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Abstract In this paper, the effect of temperature-depen-

dent viscosity on the onset of thermal convection in a

micropolar fluid layer heated from below for each combi-

nation of rigid (the surfaces with non-slip condition) and

dynamically free (the surfaces with stress-free condition)

boundaries is investigated. It is shown here analytically that

the principle of exchange of stabilities is valid for the

problem, which means that instability sets in as stationary

convection. The expressions for Rayleigh numbers for each

combination of rigid and dynamically free boundary con-

ditions are derived using Galerkin method. The effects of

micropolar parameters and viscosity variation parameter on

critical wave numbers and consequently on the critical

Rayleigh numbers are computed numerically.
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1 Introduction

Microfluids exhibiting certain microscopic effects arising

from the local structure and micromotions of the fluid ele-

ments were introduced and developed by Eringen [1]. These

fluids support stress moments and body moments and are

influenced by the spin inertia. Eringen’s theory has provided

a good model to study a number of complicated fluids,

including the flow of low-concentration suspensions, liquid

crystal, blood and turbulent shear flows. However, Eringen

[2] introduced a subclass of microfluids named micropolar

fluid, which exhibits microrotational inertia. Physically,

micropolar fluids may represent fluids consisting of rigid,

randomly oriented particles suspended in a viscous medium,

where the deformation of the particles is ignored. In this

theory, the local fluid elements have the usual translatory

degrees of freedom reckoned by the velocity vector and have

in addition, degrees of freedom enabling the intrinsic rota-

tory motions described by the gyration vector. This consti-

tutes a substantial generalization of the Navier–Stokes

model since a new vector field, namely the angular velocity

field or rotation of particles, is introduced. With the intro-

duction of this new vector, one more vector equation is

added in Navier–Stokes model which represents the con-

servation of angular momentum. Furthermore, four new

viscosities are also introduced in the system of equations. If

one of these viscosities, namely microrotation viscosity,

becomes zero, the equation of conservation of the linear

momentum becomes independent of the microstructure.

Thus, the size of the microrotation viscosity coefficient

allows us to measure the deviation of flows of micropolar

fluids from that of the Navier–Stokes model.

Thermal effects in micropolar fluid flow problems have

been extensively investigated due to a large number of

applications in engineering problems which include engi-

neering structure such as infinite fiber composites, sand-

wich structures, grid structures and honeycombs. Examples

of successful application of micropolar theory to these

materials are calculation of moduli of crystals exhibiting

polar phenomenon by Akshar [3] and numerical analysis of

steel concrete grid structures in civil engineering per-

formed by Bazant and Christtensen [4]. Micropolar fluid

also acts as lubrications to human joints. The other diverse
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areas to which the micropolar theory has been applied,

include blood flow in porous biomaterials, cross-diffusion

dialysis flows, sediment transport in rivers, application in

power generators, refrigeration coils, transmission lines,

electric transformers, aeronautics and submarine naviga-

tion, MHD accelerators, refrigeration coils, transmission

lines, purification of crude oil, polymeric fluids, continuous

casting of glass fiber, porous media, cooling of electronic

equipments and metal extraction. Extensive reviews on

micropolar theory and its applications are given by Ariman

et al. [5, 6], Eringen [7], Lukaszewicz [8] and Bég et al.

[9].

Walzer [10] analyzed the problem of convective insta-

bility of a micropolar fluid layer confined between two rigid

boundaries and pointed out that the analysis of the instability

finds applications in the area of geophysics. One of the

applications is understanding the phenomena of rising of

volcanic liquid with bubbles and convective processes inside

the earth’s mantle. Ahmadi [11] studied the stability of a

layer of micropolar fluid heated from below using linear

theory as well as energy method. He proved the validity of

principle of exchange of stabilities (PES) for the problem.

He further showed that the micropolar fluid layer is

stable than the classical (Bénard) fluid layer. Datta and

Sastry [12] discussed the stationary convection of the

micropolar fluid layer heated from below and derived an

exact solution for the problem. Dhiman et al. [13] have

studied the convective instability of micropolar fluid layer

for general nature of boundaries using variational technique

and derived the values of critical Rayleigh number for the

onset of stationary convection.

Review of the literature reveals that the most studies

related to the problems of heat transfer are based on the

constant physical properties of the ambient fluid. However,

to accurately predict the flow and heat transfer rates, it is

necessary to take into account variation of viscosity. In all of

the earlier mentioned studies by various authors, the vis-

cosity of the fluid was assumed to be constant, but in recent

years, many authors have investigated the influence of

temperature-dependent viscosity in the problems of Ray-

leigh–Bénard convection. Palm [14] and Stengel et al. [15]

have studied the convection in fluids with temperature-de-

pendent viscosity. Booker and Stengel [16] have shown that

there is a decrease in convective heat transport due to the

increase in critical Rayleigh number with variable viscosity.

Jenkins [17] considered the general dependence of viscosity

on temperature and studied both linear and exponential

dependence of viscosity and concluded that the linear

dependence is realistic for fluids with small values of vis-

cosity, while exponential dependence is more realistic for

fluids with high viscosity. Many other authors including

Selak and Lebon [18], Nield [19] and Straughan [20] have

also investigated the onset of convection for the ordinary

fluids with strongly temperature-dependent viscosity under

various assumptions of hydrodynamics. Dhiman and Kumar

[21] investigated the Rayleigh–Bénard convection with

temperature-dependent viscosity for all combinations of

rigid and dynamically free boundaries. Dhiman and Sharma

[22] have also studied the effect of temperature-dependent

viscosity on the thermal convection of nanofluid layer

heated from below for general cases of boundaries.

Since in recent years, multi-physical micropolar flows

have particularly emerged as a robust area of interest. Such

flows involve magnetic effects, porous media and multi-

mode mass heat transfer. Also, it is well known that in

many industrial processes and applications, heat transfer is

an integral part of the flow. Thus, micropolar fluid provides

a mathematical model for accurately simulating the flow

and heat transfer characteristics of polymeric additives, gel

propellants, colloidal suspensions, liquid crystals, lubri-

cants, bubbly liquids, paints, physiological fluids (blood),

smoke-laden air and geological flows containing suspended

sediments, in different geometries of fluid flow problem

with different physical conditions to various situations of

practical interest (cf. Eringen [7], Lukaszewicz [8]).

The above discussion provides us a motivation for the

present investigations. Since the micropolar fluid model is

both a significant and simple generalization of classical

Navier–Stokes model and is adequate for exocitic lubri-

cants, certain biological fluids and colloidal or suspensions

solutions, convection is a dominant and important mode of

heat transport in fluid flow problem and the incorporation

of the variation in viscosity due to variation in temperature

may have certain significant effect on the onset of con-

vection. Our aim here is to study the effect of temperature-

dependent viscosity on the onset of thermal convection in

micropolar fluid layer heated from below. The validity of

the principle of exchange of stabilities (PES) is investi-

gated for this more general problem by Pellew and

Southwell [23] method of conjugate eigenfunctions. A

single-term Galerkin method is used to find general

expressions for Rayleigh numbers for each combination of

rigid and dynamically free boundaries. The values of crit-

ical Rayleigh numbers for each case of boundary combi-

nations are computed numerically, for the case of

stationary convection. The effects of microrotation

parameters and the viscosity variation parameter on critical

Rayleigh numbers are computed numerically.

2 Physical Configuration and the Eigenvalue
Problem

Consider a viscous, incompressible micropolar liquid layer

of infinite horizontal extension and finite vertical depth

statically confined between two horizontal plane
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boundaries z ¼ 0 and z ¼ d, which are, respectively,

maintained at uniform temperatures T0 and T1 T0 [ T1ð Þ in
the force field of gravity 0; 0;�gð Þ. Since the liquid layer is
heated from below, this maintains an adverse temperature

gradient in the vertical direction. Our objective here is to

investigate the stability of the above physical configuration

by taking into account the variation in viscosity

l ¼ l0f zð Þð Þ due to the temperature variation for all

combinations of bounding surfaces.

Following the usual steps of linear stability theory (cf.

Datta and Sastry [12] and Chandrasekhar [24]), the non-

dimensional linearized perturbation equations and bound-

ary conditions governing the problem, with time depen-

dence of the perturbations w; h andG, respectively,

represent the perturbations in the vertical velocity, the

temperature and the microrotation of the form;

; zð Þð Þe i kxxþkyyð Þþnt½ � can be easily obtained from the basic

equations governing the problem of the thermal instability

of micropolar fluid which are given by

f þ Kð Þ D2 � a2
� �2

w� p

r
D2 � a2
� �

w

þ 2 Dfð ÞD D2 � a2
� �

wþ D2f D2 þ a2
� �

w

¼ �K D2 � a2
� �

Gþ Ra2h

ð1Þ

D2 � a2 � p
� �

h ¼ �w ð2Þ

D2 � a2
� �

� 2A� n1Ap

Kr

� �
G ¼ A D2 � a2

� �
w ð3Þ

subject to the following cases of boundary conditions;

Case 1 Both boundaries rigid

w ¼ 0 ¼ h ¼ G ¼ Dw at z ¼ 0 and z ¼ 1 ð4Þ

Case 2 Both boundaries dynamically free

w ¼ 0 ¼ h ¼ G ¼ D2w at z ¼ 0 and z ¼ 1 ð5Þ

Case 3 Lower rigid and upper boundary free

w ¼ 0 ¼ h ¼ G ¼ Dw at z ¼ 0

w ¼ 0 ¼ h ¼ G ¼ D2w at z ¼ 1

�
ð6Þ

Case 4 Lower free and upper boundary Rigid

w ¼ 0 ¼ h ¼ G ¼ D2w at z ¼ 0

w ¼ 0 ¼ h ¼ G ¼ Dw at z ¼ 1

�
ð7Þ

In the foregoing equations, p is the dimensionless

growth rate; a is the dimensionless wave number; r ¼ t
j0
is

the Prandtl number; K ¼ j
l0

is micropolar viscous

parameter; n1 ¼ J
d2
; A ¼ jd2

c is micropolar couple stress;

R ¼ gabd4

j0t
is the Rayleigh number; l0 is the Newtonian

viscosity of the fluid; j is the microrotation viscosity; qo is
the density of the fluid; g is the gravitational force; a is the

coefficient of thermal expansion; b ¼ T0�T1
d

� �
is the

maintained uniform gradient; f zð Þ is the non-dimensional

temperature-dependent viscosity variation function; m is the
kinematic viscosity; and j0 is coefficient of thermometric

diffusivity.

The system of Eqs. (1)–(3) along with either of the

boundary conditions (4)–(7) constitutes an eigenvalue

problem (or characteristic value problem) for Rayleigh

number R for the given values of the other parameters,

namely a2; p; r; A; K and n1. A given state of system is

stable, neutral or unstable with pr (real part of p) being

negative, zero or positive, respectively. Further, if pr ¼ 0

implies pi ¼ 0 for every wave number a, then the principle

of exchange of stability (PES) is valid, which means that

stability sets in as stationary convection; otherwise, we

shall have overstability at least when instability sets in as

certain modes.

3 Principle of Exchange of Stabilities

Multiplying both sides of Eq. (1) by w� (the complex

conjugate of w), integrating the resulting equation over the

vertical range of z and integrating the first term of the right-

hand side of the resulting equation twice, we have

Z1

0

w� f þ Kð Þ D2 � a2
� �2

w� p

r
D2 � a2
� �

w
h

þ 2 Dfð ÞD D2 � a2
� �

wþ D2f D2 þ a2
� �

w
i
dz

¼ �K

Z1

0

G D2 � a2
� �

w�dzþ Ra2
Z1

0

w�hdz

ð8Þ

Now, substituting the values of D2 � a2ð Þw� and w�

obtained, respectively, from Eqs. (2) and (3) in the first and

second terms on right-hand side of the above equation, we

get

Z1

0

w� f þ Kð Þ D2 � a2
� �2

w� p

r
D2 � a2
� �

w
h

þ2 Dfð ÞD D2 � a2
� �

wþ D2f D2 þ a2
� �

w
i
dz

¼ �K

Z1

0

G D2 � a2
� �

� 2A� n1Ap
�

Kr

� �
G�

� Ra2
Z1

0

D2 � a2 � p�
� �

h�

ð9Þ

Integrating the various integrals in Eq. (9) by parts a

suitable number of times over the vertical range of z and

using either of the boundary conditions (4)–(7), we have
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Z1

0

f þ Kð Þ
Z1

0

D2w
�� ��2þ2a2 Dwj j2þa4 wj j2
h i

dz

þ a2
Z1

0

D2f
� �

wj j2dzþ p

r

Z1

0

Dwj j2þa2 wj j2
h i

dz

¼ Ra2
Z1

0

Dhj j2þa2 hj j2þp� hj j2dz

2

4

3

5

þ K

A

Z1

0

DGj j2þa2 Gj j2dzþ
Z1

0

2Aþ n1Ap
�

Kr
Gj j2

� �
dz

2

4

3

5

ð10Þ

Equating the imaginary parts of both sides of Eq. (10),

we get

pi
1

r

Z1

0

Dwj j2þa2 wj j2þn1 Gj j2dzþ
Z1

0

Ra2 hj j2dz

0

@

1

A ¼ 0

ð11Þ

Since n1; r and R are positive constants, therefore from

Eq. (11), we have pi ¼ 0:

This establishes that the PES is valid for the present

problem. It is remarkable to note that the validity of PES

leads to a notable mathematical simplification since the

transition from stability to instability occurs via a marginal

stationary state characterized by p ¼ 0: Mathematically,

this means that the marginally stable modes with pr ¼ 0

also have pi ¼ 0.

4 Numerical Analysis

As has been proved above that the onset of convection is

through stationary modes, therefore taking p ¼ 0 in

Eqs. (1)–(3), we have the following reduced forms of the

equations

f þ Kð Þ D2 � a2
� �2

wþ 2 Dfð ÞD D2 � a2
� �

w

þ D2f D2 þ a2
� �

w ¼ �K D2 � a2
� �

Gþ Ra2h
ð12Þ

D2 � a2
� �

h ¼ �w ð13Þ

D2 � a2
� �

� 2A
� 	

G ¼ A D2 � a2
� �

w ð14Þ

Following the analysis of Finlayson [25], we apply the

Galerkin method to find the value of Rayleigh number by

taking single term in the expansions of the functions: w, h
and G as

w ¼ lw1 zð Þ
h ¼ mh1 zð Þ
G ¼ nG1 zð Þ

9
=

;
ð15Þ

where w1, h1 and G1 are suitably chosen trial functions

which satisfy the respective boundary conditions (4)–(7)

and l, m and n are constants.

Now, multiplying equations obtained after substituting

the above trial functions in Eqs. (12)–(14) by w1, h1 and

G1, respectively, integrating each of the resulting equation

by parts using relevant boundary conditions and eliminat-

ing l, m and n from the resulting equations, we obtain the

following expression for Rayleigh number as

R ¼
Z1

0

f þ Kð Þ D2w1

� �2þ2a2 Dw1ð Þ2þa4 w1ð Þ2
h i

dz

0

@

þ a2
Z1

0

D2f
� �

w1ð Þ2dz

�KA

R 1
0
G1 D2 � a2ð Þw1dz


 �2

R 1
0

DG1ð Þ2þa2 G1ð Þ2þ2A G1ð Þ2
h i

dz

1

CA

�

R 1
0

Dh1ð Þ2þa2 h1ð Þ2
h i

dz

a2
R 1
0
h1w1dz


 �2

ð16Þ

It is to note that the expression (16) is valid for all cases

of boundary conditions. We shall now obtain the values of

the Rayleigh numbers for each of the case of the boundary

conditions, separately.

4.1 The Values of Critical Rayleigh Numbers

We now derive the expressions for Rayleigh numbers for

each case of boundary conditions (4)–(7) and consequently

the values of the critical Rayleigh numbers Rc for each of

these cases, for both the exponential and linear cases of

viscosity variations.

Let us consider the following non-dimensional expo-

nential and linear viscosity variation laws (cf. Dhiman and

Kumar [21])

f ¼ edz and f ¼ 1þ dzð Þ ð17Þ

where d is the viscosity variation parameter and is given by

cbd ¼ d. Here, c measures the viscosity variation with

temperature, b is the temperature gradient across the layer,

and d is the vertical depth of the fluid layer. It is clear from

the above expressions that the variation in the viscosity is a

function of the magnitude of b.
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In the following, we shall discuss the case when both the

boundaries are rigid in detail and obtain the values of

Rayleigh numbers for each linear and exponential variation

of viscosity numerically. It is remarkable to note that this

case of combination of boundaries is realistic one and for

which the exact solution in closed form is not obtainable.

4.2 Both Boundaries are Rigid

For this case of boundary conditions, the chosen trial

functions are

w ¼ z4 � 2z3 þ z2; h ¼ z z� 1ð Þ and G ¼ z z� 1ð Þ ð18Þ

With these choice of trial functions and the viscosity

variation laws given in Eq. (17), we obtain the following

expressions for Rayleigh numbers, respectively, for linear

and exponential variation of viscosity

ðRexp
rr Þ ¼ 1960 10þ a2ð Þ

3a2

"
�AK 28þ 3a2ð Þ2

5880 10þ a2 þ 2Að Þ þ
K

630
504þ 24a2 þ a4
� �

þ 4

d9
6a4 �1680� 840d� 180d2 � 20d3 � d4
��

þed 1680þ 840dþ 180d2 � 20d3 þ d4
� ��

þ d4 �864� 432d� 96d2 � 12d3 � d4
�

þed 864� 432dþ 96d2 � 12d3 þ d4
� ��

þ 2a2d2 �7920� 3960d� 852d2 � 96d3 � 5d4
�

þed 7920� 3960dþ 852d2 � 96d3 þ 5d4
� ��


#

ð19Þ

and

ðRLin
rr Þ ¼ 1960 10þ a2ð Þ

3a2

 
�AK 28þ 3a2ð Þ2

5880 10þ a2 þ 2Að Þ

þ K

630
504þ 24a2 þ a4
� �

!

þ
14 2520 4þ 2dð Þ þ a2 1488þ 744dð Þ þ a4 68þ 34dð Þ þ a6 2þ dð Þ
� �

27a2

ð20Þ

The expression representing the value of critical wave

number ac at which the minimum value of ðRexp
rr Þ given by

expression (19) exists is obtained by performing some

numerical calculations. The expression so obtained is too

lengthy and hence is omitted here for the sake of

compactness. However, we have calculated the values of

critical wave numbers ac from the said expression and

consequently the critical Rayleigh numbers from

expression (19) for particular values of d. The values so

obtained are presented in Table 1 for different values of A

and in Table 2 for different values of K.

Further, for the case of linear variation of viscosity,

ðRLin
rr Þ given in Eq. (20) attains its minimum value RLin

rr

� �
c

for different values of ac, given by positive root of equation

A2 A;K; dð Þa10 þ B2 A;K; dð Þa8 þ C2 A;K; dð Þa6

þ D2 A;K; dð Þa4 þ E2 A;K; dð Þa2 þ F2 ¼ 0
ð21Þ

where A2 A;K; dð Þ ¼ 14 2þ dþ 2Kð Þ½ �
B2 A;K; dð Þ ¼ 2þ dð Þ 518þ 112Af g þ 1036K½

þ197AK�

C2 A;K; dð Þ ¼ 14 2þ dð Þ 100þ 8A2
� �

þ 112A
� 
�

þ2800K�
þ 17 2þ dð Þ 280þ 112Að Þf
þ560Kg þ 116A2K þ 5508AK

	

D2 A;K; dð Þ ¼ �35280 2þ dþ 2Kð Þ½
þ 17 2þ dð Þf 14 100þ 8A2

� ��

þ1120Ag þ 2800Kg þ þ2260A2

þ37732AK�

E2 A;K; dð Þ ¼ �2520½ 2þ dð Þ 280þ 112Að Þf
þ560Kg � 517440AK�

F2 A;K; dð Þ ¼ �35280 2þ dð Þ 100þ 112A2
���

þ1120AÞ þ 200Kg
�518520A2K � 5409600AK

	

In the absence of micropolar parameters (i.e.,

A ¼ 0 ¼ K), Eq. (21) yields

2þ dð Þ 10þ a2
� �2ða6 þ 17a4 � 2520Þ ¼ 0 ð22Þ

Here, ac ¼ 3:11 is the only positive root of Eq. (22), and

ðRLin
rr Þ attains its minimum value

RLin
rr

� �
c
¼ 874:988 2þ dð Þ at ac ¼ 3:11:

This is the same value of Rayleigh number as obtained

by Dhiman and Kumar [21] for the Rayleigh–Bénard

convection with temperature-dependent viscosity. We also

observe that in the absence of micropolar parameters and

for the case of constant viscosity (i.e., when

A ¼ 0 ¼ d ¼ K), the value of critical Rayleigh number

Rrrð Þc¼ 1750, obtained using Galerkin method, is very

close to the well-known exact value 1707.7 at ac ¼ 3:11, as

obtained by Chandrasekhar [24] for the Rayleigh–Bénard

convection with constant viscosity.

It is clear from Eq. (21) that all the coefficients of fifth-

degree equation in a2 involve A and K implicitly, and

hence, it is difficult to obtain the values of critical wave

numbers ac given by any positive root of Eq. (21) analyt-

ically. Therefore, for particular values of d, we have cal-

culated the values of critical wave numbers ac from

expression (21) and consequently the critical Rayleigh

numbers ðRLin
rr Þc from expression (20). The results so

obtained are also presented in Table 1 for different values
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of A and Table 2 for different values of K for the case of

linear and exponential variation of viscosity. Further,

Fig. 1a–b depicts the variation of Rayleigh number ðRexp
rr Þ

with respect to d for fixed values of Aand K.

Now, proceeding exactly as in Case 1 of boundary

conditions above, we obtain the analogous expressions for

Rayleigh numbers for other cases of boundary combina-

tions (Case 2, Case 3 and Case 4) using the suitably chosen

trial functions (given below) satisfying the relevant

boundary conditions, for both linear and exponential cases

of viscosity variation as

w ¼ z4 � 2z3 þ z; h ¼ z z� 1ð Þ

and G ¼ z z� 1ð Þ
(Both boundaries are dynamically free)

w ¼ 2z4 � 5z3 þ 3z2; h ¼ z z� 1ð Þ

Table 1 Variation of Rrrð Þc with respect to d and A for different values of a2c and fixed value of K ¼ 0:2, for Case 2 of boundary conditions

Linear variation Exponential variation

A d a2c Rrrð Þc d a2c Rrrð Þc

10 0.0 9.843 2532.1 0.0 9.843 2532.1

0.2 9.835 2707.5 0.2 9.835 2721.8

0.5 9.824 2969.6 0.5 9.837 3065.4

0.7 9.818 3144.6 0.7 9.845 3344.2

0.9 9.812 3319.6 0.9 9.860 3671.2

100 0.0 10.153 2455.6 0.0 10.153 2455.6

0.2 10.123 2630.7 0.2 10.122 2645.0

0.5 10.084 2839.4 0.5 10.091 2989.1

0.7 10.063 3068.5 0.7 10.078 3268.0

0.9 10.043 3243.5 0.9 10.073 3594.9

0.0 10.230 2422.0 0.0 10.230 2422.0

500 0.2 10.194 2617.2 0.2 10.193 2631.4

0.5 10.149 2879.9 0.5 10.15 2975.6

0.7 10.123 3055.0 0.7 10.135 3257.5

0.9 10.100 3230.1 0.9 10.125 3581.5

Table 2 Variation of Rrrð Þc with respect to d and K for different values of a2c and fixed value of A ¼ 200, for Case 2 of boundary conditions

Linear variation Exponential variation

K d a2c Rrrð Þc d a2c Rrrð Þc

0.2 0.0 9.942 2029.4 0.0 9.942 2029.4

0.2 9.924 2204.6 0.2 9.924 2218.9

0.5 9.901 2466.9 0.5 9.915 2562.7

0.7 9.888 2641.9 0.7 9.917 2841.5

0.9 9.877 2817.0 0.9 9.927 3168.5

0.5 0.0 10.199 2447.1 0.0 10.199 2447.1

0.2 10.165 2622.5 0.2 10.164 2636.7

0.5 10.123 2885.2 0.5 10.128 2980.9

0.7 10.099 3060.3 0.7 10.112 3259.8

0.9 10.077 3235.4 0.9 10.104 3586.7

0.0 10.487 3142.5 0.0 10.487 3142.5

1 0.2 10.444 3321.5 0.2 10.441 3335.1

0.5 10.387 3580.8 0.5 10.385 3676.5

0.7 10.354 3756.1 0.7 10.35 3955.5

0.9 10.324 3931.3 0.9 10.328 4282.6
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and G ¼ z z� 1ð Þ
(Lower rigid and upper free boundaries)

w ¼ 2z4 � 3z3 þ z; h ¼ z z� 1ð Þ

and G ¼ z z� 1ð Þ
(Lower free and upper rigid boundaries)

The expressions for Rayleigh numbers so obtained in

each of these cases of boundary conditions represent the

analogous behavior with respect to a2 for different values

of d and for fixed values of Aand K for linear and expo-

nential cases of variation of viscosity.

5 Discussion and Conclusions

A linear stability of micropolar liquid layer heated from

below with temperature-dependent viscosity is investigated

in the present analysis. The PES is proved to be valid for

the problem which yields that the onset of convection in

this general problem is through stationary mode. The

expressions for the Rayleigh numbers (for both linear and

exponential cases of viscosity variation for stationary

mode) for each case of boundary conditions are obtained

using a single-term Galerkin method.

From Fig. 1a and b, we conclude that for large values of

temperature-dependent viscosity parameter d (which also

includes the temperature gradient b), for increasing values

of micropolar viscous parameter K and for marginally

decreasing value of coupling parameter A; the value of

Rayleigh number increases and hence viscosity parameter

d has stabilizing effect on the onset of stationary convec-

tion of micropolar fluid layer in each case of boundary

conditions. This may be due to the fact that for large values

of d, i.e., for more viscous fluid or for large temperature

gradient b, the flow rate decreases and consequently

degrades the heat transfer performances. Thus, the value of

critical Rayleigh number Rcð Þ increases. Hence, the vis-

cosity parameter has stabilizing effect on the system.

From the variation of Rayleigh numbers presented in

Table 1, we observe that increasing values of micropolar

coupling parameter Að Þ, decrease the couple stress of the

fluid which causes a decrease in microrotation and hence

makes the system more unstable as a result the value of

Rayleigh number decreases and hence Rc also decreases.

This implies that A has destabilizing effect on the onset of

stationary convection in micropolar fluid layer in Case 1 of

boundary conditions.

Similarly, from Table 2, we observe that the values of

Rayleigh number increase with increasing values of

micropolar viscous parameter K. Since an increase in K

indicates the increase in the concentration of microele-

ments, these microelements consume the greater part of the

energy of the system in developing the gyrational velocities

of the fluid and as a result the onset of convection is

delayed. This implies that K has a stabilizing effect on the

onset of stationary convection.

It is to point out here that the Rayleigh numbers show

the analogous variation with respect to a2 for different

values of d and for fixed values of A and K for linear and

exponential cases of variation of viscosity in other cases of

boundary conditions also. Hence, the tables of values of

variations are omitted here for the sake of compactness and

repetition.

We also observe from the values presented in tables that

ac depends upon d for both exponential and linear variation

of viscosity for each case of boundary condition. Further,

we found that for fixed value of d, the values of critical

Rayleigh numbers Rcð Þ are higher in the case of expo-

nential viscosity variation than the linear viscosity varia-

tion in each case of boundary condition, which means that

the exponential varying viscosity is more stabilizing than

the linear varying viscosity.

Fig. 1 a Variation of R with respect to d for fixed value of A ¼ 500

and different values of K ¼ 0:2; 0:5; 1, for the case of both rigid

boundaries. b Variation of R with respect to d for fixed value of K ¼ 1

and different values of A ¼ 10; 100; 600; for the case of both rigid

boundaries
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From the above analysis, we also observe that in the

absence of micropolar parameters and variable viscosity

(i.e., A ¼ 0 ¼ d ¼ K, the classical Bénard problem case),

the values of critical Rayleigh numbers for each case of

boundary conditions are very close to the values obtained

by Chandrasekhar [24] for the Rayleigh–Bénard convec-

tion problem with constant viscosity for ordinary fluid and

are also in close agreement with the values obtained by

Dhiman and Kumar [21] for Rayleigh–Bénard convection

problem with temperature-dependent viscosity (i.e., taking

A ¼ 0 ¼ K). Thus, the above remarks clearly establish the

generality of the results derived herein and thus are of

wider applicability.
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