Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. (July—September 2021) 91(3):429-434 q

https://doi.org/10.1007/s40010-020-00668-y

Check for
updates

RESEARCH ARTICLE

Picture Fuzzy Subring of a Crisp Ring

Shovan Dogra' - Madhumangal Pal'

Received: 5 October 2019/Revised: 25 January 2020/ Accepted: 5 February 2020/ Published online: 20 February 2020

© The National Academy of Sciences, India 2020

Abstract In this paper, the concept of picture fuzzy sub-
ring of a crisp ring is introduced and some related basic
results are studied. Also, some properties of picture fuzzy
subring under classical ring homomorphism are
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1 Introduction

Fuzzy set was introduced by Zadeh [1] as an extension of
the concept of classical set theory to deal with uncertainty
in human life. Later on several researchers applied fuzzy
set theory in different fields. Fuzzy group was introduced
by Rosenfeld [2], and fuzzy invariant subgroups and fuzzy

Significance statement Subring of a ring is an important algebraic
structure in classical sense. Fuzzy set is the generalization of classical
set. So, to study about fuzzy algebraic structure is the study of
generalized version of classical algebraic structure. Picture fuzzy set
is the extension of fuzzy set. Here, we study subring of a ring in
picture fuzzy environment which can be thought as the study of an
important type of advanced fuzzy algebraic structure.
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ideals were studied by Liu [3]. Fuzzy ideals and quotient
fuzzy rings were investigated by Ren [4]. As a general-
ization of fuzzy set theory, intuitionistic fuzzy set theory
was propounded by Atanassov [5]. Based on this idea of
intuitionistic fuzzy set proposed by Atanassov, intuition-
istic fuzzy subgroup was introduced by Biswas [6]. Notion
of intuitionistic fuzzy ring was propounded by Hur
et al. [7]. Further works on intuitionistic fuzzy subring and
intuitionistic fuzzy ideals were done by Banerjee and
Basnet [8]. Including more possible types of uncertainty,
picture fuzzy set was introduced by Cuong [9] which is a
generalization of intuitionistic fuzzy set. It is necessary to
mention that in intuitionistic fuzzy set, each element of the
set of universe has two components namely measure of
membership and measure of non-membership, whereas in
picture fuzzy set, each element of the set of universe has
three components namely measure of positive membership,
measure of neutral membership and measure of negative
membership. As the time goes, several works were done by
several researchers using picture fuzzy set in different
directions [10-13].

In this paper, we introduce the concept of picture fuzzy
subring of a crisp ring and study some basic results related
to it. Also, we investigate some properties of picture fuzzy
subring under classical ring homomorphism.

2 Preliminaries
In the current section, we recapitulate some basic concepts
of intuitionistic fuzzy set (IFS), intuitionistic fuzzy subring

(IFSR), picture fuzzy set (PFS) and some operations on
picture fuzzy sets (PFSs).
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Definition 1 [5] Let A be the set of universe. Then an IFS
P over A is defined as P = {(a,up,vp):a € A}, where
Up(a) € [0,1] is the measure of membership and vp(a) €
[0, 1] is the measure of non-membership of a in P satisfying
the condition 0 < pp(a) +vp(a) < 1 for all a € A.

Definition 2 [8] Let (R, +, -) be a crisp ring. Then an IFS
P = {(a, pp(a),vp(a)) : @ € R} in R is said to be IFSR of
R if the below stated conditions are fulfilled.

(i) ppla—1b) = pp(a) A up(b), vp(a—b) <vp(a) Vve(D)
(i) pp(a-b) = pup(a) A pp(b), vp(a-b) <ve(a)Vvp(b)
for all a,b € R.

Definition 3 [9] Let A be the set of universe. Then a PFS
P over A is defined as P ={(a,pup(a),np(a),
vp(a)) :a € A}, where pp(a) € [0,1] is the measure of
positive membership, #p(a) € [0,1] is the measure of
neutral membership and vp(a) € [0, 1] is the measure of
negative membership of a in P satisfying the condition
0 < pp(a) +np(a) +vp(a) < 1 for all a € A.
Definition 4 [9] Let P = {(a, up(a),np(a),
A} and Q = {((1, iuQ(a)v nQ(a)a
PFSs over the universe A. Then
(i) P C Qiff pp(a) < pgla), np(a)
vo(a) for all a € A.
(i) P = Qiff up(a) = po(a), np(a) = no(a) and vp(a) =

vo(a) for all a € A.
(i) PUQ = {(a, max(up(a), no(a)), min(np(a), no(a)),

vp(a)):a €
vo(a)) :a € A} be two

< np(a) and vp(a) >

min(vp(a), vo(a))) : aGA}
(iv) PN Q= {(a,min(up(a), uo(a)), min(np(a), ny(a)),
max(vp(a),vo(a))) s a € }

Definition 5 Let P = {(a1, up(ai),np(ar),ve(ay)) : a; €
A} and Q = {(a2, up(az),ng(az),vo(az)) : a» € Az} be
two PFSs in A and A,, respectively. Then Cartesian pro-
duct of P and Q is the PFS P x Q ={((a,b), upxo
(a,5), 1po((@,5)) v (@, b))}, where . o((a, b))
= pp(a) A pg(b),  npeo((a,b))  =np(a) Ang(b) and
vexo((a, b)) = vp(a) Vvo(b) for all (a,b) € A X As.

Definition 6 Let h:A; — A, be a surjective mapping
and P = {(ai1, up(a1),np(ar),vp(ar)) :ay € A1} be a
PFS in A;. Then image of P under the map / is the
PFS h(P) = {(a2, ty(p)(a2), mp)(a2), vip) (@2)) : a2 € An},

where a \/ a a)= A
,Uh(P)( 2) = b (a ),UP( 1)s ﬂh(P)( 2) a16h4<az)’7p

(al) and Vi(P) (Clz) = A ( ) for all a, € A,.
aleh*‘(az)

Definition 7 Let h:A; — A, be a mapping and Q =

{(dz,ﬂQ(az),HQ(CZQ),VQ(CIQ)) tap € AQ} be a PFS in A,.

Then inverse image of Q under the map # is the PFS 2~ !(Q)

={(a1, thy-1(g)(@1)ny-1(0)(@1),vi-1(0)(a1)) :a1 €A}, where

@ Springer

/‘h”(Q)(“l):ﬂQ(h(al))’ M-1(0 )( 1)=ng(h(ar)) and v-1(g)
(al):vQ(h(al)) for all a EA]

Definition 8 Let P = {(a, yp,np,vp) : a € A} be a PFS
over the universe A. Then (6, ¢, })-cut of P is the crisp set
in A denoted by Cpgy(P) and is defined as
Copy(P) ={a €A up(a) > 0,np(a) =2 ¢,vr(a) < ¥},
where 0,6,9 €[0,1] with the condition
0<O0+o+y <L

Proposition 1 [13] Let P = {(ay, up(ar1),np(ar),v(ay)):
a1 € A} and Q = {(az, up(az),np(az),ve(az)): az € Az}
be two PFSs over the sets of universe Ay and A,, respec-
tively. Also, let h: Ay — A, be a mapping. Then the fol-
lowings hold.

(i) Copy(P) C Cogpy(Q) whenever P C Q.
(i) Copy(PNQ) = Cpgpy(P)N Copy(Q)
(iii)  Copu(PUQ) 2 Cypy(P)U Cogy(Q)
(iv) Cew(PXQ) Cogy(P )>< Co,pu(Q)
V) h'((Cogy(Q)) = Cogy(h™'(Q))

Throughout the paper, we write PFS P =
{(a, up(a), np(a), vp(a)) : a € A} as P = (up,1p, vp).

3 Picture Fuzzy Subring

Let us define picture fuzzy subring (PFSR) generalizing the
concept of IFSR.

Definition 9 Let (R,+,-) be a crisp ring and P =
(4p,np,vp) be a PES in R. Then P is said to be PFSR of R if
the below stated conditions are meet.

(i) ppla—"b) = pp(a) A pup(b), npla—>b)=np(a) Anp(b)
and vp(a —b) < vp(a) Vvp(b),

(i) pp(a-b) = up(a) A pp(b), np(a-b) = np(a) Anp(b)
and vp(a - b) < vp(a) V vp(b) for all a,b € R.

Example 1 Let us consider the crisp ring R = (Z,+, )
and a PFS P = (up,np,vp) in R defined by
0.4, when a=0
pp(a) =
0.2, when a+#0
0.4, when a=0
np(a) =
0.15, when a#0
and
0.2, when a=0
vp(a) =
0.3, when a #0.
It can be shown that P is a PFSR of R.
Proposition 2 Let (R, +,-) be a ring and P = (pip, np, vp)

be a PFSR of R. Then
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@) 1p(0) = ppla), np(0) = np(a) and vp(0) < vp(a) It follows that a-b€ Cypgy(P). Consequently,
(i) pp(—a) =ppla), np(—a) =np(a) and vp(—a) =  Cpg,y(P) is a crisp subring of R. O

vp(a) for all a € R, where 0 is the additive identity
in R and —a is the additive inverse of a.
Proof
(i) Since P is a PFSR of R therefore
1p(0) = pp(a —a) = pp(a) A pp(a) = pp(a),

np(0) = np(a —a) = np(a) Anp(a) = np(a)
and vp(0) = vp(a — a) < vp(a) V vp(a) for all a € R.

Thus, up(0) = pp(a), np(0) = np(a) and vp(0) <
alla € R.

vp(a) for

(ii) For all a € R, we have,

tp(—a) = up(0 — a) = up(0) A pp(a)
= uP(a) [by ()]
np(—a) =np(0 —a) = np(0) Anp(a)
= np(a) [by (1]
and vp(—a) = vp(0 — a) < vp(0) V vp(a)
= vp(a) [by ()].
Thus, pp(—a) > ip(a)s np(—a) > np(a) and vp(~a) <

vp(a) for a € R.

Now, replacing a by —a we get, pp(a) = pup(—a),
np(a) = np(—a) and vp(a) < vp(—a) for all a € R. Con-
sequently,  up(—a) =pp(a), np(—a)=np(a) and
vp(—a) = vp(a) for all a € R.

O

Proposition 3 Let (R,+,:) be a crisp ring and P =
(up,np,vep) be a PFSR of R. Then Cy 4y (P) is a crisp
subring of R, provided that pp(0) >0, np(0) > ¢ and
vp(0) < W, where 0 is the additive identity in the ring R.

Proof Clearly, Cy 4 (P) is non-empty.

Let a,b € C0,¢_¢(P). Then ,up(a) >0,
vel@) < and pip(b) > 0, np(b) > ¢, v(b) <
is a PFSR of R therefore

tp(a—0b) = pp(a) A up(b) > 0
np(a—b) = np(a) Anpb) 2 ¢ N = ¢
and vp(a — b) < vp(a) Vvp(b) < Y
Thus, pp(a —b) = 0, np(a —b) = ¢ and vp(a — b) < Y.

It follows that a — b € Cy 4 (P).
Also, since P is a PFSR of R therefore

np(a) = ¢,
Y. Since P

(@ b) > upla) A () > 070 =0,
np(a-b) = np(a) Anpb) 2 N =¢
and vp(a-b) <vp(a) Vvp(b) < Y V=

Thus, up(a-b) > 0, np(a-b) > ¢ and vp(a-b) < .

Proposition 4 Let (R,+,:) be a crisp ring and P =
(4p,np,vp) be a PFS in R. Then P is a PFSR of R if all
(6, ¢, W)-cuts of P are crisp subrings of R.

Proof Let a,b € R. Also, let 0= pp(a) A pp(b), ¢ =
np(a@) Anp(b) and = vp(a) V vp(b). Clearly, 0 € [0, 1],
$€[0,1]and W €[0,1] with 0 < 0+ ¢+ < 1.
It is observed that
tp(a) 2 pp(a) A pp(b) =0,
np(a) = np(a) Anp(b) = ¢
and VP( ) Sve(a) Vve(b) =y

Thus, up(a) > 0, np(a) = ¢ and vp(a) < .
Also, we have
tp(b) = pp(a) A pp(b) =0,
np(b) = np(a) Anp(b) = ¢
and vp(b) < vp(a) Vvp(b) =
Thus, up(b) > 0, np(b) = ¢ and vp(b) < .
It follows that a,b € Cy ¢, (P). Since Cy 4y (P) is a crisp

subring of R therefore a — b and a-b € Cy 4y (P).
This yields

ppla —b) = 0 = pp(a) A pp(b),
np(a—>b) = ¢ =np(a) Anp(b)
vp(a —b) <y =vp(a) V vp(b)
and pp(a-b) > 0 = pp(a) A up(b),
np(a-b) = ¢ =np(a) Anp(b)
vp(a-b) <y =vp(a) Vvp(b)

Since a, b are arbitrary elements of R therefore
tp(a —b) = pp(a) A up(b),  npla—0b) = np(a) Anp(b),
vp(a—b) <vp(a) Vve(b) and pp(a-b) = pp(a) A pp(b),
np(a-b) = np(a) Anp(b),vp(a-b) < vp(a)V vp(b) for all
a,b € R.

Consequently, P is a PFSR of R. O

Proposition 5 Let (R,+,) be a crisp ring and L=
(4, n,ve) be a PFSR of R. Then y;(ra) > up(a),
ny(ra) = ng(a) and v (ra) < vi(a) for all a € R and for all
integers r.

Proof Case 1: Let r be a positive integer. Let
P(r) - py(ra) > p(a), ni(ra) = ny(a) and v (ra) < vi(a)
for all a € R. Here, P(1) is trivially true. Since L is a PFSR
of R therefore i (a?) = i, (a - @) > (@) Ay (@) = py(a),
ne(@®) = ny(a-a) = ny(a) Anya) =ny(a) and vi(a®) =
ve(a-a) <vp(a) Vvir(a) = vi(a). Therefore, P(2) is true.
Let us assume that P(r) is true for r = m, i.e. P(m) is true.
Then  py(ma) 2 p(a), ny(ma) 2 ny(a) and vi(ma) <

@ Springer



432

S. Dogra, M. Pal

v (a) for all a € R. Since L is a PFSR of R therefore for all
a € R,

vi(ma) Vv (a)
vi(a) Vvi(a) = vi(a).

p ((m + 1)a) =y (ma + a)
> py (ma) A py (a)
> py(a) Ay (a) = p(a),
ny((m+ 1)a) = n (ma + a)
= n(ma) A (a)
= n(a) An(a) =n.(a)
and v ((m + 1)a) = vy (ma + a)
(
(

NN

Therefore P(r) is true for all positive integers r.

Case 2: Let r is a negative integer. Also, let s = —r.
Since r is a negative integer therefore r < —1 which
implies that s > 1, i.e. s is a positive integer. Now,
p(ra) = pp(—sa) = p(sa) = p(a), ny(ra) = ny(—sa) =
np(sa) = ny(a) and vp(ra) = vp(—sa) = vi(sa) < vi(a)
[by Proposition 2 and Case 1]

Case 3: When r = 0 then we see that P(r) is trivially true
because it is known from Proposition 2 that y, (0) > p; (a),
1.(0) > n,(a) and v, (0) < vy (a) for all a € R. O

Proposition 6 Let (R,+,-) be a crisp ring and P =
(1p,np,vp) be a PFSR of R. If a be the additive generator
of R with a € C()ﬁ¢‘w(P) then C()’(p’w(P) =R.

Proof We know that Cy 4 (P) C R. Let a be the additive
generator of R with a € Cypgy(P). Then pp(a) >0,
np(a) = ¢ and vp(a) < . Also, let £ € R. Since R is an
additive cyclic group therefore ¢ = pa for some integer p.
Now, we have,

1p(t) = pp(pa) > pp(a) [by Proposition 5]
>0,
np(t) = np(pa) = np(a) [by Proposition 5]
z ¢
and vp(t) = vp(pa) < vp(a) [by Proposition 5]
<Y
Thus, we get up(t) = 0, np(t) = ¢ and vp(t) < . There-

fore, t € R=1€ Cogy(P) which yields R C Cp 4y (P).
Consequently, CQ(W( )=R. O

Proposition 7 Let P = (up,np,vp) and Q =
be two PFSRs of a ring (R,

(.UQJIQH’Q)
+,-). Then PN Q is a PFSR of

R.
Proof It is known from  Proposition 1  that
Cg@\v,(P nQ) = C97¢_’¢(P) N Cgﬂqs’l/,(Q). Since P and Q are

PFSRs therefore by Proposition 3, Cy ¢ (P) and Co ¢4 (Q)
are crisp subrings of R. Also, it is known that the inter-
section of any two crisp subrings is a crisp subring. As a
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result, Cy 4., (P N Q) is a crisp subring of R. Consequently,
by Proposition 4, PN Q is a PFSR of R. O

Proposition 8 Let P and Q be two PFSRs of a ring
(R,+,). Then PU Q is a PFSR of R if either P C Q or Q C
P.

Proof Case 1: Let P C Q. Then pp(a)
no(a) and vp(a) = vp(a) for all a € R. Therefore,
tpug(a) = up(a) vV pgla) = pola), — npugla) = npla) A
no(a) = np(a) and vpug(a) = vp(a) A vg(a) = vg(a) for
all a € R. It is observed that Q CPUQ = Cp 4y (0Q) <
Co.4.4(P U Q) [by Proposition 1].

Let a € Cy gy (PUQ). Then pp p(a)
and vpo(a) < W ie. 1o(a) > 0, 1p(a) > § and vo(a) < v,
ie. ppla) =0, ngla)>¢ and vo(a) <y. Thus,
ac C(),([,"/,(Q). Therefore, C07¢’l/,(P U Q) - C(),d,’.p(Q). Thus,
finally, Cg 4.4 (P U Q) = Co,4,(Q). Since P and Q are PFSRs
of R therefore by Proposition 3, Cy ¢,y (P) and Cy 4 (Q) are
crisp subrings of R. As aresult, Cy 4, (P U Q) is a crisp subring
of R. Consequently, by Proposition 4, P U Q is a PESR of R.

Case 2: When Q C P, it can be proved in the similar
way that P U Q is a PFSR of R.

The converse of the above proposition does not neces-
sarily hold which is clear from the following example, i.e.
if P and Q are two PFSRs of a crisp ring R then PU Q is a
PFSR of R does not necessarily imply that either P C Q or
QCP O

< tola), np(a) <

>0 > Npug (a) > ¢
Pa

Example 2 Let us consider the ring (R,+,-) and the

PFSR P = (up,np,vp) of R given in Example 1. Also, a
PFESR Q = (g, 19, vp) of R is defined as follows.
(@) {0.35, when a =0
a) =
Ho 0.3, when a#0
(a) = 0.35, when a=0
Tol) = 0.2, when a#0
and
0.1, when a=0
vo(a) =
0.4, when a #0.

Thus, P U Q is given by

0.4, when a=0
HPUQ(G) = 0.3

when a # 0
0.35, when a=0
ruo(@) :{ 0.15, when a0
and
0.1, when a=0
vrugla) = {03 when a # 0.

Here, P U Q is a PFSR of R but neither P C Q nor Q C P.
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Proposition 9 Let P = (up,np,vp) and Q =
be two PFSRs of a ring (R,
R X R.

(:uQa’/]Qan)
+,). Then P x Q is a PFSR of

Proof Itis known from Proposition 1 that Cg ¢ (P x Q) =
Co.4.4(P) x Cp .4 (Q). Since P and Q are PFSRs of R there-
fore by Proposition 3, Cg 4y (P) and Cpg4y(Q) are crisp
subrings of R. Also, it is known that the Cartesian product of
two crisp subrings is a crisp subring. As a result, Cy ¢y (P X
Q) is a crisp subring of R x R. Consequently, by Proposi-
tion 4, P x QisaPFSR of R X R. O

4 Ring Homomorphism of Picture Fuzzy Subring

In the current section, we study some important properties
of PFSR under classical ring homomorphism.

Proposition 10 Let (R, +,-) and (Ry,+, ) be two crisp
rings and Q = (Uy, Mg, Vo) be a PFSR of Ry. Then for a
ring homomorphism, h : Ry — Ra, h™'(Q) is a PFSR of R;.

Proof Let h™'(Q) = (- (o) Mh-1(0)> Vi1 (0))-
Also, let a,b € Cp 4 (h1(Q)). Then

0, p-10)(@) = &, vi-1(0)(a) < Y

and p,-1(9) (D) 2 0,1my-1(9) () Z &, vi1(0)(b) < W
This implies,

to(h(a)) = 0,no(h(a)) = ¢,vo(h(a)) < ¥

and 1y (h(b)) = 0,ng(h(b)) = ¢,vo(h(b)) < Y.
Therefore, pio (h(a —

Uy~ 1<Q( a) >

[as ~is a ring homomorphism].

Thus, i(a — b) and h(a - b) € Co 44 (Q).

This implies, a—b and a-b € h™!
Copy(h~(Q)).
Thus, C9‘¢_’¢, (h

by Proposition 4, h~

(Copy(Q)) =

~1(Q)) is a crisp subring of R;. Therefore,
1(Q) is PFSR of R;. O

Proposition 11 Let (Ry,+,-) and (Ry,+, ) be two crisp
rings and P = (pp,np,vp) be a PFSR of R;. Then for a
bijective ring homomorphism h : Ry — Ry, h(P) is a PFSR
Of R;.

Proof  Let h(P) = (u(p)s () Vi(p))-

Then  p,p)(b1) = h\/( ),Up(al)
ae
b))= A
”Ih(P)( 1) aleh%bl)np(al)
d b))= A .
and vy(p)(b1) alehil(mv;)(al)

Since 4 is bijective therefore A~ (bh;) must be a singleton
set. So, for each b; € R,, there exists an unique a; € R,
such that a; = h™!(by), i.e. h(a;) = b;. Thus, in this case,
tapy (D1) = by (h(ar)) = ﬂP(al)7 Muepy(b1) = nypy(h(ar))
= np(ar) and Vh ) (b1) = vip) (h(a1)) = ve(ar).

Let b € Ce(/)w( (P)). Then

tepy (D) = 0,1m,p) () = ¢ and vip) (b) < .

That is,

tpy(h(a)) = 0,nypy(h(a)) = ¢ and vy (h(a)) < ¥
[where b = h(a) for unique a € R].

That is, up(a) > 0,np(a) = ¢ and vp(a) < Y.

This gives, a € Cp,¢,y(P).

This implies, h(a) € h(Cp gy (P)).

That is, b € h(C()ﬁqﬁ’w(P)).

Therefore, C(g’(/),l/,(/’l(P)) - h(Cg‘qs’,/,(P)).

Now, let d € h(Cy 4 (P)). Then there exists an unique
¢ € Cy 4y (P) such that d = h(c). Therefore,

pp(c) = 0,np(c) > ¢ and vp(c) < .
That is,
tp) ((c))

That is,

(h(c)) = ¢ and vip)(h(c))

N

> 0,nyp 2

tipy(d) = 0,nyp)(d) = ¢ and vyp) (d) < .
This gives, d € Cy,¢y(h(P)).
Therefore, h(Cgﬁd)’l/,(P)) - C97¢,¢(h(P)).
Thus, finally, it is obtained that Cgg,(h(P)) =
h(Co.g,4(P)).
Let us suppose that by, b, € Cy 4.y (h(P)). Then
h(P)( 1) = 07’7h(P)( 1) = b, vip) (b 1)<y

and 1y, p)(b2) 2 0,1mp)(b2) 2 &, i) (b2) < W
That is,

tepy(h(ar)) = 0,my,py(h(a1)) = ¢, vy (h(ar)) < ¥

@ Springer



434

S. Dogra, M. Pal

and  pypy(h(az)) = 0,nyp)(h(az2)) = ¢, viep)(h(az)) < W
[where by = h(a;) and b, = h(a,) for unique a1,a; € Ry].
That is,
uplar) = 0,np(ar) = ¢,vp(a1) <Y and  pp(az) > 0,
np(ax) = ¢,vp(az) < Y.

This gives, a; € Cy g (P) and a, € Cp ¢y (P).
This implies, a; —a, € Cogy(P) and
Co.4.4(P) [as Cp 4y (P) is a crisp subring of R;].

This implies, h(a; — az) € h(Copy(P)) = Co.¢.y(h(P))
and h(a) - az) € h(Cppy(P)) = Copy(h(P)).

This implies, h(a;) — h(az) € Co gy (h(P)) and h(a;) -
h(az) € Cy gy (h(P)) [as h is a ring homomorphism].

This gives, by — b, and b; - b, € C().’qg‘l/,(h(P)).

Thus, Cogy(h(P)) is a crisp subring of R,. Conse-
quently, by Proposition 4, h(P) is a PFSR of R;. O

ay - ap €

5 Conclusion

We notice that exploration of the theory of subring in
context of PFS plays a vital role in the field of algebra. In
this paper, we established the notion of PFSR of a crisp
ring and investigated some basic results related to it. We
studied some basic properties of PFSR in the environment
of classical ring homomorphism. It is our hope that these
works will help the researchers to develop the theory of
subring in context of some other types of sets.
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