-

tency factor and power index is altered which could rep-

resent various complex behaviour of fluid (blood) to

adequately investigate the theory of dispersion of a solute.

Based on the aforementioned views, an attempt has been

made to investigate the solute diffusion in blood flow

through a tube with homogeneous biochemical reaction,

considering blood as thixotropic modell which has, to the

best of authors knowledge, not carried out in the earlier

literature. The role of thixotropic fluid modell with the

first-order biochemical reaction on the equivalent disper-

sion coefficient of the solute is brought out in the present

work.

676 R. Ponalagusamy, D. Murugan

123



2 Formulation of the Problem

Consider the dispersion of soluble pieces (solute) in the

steady, axisymmetric, laminar and fully developed flow of

blood (a non-Newtonian fluid) with a uniform pressure

gradient through a circular tube of radius R�
0, as shown in

Fig. 1. We take the circular cylindrical polar coordinate

system (r�; h�; z�), where r� denotes the radial coordinate,

h� represents the circumferential coordinate, and z� indi-

cates the axial coordinate. Bugliarello and Sevilla [26]

have reported that the radial velocity is insignificantly

small and can be ignored for a low Reynolds number flow

through a microvessel (narrow artery). This type of flow

condition is valid when we deal with the problem of

investigating the dispersion of a drug into blood stream in

small-diameter blood vessels (arterioles) and capillaries. It

is assumed that the diluted solute having a small concen-

tration diffuses and concurrently undertakes a first order

irreversible chemical reaction in a non-Newtonian fluid

under isothermal condition.

2.1 Governing Equation and Boundary Conditions

Neglecting the axial diffusion as compared to the radial

diffusion term which is termed as Taylor’s approximation

[2, 3], the equation for the concentration of the dispersing

solute is given by [18, 20]

oc�

ot�
þ u�

oc�

oz�
¼ D�

m

r�
o

or�
r�
oc�

or�

� �
� a�c� ð1Þ

where c� is the concentration of a solute, t� is the time, u� is
the axial velocity in the unidirectional flow, D�

m is the

constant molecular diffusion coefficient, and a� is the first

order homogeneous chemical reaction rate constant.

Following Taylor [2] and introducing z�1 ¼ z� � u�t�ð Þ,
Eq. (1) relative to a plane moving with the mean speed of

the flow (u�Þ can be written as

oc�

ot�
þ u� � u�ð Þ oc

�

oz�1
¼ D�

m

r�
o

or�
r�
oc�

or�

� �
� a�c� ð2Þ

Supposing that the limiting condition of Taylor is valid

[2], that is, the partial equilibrium state in any cross section

of the circular tube is well recognised, Eq. (2) may be

reduced to

u� � u�ð Þ oc
�

oz�1
¼ D�

m

r�
o

or�
r�
oc�

or�

� �
� a�c� ð3Þ

where oc�

oz�
1

is independent of the radial distance r� and
oc�

ot� ¼ 0:

Non-dimensional variables are defined as

r ¼ r�

R�
0

; u ¼ u�

u�0
; z1 ¼

z�1
R�
0

; u ¼ u�

u�0
; pe ¼ R�

0u
�
0

D�
m

; s

¼ s�R�
0

l�u�0
; s0 ¼

s�0R
�
0

l�u�0
; s0 ¼

s�0R
�
0

l�u�0
; p ¼ p�R�

0

l�u�0
; k

¼ k�

l�
u�0
R�
0

� �
n�1; ð4Þ

where u�0 is the average velocity of Newtonian fluid, l�

denotes the viscosity of Newtonian fluid, and Pe is the

Peclet number, p� is the pressure, s� is the shear stress, k� is
the consistency index, n denotes the power law index or

fluid behaviour index, and s�0 is the yield stress (� denotes

the corresponding dimensional quantity).

Using Eq. (4), the governing Eq. (3) transforms to

o2c�

or2
þ 1

r

oc�

or
� Pea2c� ¼ Peu

oc�

oz1
f rð Þ ð5Þ

where a2 ¼ a�R�
0

u�
0

and f rð Þ ¼ u
u � 1:

The corresponding boundary conditions for the present

study are

oc�

or
¼ 0 at r ¼ 0; ð6Þ

oc�

or
¼ 0 at r ¼ 1: ð7Þ

2.2 Constitutive Equation for Thixotropic Fluid

and Momentum Equation

The dimensionless form of rheological behaviour of thix-

otropic fluid may be expressed as [25]

� ou

or

� �n

¼ s� a1s0
1� a1ð Þk ; if s� s0; ð8Þ

ou

or

� �
¼ 0; if s� s0; ð9Þ

where n is the fluid behaviour index (power law index), s
indicates the shear stress, a1 is the scalar structural

parameter of materials or thixotropic parameter, s0 is the

yield stress, and k denotes the consistency index of the

fluid.

Equation (9) corresponds to disappearing of velocity

gradient in the region where the shear stress s is less than

the yield stress s0, which implies that a region of plug flow

exists whenever s� s0.
The dimensionless version of equation of momentum for

the flow of fluid is written as

∗

∗

∗

∗

0 

Fig. 1 Geometry of an artery
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� op

oz
� 1

r

o

or
rsð Þ ¼ 0; ð10Þ

where p is the pressure.

The boundary conditions are

ið Þ s is finite at r ¼ 0 and iið Þ u ¼ 0 at r ¼ 1: ð11Þ

3 Solution Method

3.1 Velocity Distribution for the Flow

of Thixotropic Fluid

Integrating Eq. (10) with respect to r and applying the

boundary condition (i) of Eq. (11), we get

s ¼ rP0

2
; ð12Þ

where P0 ¼ � dp
dz
.

With the help of Eqs. (8), (9), (11) and (12), the analytic

expression for velocity profile in the flow region may be

obtained as

u ¼ 2n

P0 nþ 1ð Þ 1� a1ð Þkð Þ
1
n

P0

2
� a1s0

� �nþ1
n

� rP0

2
� a1s0

� �nþ1
n

" #
; if Rp � r� 1;

ð13Þ

By substituting r ¼ Rp into Eq. (13), the velocity profile

in the plug core region can be obtained as

up ¼
2n

P0 nþ 1ð Þ 1� a1ð Þkð Þ
1
n

P0

2
� a1s0

� �nþ1
n

� P0Rp

2
� a1s0

� �nþ1
n

" #
; if 0� r�Rp;

ð14Þ

where Rp is the plug core radius, and it is expressed as

Rp ¼ 2s0
P0
.

The mean velocity of the fluid in dimensionless form is

given by

u ¼ 2 r
1

0

rudr ð15Þ

3.2 Dispersion in Thixotropic Fluid

Equation (5) is a generalised Bessel equation, and its

solution along with the boundary conditions (6) and (7),

gives the concentration profile as follows:

c� rð Þ ¼ Pe
oc�

oz1
uc1 rð Þ ð17Þ

where

c1 rð Þ ¼ A1I0 krð Þ
þ r

r

0

I0 krð ÞK0 kxð Þ � I0 kxð ÞK0 krð Þ½ �xf xð Þdx; ð18Þ

A1 ¼ � 1

I1 kð Þ r
1

0

I1 kð ÞK0 kxð Þ þ I0 kxð ÞK1 kð Þ½ �xf xð Þdx; ð19Þ

k ¼ a
ffiffiffiffiffiffi
Pe

p� �
, I0;K0; and I1, K1 are the first and second

kind modified Bessel functions of zeroth and first order,

respectively.

The average solute flux Q, across the tube moving with

the mean speed of the flow can be written as,

Q ¼ Pe
oc�

oz1
u2 r

1

0

2c1 rð Þf rð Þrdr ð20Þ

Comparing Eq. (20) with Fick’s law of diffusion

J� ¼ �D oC�

oz�

� �
, the effective dispersion coefficient, D is

given by

D ¼ �2Peu2M ð21Þ

where

M ¼ r
1

0

c1 rð Þf rð Þrdr ð22Þ

and M is termed as the equivalent dispersion coefficient.
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2n P0

2
� a1s0
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n
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1
n

�
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2
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n
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1
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þ
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0 nþ 1ð Þ 2nþ 1ð Þ 3nþ 1ð Þ 1� a1ð Þkð Þ

1
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�
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p
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1
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n
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4 Results and Discussion

In the present study, an effort is undertaken to analyse the

dispersion process of a nanoparticle (solute) in the laminar

flow of thixotropic fluid modell through a tube with the

effect of homogeneous chemical reaction. The nature of

dispersion process is being carried out by adopting Taylor’s

approach. The effect of chemical reaction rate constant on

equivalent dispersion coefficient in Thixotropic fluid is

investigated. Integrals involved in the solution of disper-

sion coefficient D and concentration c1 rð Þ are evaluated

numerically by Simpson’s 1
3
rule.

Figures 2, 3, 4, 5 show the effects of various parameters

on the equivalent dispersion coefficient (M) in the presence

of homogeneous chemical reaction in the flow of thixo-

tropic fluid as solvent. The homogeneous chemical reaction

rate constant (a) dependent nature of the equivalent dis-

persion coefficient (M) with a variation in the fluid beha-

viour index (n) for the dispersion process is observed in

Fig. 2. It is noticed that as a or n increases, the effective

dispersion coefficient decreases. The percentage decrease

in M is found to be higher for a small value of a and a

strongly shear thinning fluid whereas it becomes less for a

larger value of a and Newtonian fluid. The combined

influence of yield stress s0ð Þ and the scalar structural

parameter of materials or thixotropic parameter (a1) on

M is revealed in Fig. 3. Figures 2 and 3 show that the

equivalent dispersion coefficient (M) is higher in power

law fluid as compared to thixotropic fluid.

The variation of equivalent dispersion coefficient (M)

with respect to power law index (n) for different values of

yield stress (s0) and the scalar structural parameter of

materials or thixotropic parameter (a1) is, respectively,

illustrated in Figs. 4 and 5. The value of M decreases as the

values of s0 and a1 increase. The information concerning

the decrease of the equivalent dispersion coefficient (M)

with the increase in the scalar structural parameter of

materials or thixotropic parameter (a1) is, for the first time,

reported in the literature.

5 Conclusions

The effect of the homogeneous chemical reaction with

thixotropic fluid through a circular tube has been studied

under Taylor’s approach. This study is noteworthy to
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Fig. 2 The variation of equivalent dispersion coefficient (M) with

power law index (n) for different values of first order chemical

reaction rate constant (a) for power law fluid (k = 0.8; s0 ¼ 0; a1 ¼ 0Þ
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Fig. 3 The variation of equivalent dispersion coefficient (M) with

power law index (n) for different values of first order chemical

reaction rate constant (a) for thixotropic fluid (k = 0.8;

s0 ¼ 0:1; a1 ¼ 0:3Þ
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Fig. 4 The variation of equivalent dispersion coefficient (M) with

yield stress for different values of first order chemical reaction rate

constant (a) for thixotropic fluid (n = 0.8; k ¼ 0:8; a1 ¼ 0:3Þ
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Fig. 5 The variation of equivalent dispersion coefficient (M) with a1
(the scalar structural parameter of materials) for different values of

first order chemical reaction rate constant (a) for thixotropic fluid

(n = 0.8; k ¼ 0:8; s0 ¼ 0:2Þ
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understand the spreading of nutrients and drugs in cardio-

vascular system and to measure the cardiac output by

means of Indicator Dilution Technique. We observed that

the equivalent dispersion coefficient decreases as the

reaction rate constant increases. The remarkable result is

that the increase in the scalar structural parameter of

materials or thixotropic parameter (a1) tends to decrease

the equivalent dispersion coefficient (M) which is the new

observation reported to the literature of biological system.

During the drug delivery process, the nanoparticles (solute)

should reach the sites of diseases by means of convective

and diffusive transport within the microvessels in order to

kill the diseased cells. It is, therefore, hoped that the pre-

sent analytical study provides the useful information

which, in turn, leads to understand in evaluating healing

effectiveness and considers to be a significant subject in the

modelling of nanoparticle drug delivery.
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