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Abstract In this work, we present two approaches for
simulation of fourth-order parabolic partial differential
equations. In the first method, cubic B-spline quasi-inter-
polation is used to approximate the spatial derivative of the
dependent variable and forward difference to approximate
the time derivative. In the second method, we have used
modified cubic B-spline functions-based differential
quadrature method (DQM) for space discretization to get a
system of ODEs and then this system is solved by SSP-
RK43 method to get the results at knots. The numerical
results demonstrate the accuracy of the proposed method.
The stability analysis of the methods has also been dis-
cussed. It is observed that quasi-interpolation-based
method is unconditionally stable, whereas for DQM, the
stability has to be checked for a large number of space
points. Moreover, for the small number of grid points,
DQM gives better results, while for a large number of grid
points, quasi-interpolation-based method is better.
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1 Introduction

Consider the forth-order parabolic equation governing the
transverse vibrations of a beam,

%Jr%:G(x,t), x € (a,b), >0, (1)

with initial conditions

{ v(x,0) =fo(x), x€ (a,b), 2)
vi(x,0) = fi(x), x € (a,b),

and boundary conditions being

{ v(a, 1) = g(1), v(b,1) =gy(1), >0 3)
Ve(@,1) = pa(t), val(byt) = pp(t), >0

where v(x, 1) is the transverse displacement of the beam,
t and x are time and space variables, G(x, f) is the dynamic
force per unit mass, fo(x), £1 (), ga (1), 85(1), pa(r) and py (1)
are sufficiently smooth functions.

We solve Eq. (1) by rewriting it as a system of two
second-order equations, for which we are introducing two
new variables ¢ and y as

ov v
= — = — 4
¢ ot’ 4 ox? )

Now, we get two simultaneous
equations in the following form

partial differential

op Y
5 e ©
(5)
W _29
or  ox2

Equations (2) and (3) now become
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¢(x7 O) :f(x>7 (b(avt) = aO(t)’ (b(ba t) = bO(t)' (6)
Y(x,0) =h(x), WY(a,1)=a(r), w(b,1)=>bi(t). (7)

Equation (1) has been solved by several authors using finite
difference method after splitting into a system of second-
order equation [1-6]. Fairweather and Gourlay [7] devel-
oped an explicit and implicit scheme which is based on the
semi-explicit method of Lees [8]. Mohanty et al. [9] solved
a special type of fourth-order parabolic PDE by two-level
implicit methods. Mittal and Jain [10] solved Eq. (1) by
cubic B-spline collocation method with redefined basis
functions. Dehghan and Manafian [11] used the homotopy
perturbation method to solve the fourth-order parabolic
PDE.

For the approximation of a function and its derivatives,
Sablonniere [12, 13] developed a discrete univariate
B-spline quasi-interpolation method and verified that the
approximation of first derivative of a certain class of
functions by this method is better than the approximation
by finite difference method. Moreover, he demonstrated
that for cubic spline interpolation, the first derivative of
certain functions represents the convergence of order
O(h*). Based on this motivation, the research community
has tried to implement this technique to develop numerical
algorithms for a few partial differential equations. Zhu and
Kang [14, 15] solved hyperbolic conservation laws using
the quasi-interpolation-based method. Kumar and Bas-
kar [16] developed higher-order numerical schemes for
particular one-dimensional Sobolev-type equations by
implementing quadratic and cubic B-spline technique for
quasi-interpolation and compared the performance of the
proposed algorithm in terms of accuracy and the rate of
convergence.

Bellman et al. [17] were the first to introduce DQM for
the solution of PDEs. Quan and Chang [18] used DQM to
develop explicit formulae for approximation of weighting
coefficients. There are various types of test functions that
have been used in DQM to compute the weighting coeffi-
cient, viz. B-spline functions (quadratic, cubic, quintic,
etc.), Legendre polynomials, Lagrange interpolation poly-
nomials, sine—cosine function, etc. B-spline functions are
piece-wise polynomials and their curves have the property
to maintain the smoothness and continuity of higher-order
derivatives, and due to the local support property, B-spline
functions are commonly used as a test function. Mittal and
Jiwari [19, 20] solved nonlinear one-dimensional
Berger—Huxley-, Fisher- and Burgers-type equations by
DQM, also see [21-24]. Dehghan and Abbaszadeh [25, 26]
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solved Brusselator reaction—diffusion model and Klein—
Gordon Zakharov equations by different methods, also see
[27-29].

The main objective of this work is to present a study
of CBSQI and DQM for solving fourth-order parabolic
PDEs.

2 Univariate B-spline Quasi-interpolants

Let us consider an interval [a, b] with the uniform partition
X, ={x;=a+jh:j=0,1,...,n}, where h = (b —a)/n.
Let BY(X,) be the spline space of degree d, and let {B;’l :
j=1,2,...,n+d} form a basis for B*(X,), which can be
formulated by the de Boor-Cox recursive formula [30]. As
we know that support of a B-spline is a subset of the
interval [x;_q_1,x;], we need to add multiple knots at the
endpoints in such a way that x_; =x_441 =... =x_] =
xo=aand b =x, =Xy11 = ... = Xptd-

B-spline quasi-interpolant of degree d for a function
v has been defined as [13]

n+d

0(x) = 3 (B (). (8)
=1

Let Pﬁ be the space of polynomial of degree at most d. In
general, we impose the condition that quasi-interpolant Q v
is exact on P,‘f, ie. Qv =vforallv e PZ. The coefficients
W are obtained using this condition. Sablonniere [31] used
this technique called the discrete quasi-interpolant. The
main advantage of BSQI is that it is very easy to implement
as it has direct construction, i.e., we do not need to solve
any system of linear equations. Moreover, it is local, i.e.,
the value Q,v(x) depends only on the values of v in a
neighborhood of x. We also show that derivatives of
B-spline quasi-interpolants are approximated as the
derivatives of a corresponding function.

2.1 Cubic B-spline Quasi-Interpolation

For a function v, cubic B-spline quasi-interpolant is defined
from Eq. (8) by taking d = 3 as
n+3

0v(x) = > (B3 (x), (9)
=1

where nodes are taken to be the same as knots, i.e., éj = X;
(j=0,1,...,n) and define the coefficients p;(v) (j =
1,2,...,n+3)
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1
w(v) =vo t(v) = 3 {7\’0 + 18vy — 9v,y + 2\’3},

1
wi(v) = 3 [ —vji_3+8vj_p — vj_l], for3<j<(n+1)

1
Hyi2 (V) = E |:2Vn73 - 9Vn,2 + 18"}171 + 7vni| ) Hpt3 (V) = Vn,

and the corresponding B-spline functions are generated by

(€ —xq)
(%3 = xj-a) (X2 = %j-a) (1 —xj4)
(&= x4) (52— &)
(-2 = xj-4) (-2 — xj-3) (-1 — Xj-4)

(€ —x-4)(x-1 — E)(€ —x5-3)
(-1 = Xj-a) (-1 — Xj-3) (xj2 — X-3)
(5 — O —x3)°
(x5 = xj-3) (-1 — x5-3) (-2 — x5-3)
(E-x 4y —¢)°
(-1 = Xj-a) (-1 — xj-3) (xj-1 — Xj2)
(€ —x-3)(x-1 — x — &)
(-1 = x-3) (-1 — x52) (%) — x5-3)

(5 — (& —x-2)

+

- (5 = x5-3) (% — xj-2) (Xj—1 — xj-2)
(-8’
(5 = x-3) (5 — x-2) (xj — x;— 1)’

)

if x4 <& <x3,

if Xj—3 < é < Xj—2

if xj_o <& <xj_1,

ifXj_l <f§xj

otherwise

using de Boor-Cox recursive formula [30]

The different B-spline functions are represented in Fig. 1.
The first and the second derivatives of Qv are calcu-

lated as

n+3

(0)'( Z (v (12)

and

n+3

Z“J (13)

where (B;’)' and (B;’)” are obtained from Eq. (11).

Q’;V //

(03v) (&) %[ % vo + 3vi —%Vz +%V3}’
(Qsv) (&) = % [ % Vo —%w +vy — éw],

Q) (&u-1) Z% [évn 3= Vn—2 +%Vn—l +%Vn:|7
(Qv)/(fn) = % [— %Vnaz +%Vn72 =3V +1€]Vni|a

and

@ Springer



464

R. C. Mittal et al.

— B(1) — B(8)

B(2) B(9)
—— B(3) —— B(10)
—— B(4) —— B(11)
— B(5) B(12)
—— B(6) B(13)
— B(7)

Fig. 1 Cubic B-spline functions for the knot X0 = (1,1,1,2,3,4,

5,6,7,8,9,10,11,11,11), B3,j = 1,2,...,13

» P

(QSV)/(@)
Ir1 2 2 1
ZE[EVJ—z—gV/‘—I +§Vj+l - 12V/+2} (15)
2<j<(n=2).

The approximation of v/ can be written in terms of matrix
form as

(@) = DV, (16)

where Dgl) is the (n+ 1) x (n+ 1) coefficient matrix that
is obtained from Egs. (14)-(15) and v = (vg, vy, . . ., vn)T.
For the second derivative, we have
1 -
(Q3v)" (&) = el 2vg — 5vi +4vy — V3],
1 -
(03v)'(&1) = 75 [vo = 2v1 + 12,
1
(Q3v)”(énfl) = ﬁ [vn—Z =2V + Vn} )

1 -
(03v)"(&,) = T Vs +4v,0 — 5V + 2vn},

(17)
and
(Q)"(&)
1 1 5 5 1
=2 Tgh2t3viT 3vj NG EVjJrZ},
2<j<(n—2).
(18)

Similarly, we write the above expressions in terms of
matrix form as

@ Springer

(0)" = LDy, (19)

12
where Dg ) is the (n+1) x (n+ 1) coefficient matrix that
is obtained from Eqs. (17)—(18).

3 Description of Cubic B-spline Quasi-
interpolation Method (CBSQI)

Now we implement the CBSQI method, discretizing the
time derivative as forward difference scheme and for space
derivative applying 0-weighted scheme in Eq. (5), where
0<0<1, giving

¢m+1 _ ¢m " 1 "
C = = [own (- o) 0
+ [OG’”“ +(1-0)G"
m—+1 m
lﬁ +At— lﬁ {9¢m+1 ( 9)¢;’Zx} (21)
Ar0 Ar(1 — 0
R e
+ At {BG’”+1 +(1— 9)Gm}7
(22)
l//erl _ %D(Z)(bmJﬂ _ l// + At(lhi 9) Dg2)¢m (23)

Although EqsI (22) and (23) are valid for all 0 € [0, 1], we
will use 0 = —(the famous Crank—Nicolson scheme)

¢m+l lpm+l ¢m _ 2_;12 lpm
N (24)
= m+1 m
+3 [G +a"),
At At
m+1 m+1 m 2)
R L Y (25)
Let H = 27]12
m 2) 1m m 2) im
¢!+ uDy = ¢ — DGy o)
A 26
+ _t |:Gm+l + Gm:|
2
l//m+1 _ MDg2>¢m+l —_ l/jm + 'uDgz)d)m (27)
S R R R V’"}
1w | ¢ 1 up? | Le"
Al |:Gm+l + Gm:|
4+ —
2 0

(28)
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where
2 -5 4 -1 0 0 0 0
1 -2 1 0 0 0 e 0 0
-1 5 5 -1
s 3 3 § 0 o 00
—1 5 5 -1
O T 3 3 3 @ 0 0
Dy - z (29)
-1 5 5 -1
0 0 —_— - =3 - — 0
6 3 3 6
-1 5 5 -1
0 0 O — - -3 = —
6 3 3 6
0 0 0 0 0 1 -2 1
0 0 0 0o -1 4 =5 2/ i)
) L .
where Dy and I (identity) are (n + 1) X (n+ 1) matrices il [ S R R RS R IR B e,
B e B L I A e
m m m T
Wy, zgnﬂ) %re the col}lmn vectors. When m= Q, :¢;n_#[_1¢?12+§%711 —3‘P;"+§'//ﬁ1 (30)
the vectors ¢~ and " are obtained from the initial condi- | 6 3 3
tions and solutions of Eq. (5) at time level t = (m + 1)A¢ 5 ;”H],forizz,...,nfl
are calculated by solving the linear system Eq. (28). After
calculating the value of y at each time level, we again l//f"“ _M[_ld)rrzl +§¢{”_+l' _3¢{"+1 +§¢'?j_+l' —lﬁbr":;l
apply the CBSQI on Eq. (4) to get the final result. 6 3 3 6
m l m 5 m m 5 m
=i +ﬂ[76¢i72+§¢i—1 —39; +§¢i+1
o1 1
4 Stability of CBSQI —gqﬁﬁz} fori=2,..n—1 (31)
Since stability does not depend on G(x, #), so in stability ¢! + uTy™ ™ = ¢ — uTyY™ (32)
discussion we ignore G(x, f). By using the coefficients of mtl et m m
CBSQI from Egs. (17)—(18) to approximate the space —uTé +y =Y+ uT¢ (33)
derivative, Eqgs. (26)—(27) are written for internal nodes as where
5 -1
-3 - — 0 0 e 0 0
3 6
5 5 -1
3 3 i 6 0 0 0
-1 5 5 -1
—_— = =3 - — 0 0
6 3 3 6
r= D L (34)
-1 5 5 -1
0 0 —_— - =3 -  —
6 3 3 6
-1 5 5
0 0 O — - =3 =
6 3 3
-1
0 0 0 0 — > 3
6 3 (n—3)x(n—3)
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Table 1 Cubic B-splines and its derivatives at knots

X Xj—2 Xj—1 Xj Xj+1 Xj+2
Bl (x 0 1 4 1 0
3132 3’ 0 3 3 0
Y(x — N
L h 12 6h
L

We write above equation as

|: I ,UT] [¢m+l‘|
—uT T 1y _3)%0m-3) Y

A
B uT I 1-3)x2(n-3) Y

¢m+1
lpnﬁ»l
e | ¢
uT I uT I Yy
(36)
[¢m+l
lpm+l
s " (37)
e A 1A
2uT I — 12T | Ly™
Wt = Mw™ (38)
where
. ¢m+1 1= ,LL2T2 _ 2,LLT
W= M= T 272
W 2ul  I—pT
If the eigenvalues of T be 1;,i=1,2,...,n—1,, then the
eigenvalues 4; of M are obtained as
1 — 1272 UT;
= ! j =v-—1 39
Tl TV e Y (39)

The modulus of the above expression is equal to unity,
which shows that the method is unconditionally
stable (Table 1).

5 Modified Cubic B-spline Differential
Quadrature Method

In DQM, the approximation of the derivatives of a certain

function is achieved by writing it as the weighted sum of its
values at discrete points over the considered domain. The

@ Springer

remaining work is to calculate the weighting coefficients.
For this, we consider uniformly distributed n knots: a =
Xo<x; < ---<X,_1<Xx, = bsuch that x;;; —x; = h. For a
given function v(x, t), first- and second-order spatial
derivatives at any node x; for i =0,1,...,n are approxi-
mated by

xu E oV xj7
§ ﬁUV ij

where o;; and f§; are the weighting coefficients of the first-
and second-order derivatives with respect to space variable.
We have cubic B-spline function from Eq. (11), from
which set {B* | (x), Bj(x), ..., B3(x), B3, (x)} forms a basis
over the considered domain. By using these functions, we

define the modified cubic B-spline functions at any node as

fori=0,1,...,n, (40)

Ve (X5, 1) fori=0,1,...,n.

(41)

Bo(x) = BY() + 2%, (x),
Bix) = B(x) — B, (v,
Bi(x) = B}(x), i=2,4,...,n-2,
B, (x) = By (x) — By (%),
Bn(x) =B} ( )+2Bn+l( )

(42)
where set {By(x), B (x),...,B,_i(x),B,(x)} forms a basis

over the considered interval. The values of cubic B-splines
and its derivatives at the nodes are presented in Table 1.

5.1 Computation of the Weighting Coefficients

The first-order derivative is approximated as

Bl(x) =Y o Bux),

i=0,1,..,nand k=0,1,...,n
=0
(43)
At the first knot xp, the approximation is given as
n 5
=Y oyBix), k=0,1,...n.
j=0
(44)
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For x = x, the value of B,/ (xo) is given by 6/A at x; knot
and —6/h at xy knot.
This results in a tridiagonal system of equations as

6 1 0 o 6
0 4 1 0 w??) h
1 4 1 @oi 6
h
4 1
0 1 4 0 i .
0 1 6 On 0
(45)

We note that the above coefficient matrix is nonsingular.
So to solve the above system, we apply Thomas algorithm
whose solution gives us the coefficients w(()g, a)(()] e a)(()i}.

Similarly, for second knot x;, the approximation is given
as

n
B(x1) =Y o\/Bi(y), k=01, .n (46)
Jj=0

which again results in a tridiagonal system of equations as
follows

6 1 0 ) 3
Wy 7

0 4 1 0 0 h
Wy, 0
1 4 1 _i
- h

4 1 :

0O 1 4 0 0
0 1 6 Dy 0

(47)

The solution of the above system provides the coefficients
wgi)),w(l?, . .,w&). In the same way, the weighting
coefficients corresponding to x;,i=2,3,...,n—1 are
determined. Finally, for the last knot, By(x,) is given by

6/h at x, and —6/h at x,_;.

n

B () = > o\Bi(x), k=0,1,....n (48)
=0

6 1 0 0 0

0 4 1 0 w(?) 0

1 4 1 @1

14 1 _g

0 4 0 i 6

0 1 6 nn h

(49)

for  which

o solution  provides the coefficients
1 1

e cu,(qi,) Thus, we have calculated the first-order

Con()7(‘0nl )
weighting coefficient ng1> of B-spline functions for
0<i,j<nm.

In the same way, the weighting -coefficient

§]-2>, 0<i,j<n for the second-order partial derivative, is

determined. Second- or higher-order weighting coefficients
are computed by using Shu recursion formula [32]:

w

a)g.k_])
o = k[d."d?‘” B ] (50)
g v (xi = x7)
wgik):— z wl(f),i:jandi:O,l,...7n (51)

=0

6 Implementation of Differential Quadrature
Method (DQM)

Applying the DQM to Eq. (5) , we get

d(j)(x,-,t)
dr
= —ngf)l//(xivf) +G(x;,1), fori=1,...,n—1,
=1
(52)
dl//(-xiat)
dr
n—1
= wfj'z)¢(xz7f), fori=1,...,n—1,
=
(53)

with initial conditions and boundary conditions Eqgs. (6)
and (7). Now the above system is written as

dQ
5 —Pe+aQ (54)
where
B 0 —A B ¢ B Gy
P_{A 0 ],Q_Lp}and@—{o} (35)
2

where A is a matrix of the weighting coefficients ;" and
@ contains boundary and other values. Then, the above
system of ODE is integrated w.r.t. time deploying an
appropriate method. Here, strong stability-preserving
fourth-order RK method is preferred for its inherent
advantages such as correctness of solution, numerical sta-
bility and compact memory requirements.
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AtIm(Aj))
242
Unstable

ARe(A))
-22

Fig. 2 Stability region

7 Stability of DQM

From Eq. (54), we have system

Q
(il_t =PQ+Q (56)

where Q= [ ¥]" = (b, 3, by Yo Wase o Wuy]

is the solution vector at the internal nodes, P is the coef-
ficient matrix and the vector Q representing the boundary
and other values.

Assume that /; is the eigenvalue of P. Asymptotically,
for the stable solution of €2, we must have

1. —2.78<At4; <0, if eigenvalues are real.
2. —2v2<Ar2;<2+/2, if eigenvalues have complex part
only.

3. AtJ; should be in a region as shown in Fig. 2, if
eigenvalues are complex.

Eigenvalues of P depend upon the eigenvalues of A,
which are found to be within the stability region. Similarly,
we can check the stability of nonlinear problems.

8 Numerical Experiments

This section presents the results obtained by CBSQI and
DQM in graphical and tabular forms with the brief
description. The accuracy and efficiency of the proposed
method are calculated for four test problems by maximum
absolute error norm, which is defined as follows.

exact cal
it

Lo = ”Vexact _ VcaIH = max | Ve
1

(57)
where v&** and 1§ denote the exact and calculated solu-
tions at knot x;, respectively.

The convergence rate of the DQM is to be evaluated,
which is obtained by L., error norm. The following for-
mula has been used to compute the order of convergence:

log (E(Ny)/E(N))

Order =
log(Ny/N2)

(58)

where E(N)) is the error and N, is the count of partitions.

We have calculated the rate of convergence of the
CBSQI method for Problem 1. Figure 3 shows that CBSQI
provides the second-order approximation.

Problem 1
PDE
ot oty

@4—@: (n* — 1)sinmxcost, x€[0,1], >0

Consider a fourth-order nonhomogeneous

along with initial conditions

Fig. 3 Log-log plot between 105 . : |

errors and space step " —lglL,
[ -log L2

-log Lx and -log L2
@
T

6.5 [~

55

©
| 4
1S
w
S
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Table 2 Maximum absolute errors in v(x, f) and vy (x, ) for Problem 1

Methods Time Parameters v Vix

Method 1 t=0.02 n =20, At = 0.0001 2.0567E—03 4.967TE—04

CBSQI t=0.02 n =40, At = 0.0001 5.2226E—04 1.0257E—04
t=0.02 n =60, At = 0.0001 2.3262E—04 4.4801E—05
t=0.02 n =90, At = 0.0001 1.0347E—04 1.9886E—05
t=0.02 n = 180, Ar = 0.0001 2.5879E—05 4.9653E—06
t=0.02 n = 270, Ar = 0.0001 1.1503E—05 2.2063E—06
t=0.1 n =20, At = 0.0001 9.9200E—03 9.1832E-03
t=0.1 n =40, At = 0.0001 7.4170E—04 2.2967E—03
t=0.1 n =60, At = 0.0001 3.3036E—04 1.0211E-03
t=0.1 n =90, At = 0.0001 1.4695E—04 4.5386E—04
t=0.1 n = 180, Ar = 0.0001 3.6752E—05 1.1348E—04
t=0.1 n =270, Ar = 0.0001 1.6335E—05 5.0438E—05

Method 2 t=0.02 n =20, At = 0.0001 2.0569E—03 1.72651E—03

DQM t=0.02 n = 40, Ar = 0.0001 5.15044E—04 1.81437E—04
t=10.02 n = 60, At = 0.0001 2.29299E—04 6.6936E—05
t=0.1 n =20, At = 0.0001 2.13265E—03 1.78313E—03
t=0.1 n =40, At = 0.0001 5.32746E—04 3.76701E—04
t=0.1 n =60, At = 0.0001 2.32697E—04 2.03133E—04

Fig. 4 Displacement for t <0.1 (n = 60, Ar = 0.0001)

v(x,0) =sinzmx, v, (x,0) =0,

(a) CBSQI

and boundary conditions

v(0,7) = v(1,1) = v (0,1) = v (1,2) = 0,

The analytical solution is v(x,t) =sinzmxcost. From
Eq. (4), initial and boundary conditions are derived as

(,Z')()C, O) =0, ¢(O,I) = ¢(17t) =0.
¥(0,7) =y(1,1) =0.

The computed results obtained by both methods and ana-
lytical solution are compared in Table 2.

¥(x,0) = —n? sin mx,

t>0.

. 06

(b) DQM

In Table 2, displacement v(x, t) and bending moment
vy (x, 1) are computed for different values of + = 0.02 and
0.1 for each n = 20,40,60 and Ar = 0.0001. We observe

that computed results by DQM for n = 20,40, 60 are better

than CBSQI. But instead of this, we also observe that

CBSQI produces good results for large n = 90, 180, 270,
while DQM becomes unstable for such large n.

Figure 4 depicts the computed numerical results for
n =60, Ar =0.0001 at t = 0.1. In Table 3, we compare
our results with Mittal and Jain [10], and it is clear that

CBSQI method gives good results.

@ Springer



470

R. C. Mittal et al.

Table 3 Maximum absolute errors in v(x, f) for Problem 1

Methods Time Parameters x=0.1 x=02 x=03 x=04 x=0.5
Method 1 t=0.02 n =90, At = 0.005 3.20E-05 6.08E—05 8.37E-05 9.84E—05 1.03E—-04
CBSQI t=0.05 n =90, At = 0.005 3.58E—05 6.82E—05 9.39E-05 1.10E—-04 1.16E—-04
t=1.0 n =90, At = 0.005 6.31E—05 1.20E—04 1.65E—-04 1.94E—-04 2.04E-04
t=0.02 n = 180, At = 0.005 8.00E—06 1.52E—05 2.09E—05 2.46E—05 2.59E—05
t=0.05 n = 180, At = 0.005 8.97E—06 1.70E—-05 2.35E-05 2.76E—-05 2.90E—-05
t=1.0 n = 180, At = 0.005 1.58E—05 3.00E—-05 4.13E-05 4.86E—05 5.10E-05
t=0.02 n =270, At = 0.005 3.55E-06 6.76E—06 9.30E—-06 1.09E—-05 1.15E—05
t=0.05 n =270, At = 0.005 3.99E-06 7.58E—06 1.04E—05 1.23E-05 1.29E-05
t=1.0 n = 270, At = 0.005 7.00E—06 1.33E-05 1.83E—05 2.15E-05 2.27E-05
Mittal and Jain [10] t=0.02 n =90, At = 0.005 3.20E-05 6.08E—05 8.37E—05 9.84E—05 1.04E—-04
t=0.05 n =90, At = 0.005 3.59E-05 6.83E—-05 9.39E-05 1.10E—-04 1.16E—-04
t=1.0 n =90, At = 0.005 6.32E—05 1.20E—04 1.65E—-04 1.94E—-04 2.04E-04
t=0.02 n = 180, At = 0.005 8.00E—-06 1.52E-05 2.09E-05 2.46E—-05 2.59E-05
t=0.05 n = 180, At = 0.005 8.97E—06 1.71E-05 2.35E-05 2.76E—-05 2.90E—-05
t=1.0 n = 180, At = 0.005 1.58E—05 3.21E-05 4.13E-05 4.86E—05 5.11E-05
t=0.02 n =270, At = 0.005 3.55E-06 6.76E—06 9.30E—-06 1.09E—05 1.15E-05
t=0.05 n =270, At = 0.005 3.99E-06 7.58E—06 1.04E—05 1.23E-05 1.29E—05
t=1.0 n = 270, At = 0.005 7.00E—06 1.33E-05 1.83E—05 2.16E—05 2.27E-05
Problem 2 Consider the singularly perturbed problem of 1,0, 1) = v(1,1) = v (0,1) = ve(1,1) =0, >0.

the form:

% oty

5 Tt ey :f(xa t)a

or? ox*

The analytical solution is v(x,) = e~ sin mx. From this,

O<e< <1,

we get initial conditions

v(x,0) = sin 7x,

vi(x,0) = —en® sin 7x,

and boundary conditions

x € (0,1),

t>0

x€10,1]

From Eq. (4), initial and boundary conditions are derived

as
¢(x,0) = —en? sin x,
¥ (x,0) = —n* sin 7x,

¢(0,1) =0=¢(1,1) =0.
W(0,1) = ¥(1,7) =0.

The computed results obtained by both methods and ana-
lytical solution are compared in Table 4.

Table 4 Maximum absolute errors in v(x, f) and vy, (x, ) for Problem 2

Methods h e=0.1 e=0.01 e =0.001
Method 1 1/8 v 1.45,943E-02 1.43,638E—02 1.08,088E—02
CBSQI Vix 1.08,208E—-01 5.68,259E—-02 1.75,591E-02
1/16 v 4.58,819E—-03 4.41,718E-03 3.25,827E-03
Vix 3.41,216E—-02 1.63,861E—02 2.28,884E—03
1/32 v 1.20,114E-03 1.13,281E-03 8.3672E—-04
Vix 8.92,814E—03 4.05,920E-03 4.7459E—-04
Method 2 1/8 v - 1.28,385E—02 1.28,672E—02
DQM Vix — 2.90,029E—-02 2.10,645E—02
1/16 v — 2.91,276E—-03 3.19,314E—-03
Viex - 3.91,293E-03 2.50,244E—-03
1/32 v - 6.86288E—04 7.94947E—-04
Uy - 7.53403E—-04 2.55585E—-04
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» 0.

X 0o o ’ t

(a) CBSQI

Fig. 5 Displacement for t <1 (n = 32, Ar = 0.0015625, ¢ = 0.001)

In Table 4, using 2 =1/8,1/16,1/32 and correspond-
ing Ar=0.025,0.00625,0.0015625, we compute dis-
placement v(x, ) and bending moment v, (x,7) for
different values of ¢ = 0.1,0.01,0.001 and time level t = 1
by applying both methods. We found that for e¢=
0.01,0.001 computed results by DQM are better than
CBSQI. But instead of this, we also observe that CBSQI
produces good results for large €= 0.1, while DQM
becomes unstable.

Figure 5 depicts the computed numerical results for
n =32, At =0.0015625 at t = 1.

Problem 3  Consider a fourth-order nonhomogeneous

X 0 o

(b) DQM

v oty
T 4 — 21— x)?
2T [ x*(1 —x)7] cost,

= xe€l0,1], t>0

along with initial conditions
v(x,0) = 22(1 —x)%,  v(x,0) =0, x€[0,1]

and boundary conditions

v(0,8) =v(1,1) =0, vu(0,1) = v (1,7) =2cost, >0

The analytical solution is v(x,#) = x2(1 — x)* cos 7. From
Eq. (4), initial and boundary conditions are derived as

PDE

Table 5 Maximum absolute errors in v(x, f) and vy (x, ) for Problem 3

Methods Time Parameters y Vir

Method 1 t=0.02 n =20, At = 0.0001 5.9220E—04 1.0591E—06

CBSQI t=0.02 n =40, At = 0.0001 1.5420E—04 2.7463E—07
t=0.02 n = 60, Ar = 0.0001 6.9039E—05 1.2404E—-07
t=0.02 n =90, Ar = 0.0001 3.0784E—05 5.5517E-08
t=0.02 n = 180, Ar = 0.0001 7.7110E—06 1.3939E—08
t=0.02 n =270, Ar = 0.0001 3.4284E—06 6.1999E—09
t=0.1 n =20, At = 0.0001 5.9201E—04 2.7240E—05
t=0.1 n =40, At = 0.0001 1.5416E—04 7.1033E—06
t=0.1 n = 60, Ar = 0.0001 6.9021E—05 3.1811E-06
t=0.1 n =90, Ar = 0.0001 3.0784E—-05 5.5517E-08
t=0.1 n = 180, Ar = 0.0001 7.7110E—-06 1.3939E—08
t=0.1 n =270, At = 0.0001 3.4284E—06 6.1999E—09

Method 2 t=0.02 n =20, At = 0.0001 6.13641E—04 2.05421E—03

DQM t=0.02 n =40, At = 0.0001 1.39918E—04 6.92248E—04
t=0.02 n =60, At = 0.0001 5.23068E—05 6.27756E—04
t=0.1 n =20, At = 0.0001 4.29742E—04 2.31338E—03
t=0.1 n =40, Ar = 0.0001 3.74392E—05 1.60769E—03
t=0.1 n = 60, At = 0.0001 3.44366E—05 1.56552E—03
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0

0.08

0o o t

(a) CBSQl (b) DQM

Fig. 6 Displacement for 1 <0.1 (n = 60, Ar = 0.0001)

Table 6 Maximum absolute errors in v(x, 7) and vy, (x, ) for Problem 4

Methods Time Parameters v Vir

Method 1 t=0.1 n =20, At = 0.00001 2.5279E—06 1.6270E—-05

CBSQI t=0.1 n =40, At = 0.00001 6.7106E—07 5.3848E—-06
t=0.1 n = 60, At = 0.00001 3.0184E—07 2.5152E—-06
t=0.1 n =90, At = 0.00001 1.3481E—-07 1.1447E—-06
t=0.1 n = 180, At = 0.00001 3.3814E—-08 2.9018E—-07
t=0.1 n =270, At = 0.00001 1.5037E—-08 1.2931E-07
r=1 n =20, At = 0.00001 1.67138E—03 1.51446E—02
r=1 n =40, At = 0.00001 4.2926E—-04 3.94205E—-03
t=1 n = 60, At = 0.00001 1.9158E—-04 1.76484E—03
t=1 n =90, At = 0.00001 8.5292E—05 7.8691E—04
t=1 n = 180, At = 0.00001 2.1343E—-05 1.9711E-04
t=1 n = 270, At = 0.00001 9.4875E—06 8.7634E—05

Method 2 t=0.1 n =20, At = 0.00001 2.0771E—-06 6.24906E—05

DQM t=0.1 n =40, At = 0.00001 6.09463E—-07 1.51773E—-05
t=0.1 n = 60, At = 0.00001 3.68338E—-07 6.65529E—-06
r=1 n =20, At = 0.00001 8.95168E—04 6.65292E—-03
t=1 n = 40, Ar = 0.00001 2.06595E—04 1.53744E—-03
t= n = 60, At = 0.00001 9.13609E—-05 6.89179E—04

2
¢(x,0) =0, ¢(0,1) =¢(1,1) =0. Q_'_ av:f(x,t), ve0,1], >0
Y(x,0) =2 —12x+ 1242, Y(0,1) = y(1,1) = 2cost. or?

where f(x, 1) = —72(1 + x)(1 — 5x + 5x*)tsin¢

The computed results obtained by both methods and ana-

lytical solution are compared in Table 5.

+ (x —x?)*(2cost — tsint).

The initial and boundary conditions are as follows

Figure 6 depicts the computed numerical results for

n =60, Ar = 0.0001 at r = 0.1.

Problem 4

PDE

@ Springer

Consider a fourth-order nonhomogeneous

v(x,0) =0,

vi(x,0) =0,
v(0,2) = v(1,1) = v (0,1) = viu(1,7) = 0,

x€0,1],
>0,

The analytical solution is v(x,7) = (x — x2)*¢sins. From

Eq. (4), initial and boundary conditions are derived as
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Fig. 7 Displacement for t < 1.0 cBsal
(n = 60, At = 0.0001)

d(x,0) =0, ¢(0,7) = p(1,1) =0.
l//(xv O) =0, l//(o7t) = lﬂ(l,l‘) =0.

The computed results obtained by both methods and ana-
lytical solutions are compared in Table 6.

Figure 7 depicts the computed numerical results for
n =60, Ar = 0.0001 at r = 1.

Thus, according to the given tabular results and figures,
we conclude that for each problem, DQM gives better
solutions than CBSQI for the small number of grid points,
but we also found that for a large number of grid points,
DQM becomes unstable, whereas CBSQI produces good
solutions.

9 Conclusions

In this paper, we have presented two numerical methods
named CBSQI and DQM for solving fourth-order parabolic
PDEs. The proposed methods are tested on four test
problems, and on the basis of these results, we summarize
the final outcomes as

1. DQM gives better solutions than CBSQI when the
number of grid points is small, but we also found that
for a large number of grid points, DQM becomes
unstable, whereas CBSQI produces good solutions.

2. The stability of both the methods is discussed, and it is
found that DQM is conditionally stable, whereas
CBSQI is unconditionally stable.

plell]

%103

3. To the best of the authors’ knowledge, CBSQI Crank—
Nicholson scheme technique has been used for the first
time for solving fourth-order parabolic PDEs. The
main advantage of CBSQI is that it is very easy to
implement.

(iv) The proposed methods can be applied for higher

dimensional problems.
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