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Abstract Climate variability significantly impact the

agricultural growth, stress, cropping pattern, phenophase

and its vulnerability. Satellite derived indices, climate and

socio-economic data sets have been used to study the time

series trend of agricultural NDVI and agriculture drought

vulnerability for two states of India namely Andhra Pra-

desh and Telangana. The study uses NOAA AVHRR

GIMMS NDVI.3g. v1 (1982–2015) data set. The trend

analysis of climate and soil moisture was carried out to

understand their impact on the agriculture growth/stress,

length of the growing period (LGP) and projected agri-

culture NDVI for IPCC climate AR5 2050 RCP 2.6 sce-

nario. A novel approach is applied to the integrated data

sets i.e. satellite and climate variables including socio-

economic to assess the agricultural drought vulnerability at

the district level, and at the tehsil level of united Telangana

and Andhra Pradesh states for the recent-past. We further

projected the vulnerability using IPCC AR5 2050 and 2070

climate RCP 2.6 scenario. The study has revealed that

climate and soil moisture have a significant impact on LGP

and agriculture condition. The predicted agricultural NDVI

are near like normal years (2007 and 2013) indicating

climate change signatures are not expected in near future.

There is a need to improve the understanding using higher

resolution soil moisture data to plan appropriate adaptive

and mitigation strategies for the agricultural drought con-

ditions in changing climate scenario.

Keywords GIMMS � Trend � LGP � Climate change �
Agricultural drought vulnerability

1 Introduction

In India, 54.6% of population is engaged in agriculture and

allied activities (census 2011). Hence, any change in the crop

condition/stress is likely to affect the overall economy of the

country [1]. At least once in every 3 years, over the last few

decades, India has experienced moderate-to-severe drought

conditions [1]. Drought is one of the most crippling hazards

and its direct impact is generally observable on agriculture. It

is influenced by vegetation, land use, water resources, climate

related parameters like precipitation, temperature, evapo-

transpiration, and socio-economic parameters [2].

Variation in crop stress, crop phenophase, cropping

pattern, length of crop growing periods etc. are the indi-

cators of the impact of climate change [3]. The climate

change is expected to influence the drought condition,

which in turn has an impact on agriculture [4, 5].

Phenology metrics are used to distinguish regionally the

same crop having differences in sowing date and growth

profile [6]. The time series change in phenology profiles is

mainly due to the impact of weather conditions, climate

change and anthropogenic factors. Length of the growing

period (LGP) determined from the phenophase profiles

have been studied in India only during the period of kharif

season [7] and that too specific to agro-ecological zones of

erstwhile Andhra Pradesh State [8]. LGP for any given

region represents the number of days when plant growth

takes place.
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Agricultural drought, caused by reduced soil moisture

availability to crops would lead to considerable economic

loss worldwide. Agriculture is one of the most sensitive

and vulnerable to climate change among all the sectors

[4]. Therefore, study of vulnerability is important as it

enables the identification of areas or resources at risk, and

the loss of such resources that could threaten future

adaptation and sustainable development [9]. There are

three widely used approaches to assess the vulnerability,

namely (i) socio-economic approach, (ii) biophysical

approach and (iii) integrated assessment approach. A few

studies have been carried out in India to assess the

drought vulnerability. For example, Chandrasekar et al.

[10] have adopted Multi Criteria Analysis (MCA) for

assessing agricultural drought vulnerability in Tamil Nadu

State; Kaushalya et al. [2] computed the vulnerability

using satellite and climatic data sets in Agro-ecological

sub-division (ASER) of India; and Murthy et al. [11].

adopted IPCC composite index approach using remote

sensing data during Kharif crop (August-October) in

various states. Studies were also carried out without

spatial data, considering bio-physical and socio-economic

parameters with climate change during Kharif season in

Indo-Gangetic plains using integrated approaches [12].

However, most of the studies have ignored the impact of

monsoon on winter/rabi and summer/zaid cropping sea-

son. Bhavani et al. [13] have shown that monsoon rains

would also have an impact on rabi and zaid cropping

periods. Therefore, agriculture stress of three cropping

seasons with respect to climate can be used to study the

agriculture drought vulnerability in three seasons.

Satellite NOAA Advanced Very High Resolution

Radiometer (AVHRR) GIMMS NDVI 3g.v1(1982–2015)

continuous time series data is used for time series trend

analysis of agriculture NDVI and LGP, whereas for agri-

cultural drought vulnerability assessment, satellite indices

derived from GIMMS and MODIS (NDVIDev, VCI, %

Ratio of crop fluctuation) adopted from Bhavani et al. [13],

climate (1982–2015), and socio-economic data sets are

used. The data sets are described in detail in Sect. 2.2.

The specific objectives of the study are

1. to examine long-term variations (33 years) of NDVI

and LGP with climate and soil moisture using GIMMS

NDVI3g.v1 data for the two states under consideration

viz., Telangana (TS) and Andhra Pradesh (AP), and

projection of future agriculture NDVI using IPCC AR5

RCP 2.6 climate scenario;

2. to compute and assess the current status of agriculture

drought vulnerability in TS and AP states at district

and tehsil levels using integrated data sets i.e. satellite

derived indices (adopted from Bhavani et al. [13]),

climate, socio-economic and Institutional data; and

3. to assess the future agricultural drought vulnerability

(only at district level using the projected climate

scenarios (RCPs 2.6, 4.5, 6.0 and 8.5) during three

cropping seasons (June–September, October-January

and February-May).

2 Materials and Methods

2.1 Study Area

The study area encompasses two states namely Telangana

(TS) and Andhra Pradesh (AP). Hyderabad district falling

in TS is excluded from the present study because it has no

significant agricultural area [14]. The former undivided AP

state lies in the tropical region between the latitudes

12�140N and 19�540N and longitudes 76�460E and 85�400E.
The area falls in the semi-arid region of peninsular India

was bifurcated into two states in 2014, namely, Andhra

Pradesh (comprising of 13 districts) and Telangana (10

districts), as shown in Fig. 1. The three distinct seasons of

former AP are the kharif or summer monsoon (June–

September), winter or rabi (October–January) and summer

or zaid (February-May). The annual maximum temperature

of the state is * 20 �C, and the minimum is around

10–12 �C [15]. The coastal plains experience relatively

warm summer with temperatures often exceeding * 38 �C
at places. The southwest monsoon contributes to almost

two-thirds of the annual rainfall, which, however varies

widely across the state. Some coastal areas receive

1400 mm of rain, whereas the northern and western parts

of the plateau receive about 500 mm. Most of the culti-

vation (about 68.27%) takes place during the monsoon/

rainy period from June to September. Other irrigation

sources and the residual soil moisture are used for culti-

vation in winter (rabi) and summer season (zaid). The

moisture stress modulates the crop growth and gets

reflected in the NDVI. The sowing pattern is also depen-

dent on the precipitation and available soil moisture.

2.2 Data

2.2.1 Satellite Data

2.2.1.1 NOAA AVHRR GIMMS NDVI NOAA (AVHRR)

GIMMS NDVI3g.v1 (third generation version 1) bimonthly

products with spatial resolution of 8 km 9 8 km was

downloaded from https://ecocast.arc.nasa.gov/data/pub/

gimms/3g.v1/00FILE-LIST.txt during July 1981 to Decem-

ber 2015. These NDVI data sets have been corrected for

calibration, viewing geometry, volcanic aerosols and other

effects that are not related to vegetation change. The data
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contain global geographical projections (Geographic, WGS

1984). The GIMMS products are at 8 km resolution, 16-day

maximum value composite (MVC) bimonthly global NDVI

product generated from AVHRR data. The data sets are in

GEO TIFF and NetCDF format. Satellite indices (NDVIDev,

VCI, %RCF) derived from-NDVI product were adopted

from our previous study [17] to assess the agriculture

drought vulnerability, whereas GIMMS NDVI 3g.v1 con-

tinuous data over the time period from 1982 to 2015 was

used to assess the long-term trend of agriculture growth/

stress and to calculate LGP and their relationship with cli-

mate and soil moisture.

2.2.2 Soil Moisture and Soil Maps

Soil moisture plays an important role in agriculture pro-

cess, drought and run off generation. The soil moisture data

(available in NetCDF format) have been downloaded from

European Space Agency (ESA) Climate Change Initiative

(CCI) daily merged passive and active sensor at

0.25� 9 0.25� for the period 1982–2013 (http://esa-

soilmoisture-cci.org/node/139). Soil maps have been

downloaded from National Bureau of Soil Survey and Land

use Planning (NBSSLUP). These maps consist of the fol-

lowing parameters; surface form, soil depth, parent mate-

rial, particle size class, mineralogy, calcareousness, soil

temperature regime, soil reaction (pH), Slope, soil drai-

nage, erosion, surface texture, salinity, acidity, organic

carbon (OC), surface stoniness, cation exchange capacity

(CEC), and flooding. In this study, soil depth and soil

texture have been used to generate the available water

holding capacity (AWHC).

2.2.3 Climate Data sets

The daily rainfall and temperature data sets available at

0.25� 9 0.25� and 0.5� 9 0.5� from the India Meteoro-

logical Department (IMD) for the period 1982–2015 were

used in this study [16]. These variables are used to assess

Exposure (E). Further, project AR5 climate parameters

Fig. 1 Location map of study

area
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(rainfall and temperature) were also used to project/assess

future agricultural drought vulnerability. Future projected

data are available from the IPCC AR5 climate projections

from global climate models (GCMs) for four representative

concentration pathways (RCPs) [17]. The GCM output was

downscaled and calibrated (bias corrected) using World

Clim 1.4 as baseline ‘current’ climate.

AR5 global gridded climate data with a spatial resolu-

tion of 30 s (1 km 9 1 km) have been downloaded from

World Clim- Global Climate data (http://www.worldclim.

org/). The monthly climate data i.e. minimum and maxi-

mum temperature, precipitation generated from Hadley

Centre Global Environment Model version 2-Earth System

(HadGEM-ES) available for the periods 2050 and 2070

have been used in this study.

2.2.4 Socio-economic Data

Socio-economic data sets are used as indicators for

assessing vulnerability. The digital form of socio-economic

data (Census of India) is available only for 2001 and 2011.

The socio-economic data set of 2011 comprising of pop-

ulation density, literacy rate, migrant rural persons and

livestock are downloaded from Census of India as one the

parameters of Sensitivity (S) or Adaptive Capacity (AC) to

assess present Agricultural Drought Vulnerability Index

(ADVI). The data sets viz., population density, literacy

rate, livestock available from 1966 to 2011 were down-

loaded from ICRISAT VDSA to project socio-economic

parameters for the year 2030. These projected parameters

are used as one the parameters of S or AC to assess future

ADVI.

2.2.5 Agricultural Field Data

The historic data sets from 1966 pertaining to agricultural

labors, agriculture wages and gross irrigated data are

downloaded from ICRISAT VDSA to project the data for

the year 2030. The present (2011) field data i.e. agricultural

labors (main and marginal), agriculture wages and agricul-

ture consumption are downloaded from census of India. The

Gross Irrigated Area (GIS), Extent of Gross Irrigated Area

(Ex. GIr), Surface Water (SW), Ground Water (GW) and the

Net Irrigated Area (NIA) statistics of the state for the period

2011–2012 were downloaded from the International Crop

Research Institute for Semi-Arid Tropics (ICRISAT), and

Village Dynamics in South Asia (http://vdsa.icrisat.ac.in/).

2.2.6 Institutional Data

The institutional data sets such as agricultural credit soci-

ety, commercial banks, and agricultural marketing society

and road networks for the year 2011 are downloaded from

Census of India at tehsil level.

2.3 Data Processing

2.3.1 Methodology

2.3.1.1 NOAA GIMMS NDVI3g.v1 Processing The

downloaded NOAA AVHRR GIMMS NDVI products

were multiplied by a scale factor before the study area was

subset. For time series analysis bimonthly NDVI has been

used and for seasonal assessment bimonthly NDVI prod-

ucts from 1982 to 2015 are used.

2.3.1.2 Time Series Trend Analysis For continuous trend

analysis of agricultural NDVI; phenophase metrics; its

relation to climate (precipitation and maximum tempera-

ture) and soil moisture; and projection of agricultural NDVI

for 2050 IPCC AR5 RCP 2.6 scenario, GIMMS NDVI

3g.v1 bimonthly pre-processed data have been used in

addition to statistically computed data at the state level (TS

and AP). For grid wise projection of agricultural NDVI at

three cropping seasons, raster bimonthly agricultural NDVI

is converted to seasonal data for 1982–2015. The daily

gridded rainfall, temperature and soil moisture data sets

have been converted to mean bimonthly, similar to that of

GIMMS NDVI 3g.v1, and subset to area of interest (AOI).

2.3.1.3 Computing the Length of Growing Period from

Phenophase Events The bimonthly agricultural NDVI

data starting from June to January each year (1982–2015)

was considered, as June to January period (summer mon-

soon and winter cropping seasons) covers both kharif and

rabi cropping seasons. Double Logistic (DL) Kolsertman-

model [18] was fitted to time series agricultural NDVI to

extract the phenological events i.e. start of the season

(SOS), peak of the season (POS) and end of the season

(EOS) based on pheno first derivative method [19]. SOS

and EOS are the points where the NDVI profile crosses the

threshold value in upward and downward directions

respectively. The extracted pheno events for each year are

mentioned in Supplementary Table 1 (SM1). The perfor-

mance of fitting DL model, smoothing and extraction of

phenophase are done in R language phenoix package [19].

LGP is computed from aggregated days from SOS to EOS

obtained events (Eq. 1). Similar procedure is repeated for

each year during 1982–2015. Summation of bimonthly

rainfall and soil moisture data sets have also been done

with similar NDVI pheno events i.e. SOS to EOS, whereas

for maximum temperature, mean value is generated. The

impact of climate and soil moisture on LGP is calculated

using the following equation
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LGP ¼
X

SOS to EOS ð1Þ

and shown in scatter plots along with the trend lines

2.3.1.4 Long-Term Trend of Agricultural NDVI to the

Climate and Soil Moisture The pre-processed agricultural

NDVI of GIMMS and temperature have been rescaled to

0.25 degree, to make them consistent with the rainfall-

gridded data set of IMD. The converted bimonthly rainfall,

maximum temperature, soil moisture and agricultural

NDVI are extracted at state level for 1982–2015, staring

from June 1982 to May 2015. A decompose function is

applied to these data sets using R statistical software to

obtain trend component, seasonal component and irregular

component. The relation of NDVI with climate variables

and soil moisture for both the states is then studied using

the graphical plots of time series trends.

2.3.1.5 Projection of Agricultural NDVI for AR5 2050RCP

2.6 Scenario Grid wise projection of agricultural NDVI

has been carried out using multiple linear regression model

based on the relationship of recent-past long-term

(1982–2015) multiple variables i.e., agricultural NDVI and

climate data (rainfall and maximum temperature).

Bimonthly multiple data sets have been converted into

three seasons, namely the Kharif/summer monsoon (June–

September), Rabi/winter (October–February) and

Zaid/summer (February–May). Each season consists of 32

layers (years). Three raster data sets i.e., seasonal agricul-

tural NDVI, rainfall and maximum temperature are stacked

per year, each one consists in 32 raster layers. The

parameters i.e. slope, intercept, coefficient of determination

(R2) and significance level (p-values) were extracted at grid

level and plotted. R2 values are used to examine the rela-

tionship between agricultural NDVI and climate data sets.

The estimated parameters i.e. slope and intercept from

regression model along with IPCC projected AR5 climate

data (i.e. rainfall and maximum temperature) for the year

2050 have been used to predict the 2050 seasonal agri-

cultural NDVI at pixel level based on the equation

Y ¼ aþ b1b1 þ b2b2 ð2Þ

where, Y is predicted agricultural NDVI at each grid; a is Y

intercept; b1and b2 are slopes of two independent variables

(rainfall and maximum temperature) and b1&b2 are

observed/projected AR5 independent climate variables

(rainfall and maximum temperature). The spatial distribu-

tion of seasonal agricultural NDVI during the recent years

with drought, normal and best years along with projected

2050 seasonal agricultural NDVI are discussed in Sect. 3.2

2.3.1.6 Agriculture Drought Vulnerability IPCC defines

vulnerability (V) as the composite index of exposure (E),

sensitivity (S) and adaptive capacityindex (AC). In the

context of climate change, exposure is defined as ‘‘the

nature and degree to which a system is exposed to signif-

icant climatic variation’’; sensitivity of the system to cli-

mate change is defined as ‘‘degree to which a system is

affected, either adversely or beneficially, by climate vari-

ability or change’’; and adaptive capacity is defined as ‘‘the

ability (or potential) of a system to adjust successfully to

climate change’’ The study uses agricultural drought vul-

nerability index (ADVI) at district and tehsil level based on

IPCC [7] work frame. Table 1 summarizes the description

of data used in the ADVI assessment.

Agriculture drought vulnerability index was calculated

based on four steps i.e. identification of indicators, nor-

malization, ranking, weighting of indicators using Analyt-

ical Hierarchy Process (AHP).

Identification of indicators of each component (E, S, and

AC) for vulnerability analysis is based on the previous

studies [11, 21, 22]. Redundancy analysis was carried out

to finalize the list of indicators to improve the vulnerability

analysis at district and Tehsil levels. This has helped to

reduce the dimensionality of parameters for vulnerability

assessment. The variables are categorized into broad

groups based on the source of the data set listed in Table 2.

The socio-economic and agricultural parameters i.e. pop-

ulation, literacy rate, agricultural labors, and gross irrigated

available for every decadal years (1966–2011) are com-

puted using Eq. 3a in each case. The decadal percentage

growth rate during 1966–2011 is averaged and used for

computing the future value for respective parameter using

Eq. 3b. The population of AP was considered to be stabi-

lized in 2030. Thus the projections of parameters were

done only up to 2030. Since each component has different

units and scales the normalization was carried out using the

following equations (Eq. 4a, 4b).

PR ¼

Vpresent�Vpastð Þ
Vpastð Þ � 100

N
ð3aÞ

Future ¼ Nth year � i
100

� �
� Vpresent ð3bÞ

where, PR is Percent Rate; VPresent is Present; VPast is Past

value; N is number of years; Nth year is the future year to

be predicted and i is the average growth rate of past

decadal years.

Yij ¼
Xij �Min Xij

� �� �

Max Xij

� �
�Min Xij

� �� � ð4aÞ

Yij ¼
Max Xij

� �
� Xij

� �

Max Xij

� �
�Min Xij

� �� � ð4bÞ
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where, Xij represents the actual value of the indicator i for

the district j, where i and j can vary from i = 1,2, 3…, n;

j = 1,2,3…, m. MIN(Xij) and MAX(Xij) are the minimum

and maximum value of the indicator i. If the indicator has a

positive relationship with vulnerability, Eq. 4a was used

for the normalization and in case of a negative relationship

Eq. 4b was used. An approach for ADVI in Present and

Future climate is presented in the Table 3.

After normalization, weights for each component of

indicators are determined using the AHP method [23]

adopted from Cheng [24] and Miura [25] for vulnerability

analysis. The AHP priority and weights used for the dis-

trict/tehsil level are provided in Tables 4 and 5. The con-

sistency ratio was checked for all the components. Using

the respective weights, E, S and AC indices are computed

and scaled/categorized into 5 classes. Finally, ADVI is

generated using Eq. 5.

Table 2 Recent-past and future indicators finalized in each component

Indicators Parameter District wise Tehsils Level Source

Present period Future

1982–2015

Sensitivity GCA 2011 & N/D Census of India

Drought Frequency Generated from GIMMS and

MODIS Deviation of NDVI

& N/D Bhavani et al. [13]

VCI Derived from NDVI 1982–2015 & E* Kogan [20]

% Ratio of crop

fluctuation

N/D & E* Bhavani et al. [13]

S.Er Vector Soil map available 2005 & E* NBSSLUP

AWHC Generated using soil texture & E* NBSSLUP and DAB (1960)

Pop. D 2011 ** 2011 Census of India

T-AgL 2011 ** 2011 Census of India

% MgR 2011 & N/D Census of India

% NCA N/D N/D 2011 Census of India

NSA N/D N/D 2011 Census of India

Adaptive

capacity

%LiT 2011 ** – Census of India

%LiR 2011 ** 2011 Census of India

AgP 2011 & 2011 Agricultural Statistical glance

and Census of India

AgW 2011 ** N/D Census of India

L/S 2011 ** N/D ICRISAT VDSA

ExG-Ir 2011 & N/D Agricultural Statistical glance

G-Ir 2011 ** 2011 ICRISAT VDSA

Ag-CrSo N/D N/D 2011 Census of India

CoB N/D N/D 2011 Census of India

RN N/D N/D 2011 Census of India

Ag-Mr-So N/D N/D 2011 Census of India

Exposure Rainfall 1982–2014 (0.25 Æ 9 0.25 Æ ) AR5, RCP Scenarios E* India Meteorology Department

and World ClimateTemp Max 1982–2013 (0.5 Æ 9 0.5 Æ ) E*

Min

No. DF no of drought frequency, %RCF percentage ratio of crop fluctuation, VCI vegetation condition index, GCA gross cropped area, S. Er soil

erosion, AWHC available water holding capacity, Pop. D population density, T-AgL total agriculture labour,%MgR percentage of migrants rural,

% NCA % non cropped area, %NSA percentage of net sown area, %LiT percentage of total literacy, %LiR percentage of rural literacy, AgP

agriculture power consumption, AgW agriculture wages, L/S live stock, ExG-Ir extent of gross irrigated area, G-Ir gross irrigated area, Ag-CrSo

agriculture credit society, CoB commercial banks, RN road networks, Ag-MrSo agriculture marketing society, Min Temp minimum temperature,

Max Temp maximum temperature, RCP representative concentration pathway

& Same (1982–2015) present data

** Generated 2030 using past 50 years data

E* Extracted the data for Tehsils study area; and N/D: no data
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ADVI ¼ f E þ Sð Þ � ACð Þ ð5Þ

where, E, S, AC are exposure, sensitivity and adaptive

capacity, respectively.

The E, S, AC and ADVI maps at district and tehsil levels

(June–September; October- January and February- May)

were prepared using ArcGIS software. Similar procedure is

carried out to assess future ADVI for IPCC AR5 (2050 and

2070) climate scenarios as an exposure indicator of

vulnerability.

Overall representation of methodology is illustrated in

Fig. 2.

3 Results and Discussion

Agriculture yield mainly depends on the water, soil,

nutrition and management practices. However, in many

cases the proportions of these inputs vary, depending upon

the amount of precipitation the region has received, the

availability of irrigation facilities and the management of

the nutrition and other cultural practices [26]. Socio-eco-

nomic factors are also responsible for climate change [17],

hence, these factors would also influence the agriculture.

The present study supports the results of agriculture stress

conditions reported in our previous studies [13]. The

Table 3 Approach for agricultural drought vulnerability index in present and future climate (adopted and modified Shukla et al. [5])

Parameters used for agricultural drought vulnerability analysis

Exposure Sensitivity Adaptive capacity

Current Future (2050 and 2070) District Tehsils District Tehsils

1982–2015

1. Long term mean precipitation

2. Long term mean maximum

temperature

3. Long term mean minimum

temperature

RCP

2.6

RCP

4.5

RCP

6.0

RCP

8.5

1. Annual maximum and minimum

temperature

2. Annual mean precipitation

1. GCA

2. No. DF

3. VCI

4. So.Er

5. AWHC

6. Pop.D

7. T-AgL

%MgR

1. NSA

2. %

RCAF

3. VCI

4. % NCA

5. So.Er

6. AWHC

7. Pop.D

8. T AgL

1. G-Ir

2. Ex

G-Ir

3. AgW

4. AgP

5. L/S

6. %LiR

7. %

LiT

1. TIA

2. AgP

3. AgCrSo

4. ComB

5. %Li

6. RN

7.

Ag.MgSo

Analysis Extraction of pre-processing indicators

Normalisation of indicators

Weights of indicators using AHP method

GIS analysis Agricultural drought vulnerability index for all climate scenarios ADVI = ([E ? S]-AC)

Overlay of district boundary to find the highest vulnerable zones

Generate vulnerability map

Abbreviation mentioned below Table 2

Table 4 District and Tehsils level scales/priority of indicators for each component

District Tehsils

Adaptive capacity Sensitivity Exposure Adaptive capacity Sensitivity Exposure

Indicators Scale Indicators Scale Indicators Scale Indicators Scale Indicators Scale Indicators Scale

%Li 1 %MR 1 Min Temp 1 Ag_MgSo 1 TAgL 1 MinTemp 1

%LiRu 2 T_AgL 2 Max Temp 3 RN 2 Pop_D 2 Max Temp 3

L/S 3 Pop.D 3 Precipitation 9 %Li 3 AWHC 3 Precipitation 9

AgW 5 AWHC 4 Com.B 5 So_Er 4

AgP 6 So. Er 5 Ag_CrSo 6 % NCA 5

Ex-GIA 7 % RCF 6 AgP 7 VCI 6

GIA 9 No. DF 8 TIA 9 % RCF 7

GCA 9 NSA 8

Abbreviations as mentioned in Table 2
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impact of climate and soil moisture on agriculture and

LGP, over the last 3 decades using satellite and climate

data (1982–2015), have been captured by time-series

analysis. The systematic analysis of agriculture stress and

long-term impact of climatic parameters have been further

studied to assess the quantity/state of agriculture vulnera-

bility, additionally in considering socio-economic data.

3.1 Long-Term Response of Length of the Growing

Period and NDVI with Rainfall and Soil

Moisture

Phenological events determine the length of cropping

growth cycle. The time period of the agriculture crop

growth (i.e. SOS to EOS events) is dependent upon many

climatic parameters, soil moisture and irrigation sources.

This time period is referred to as LGP. It is a crucial

parameter to understand the variation of vegetation/plant

growth, start and end of crop seasons events in each year

and impact of rainfall and temperature variability on crop

[27, 28]. The present study considers two cropping sea-

son’s i.e. June–January (Kharif/summer monsoon and

Rabi/winter season) bimonthly data sets. The relation of

LGP with rainfall, maximum temperature and soil moisture

during 1982–2015 for the both the states (AP and TS) is

illustrated in scattered plots Fig. 3a, b. An increasing trend

is observed in LGP to that of rainfall and soil moisture in

both states and vice versa with temperature; hence decision

making in sowing, growth pattern, crop calendar, cropping

pattern and all crop husbandry practices should be made

cautiously. A good coefficient of determination (R2 = 0.67

for TS and R2 = 0.57 for AP) was observed between LGP

and rainfall.

To understand the climatic and biophysical influence on

the agricultural NDVI condition, long term response of

NDVI with climate and soil moisture is studied. It has been

observed that crop growth pattern/change in NDVI are

influenced by climate and bio-physical distribution

[29, 30]. Due to large inter-annual variability, spatial pat-

terns of NDVI and their driving parameters vary signifi-

cantly in different areas when different study periods are

selected [30]. Thus, long term fortnightly NDVI and rain-

fall time series data provide basis for crop progression

during the different years of the study. The impact of cli-

mate and soil moisture on agricultural NDVI during

1982–2015 for AP and TS is illustrated in Fig. 4a, b. With

the increase in rainfall and soil moisture, agriculture NDVI

also increases and vice versa. Reverse effect is observed

with maximum temperature in the both the states. Thus, it

proves that these parameters are essential to assess the

agriculture vulnerability and risk.

3.2 Projection of Agricultural NDVI Using Satellite

and Climate Data sets

As discussed above, a long-term trend of agriculture

NDVI and LGP have a strong impact of climate and its

variables. With this evidence, we have further simulated

the future agricultural NDVI spatial pattern over the study

region using coefficients determined from model and

IPCC AR5 projected climate for RCP 2.6 scenario. The

model significance (p\ 0.05) at each grid is illustrated in

Fig. 5. The spatial distribution of seasonal projected 2050

agriculture NDVI along with extreme stress, normal and

best agricultural NDVI years are adopted from the pre-

vious study [13] in Fig. 6. The projected agricultural

NDVI has been observed quite similar to normal agri-

cultural years during all the seasons. However, the decline

in agricultural NDVI has been observed during summer

Table 5 Pair wise priority weights of indicators of components

sensitivity, adaptive capacity and exposure

Indicators Parameter District wise Tehsils level

Sensitivity % MgR 0.023 N/D

T-AgL 0.034 0.019

Pop. D 0.049 0.026

AWHC 0.073 0.037

S. Er 0.107 0.053

% NCA N/D 0.076

%RCF 0.156 0.109

VCI 0.230 0.154

GCA 0.329 0.218

NSA N/D 0.307

Adaptive Capacity AgMrSo N/D 0.027

RN N/D 0.041

% LiT 0.027 0.066

%LiR 0.041 N/D

L/S 0.066 N/D

CoB N/D 0.105

Ag.Cr.So N/D 0.163

AgP 0.105 0.241

AgW 0.163 N/D

TIA N/A 0.358

ExG-Ir 0.241 N/D

G-Ir 0.358 N/D

Exposure Rainfall 0.597

(59.7%)

0.597

Temp Max 0.276

(27.6%)

0.276

Min 0.128

(12.8%)

0.128

Abbreviations as mentioned in Table 2

N/D no data
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monsoon and winter season, especially in the coastal area

of AP state. This result would help the farmers, insurance

policy, and agriculture credit society etc. to improve the

agriculture condition at the coastal area by adaptation,

mitigation and sustainable agriculture development.

Further studies are needed to assess the magnitude and

spatial variability of agricultural NDVI under drought/

agriculture stress conditions in combination with other

additional environmental and climatic parameters in pro-

jected climatic conditions.

Fig. 2 Flow chart representation of Methodology

Fig. 3 Trend of LGP with rainfall, maximum temperature and soil moisture for a Telangana and b Andhra Pradesh states
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3.3 Agricultural Drought Vulnerability

3.3.1 Current Status

ADVI is computed using integrated data sets i.e. satellite

derived indices, climate and socio-economic data for

(1982–2015) at district as well as at Tehsil levels for

2000–2015.

District level: District-wise spatial distributions of S,

AC, E and resultant V for three cropping seasons are shown

in Fig. 7a–c. Among 22 districts, 13 districts (covering

59% of the total geographical area) have very low AC.

Karimnagar (covering 10% of total geographical area of

TS) and West Godavari (covering 5% of total geographical

area of AP) are the only districts, which show high AC due

to large irrigated area. In three cropping seasons, Mah-

bubnagar district is found to be highly vulnerable due to

less adaptive capacity and very high sensitivity. Anantha-

pur and Kurnool districts are highly vulnerable during the

first two cropping periods (summer monsoon and winter),

as vegetation indices are highly sensitive to climate change

and exposed to frequent climate variability. Y.S.R. Kadapa,

Prakasam (covering 52.8% of total geographical area of

AP) districts showed high vulnerability during the summer

monsoon. During summer/zaid season, out of eight districts

considered in TS, 5 districts (approximately 77.5% of total

geographical area of TS) showed high to extreme vulner-

ability. In AP state, approximately 44% of total geo-

graphical area comes under moderate to highly vulnerable.

It is also observed that due to less adaptive capacity and

higher climate variability, TS is more vulnerable during

winter and summer cropping seasons, whereas AP state

during summer monsoon cropping.

Fig. 4 Trend pattern of agriculture NDVI with rainfall, maximum temperature and soil moisture during 1982–2015 for TS and AP
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Tehsil level: The spatial pattern of AC, E, S and V of the

Tehsils of TS and AP are shown in Fig. 8a–c. Less than 20%

of tehsils under Adilabad, Ananthapur, Chittoor, and Mah-

bubnagar districts show moderate to very high AC. During

summer monsoon more than 90% tehsils under Krishna and

Adilabad districts are exposed to climate. During winter

season more than 90% of tehsils under Krishna, Kurnool,

and Prakasam districts, followed by Adilabad, Mahbubna-

gar, Warangal and West Godavari are exposed to climate.

During summer season Khammam and Warangal districts

(more than 50% of tehsil) show moderate to very high

sensitivity. Moderate to very high exposure are noticed in

the districts of Guntur and Warangal (more than 80% of

tehsils), followed by Mahbubnagar.

Fig. 5 Significance level of

pixels for rainfall and maximum

temperature (p\ 0.05) using

multiple regression model.

a SummerMonsoon/Kharif;

b winter/Rabi; c summer

season/Zaid

Fig. 6 Spatial distribution of agriculture NDVI for drought, normal, best years of 2000–2015 and projected agriculture NDVI for 2050 RCP 2.6

scenario for three seasons a summer monsoon/Kharif; b winter/Rabi; c summer season/Zaid
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During summer monsoon, more than 90% of tehsils

under Adilabad district are in moderate to very high vul-

nerability, due to high exposure followed by Ananthapur,

Warangal and Prakasam districts (more than 80% of Teh-

sils), due to moderate to very high sensitivity. During

winter season, Mahbubnagar district (more that 90% of

tehsils) is in moderate to very high vulnerability. Whereas

in summer season, Guntur district observes 74% of tehsils

are in moderate to very high vulnerable range. This is due

to high to very high exposure and sensitivity.

3.3.2 Future Status

The future agricultural drought vulnerability has been

assessed using AR5 RCPs for climate E indicator and

projected S and AC indicators. The ADVI for 2070

behaves almost similar to 2050 RCP 2.6 scenario (Fig. 9a–

c. Hence, spatial distribution of E indicator and projected S

and AC indicators for the years 2050 (Fig. 10a–c) are

explained briefly as follows. Majority of the districts show

similar distribution of E and vulnerability during three

cropping periods. The AC index shows high values in

Karimnagar and Khammam, followed by West Godavari

district (5%). Among 22 districts, 5 districts show low AC

(21%). The predicted years viz., 2050 and 2070 (all four

RCP’s) annual ADVI shows a similar pattern in most of the

districts of AP and TS except, Ananthapur, Chittoor, East

Godavari, Guntur, Nalgonda and Krishna. The districts of

AP state viz., Ananthapur, Y.S.R. Kadapa, Nellore and

Prakasam show very high E, followed by Kurnool, Chittoor

and Guntur. It is observed that the districts in AP state

Fig. 7 District wise spatial distribution of adaptive capacity (AC), sensitivity (S), exposure (E), and Vulnerability (V) map during 1982–2015

a summer monsoon/June–September; b winter season/October–January; and c summer season/February–May

cFig. 8 Tehsillevel spatial distribution of adaptive capacity (AC),

sensitivity (S), exposure (E) and Vulnerability (V) during 2000–2015

a summer monsoon/June–September; b winter season/October–Jan-

uary; and c summer season/February–May
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namely Ananthapur, Prakasam, Chittoor and Nellore

exhibit very high to high vulnerability representing 41%

geographical area. The vulnerability in TS (16%) is less

compared to AP state.

The vulnerability is found to be very high in Anantha-

pur, Kurnool and Mahbubnagar districts during October-

January. Almost all (9) districts of TS are found to have

high exposure in all scenarios. Whereas, in AP state,

Kurnool, Ananthapur and Y.S.R. Kadapa districts show

very high to high exposure. Mahbubnagar district was

found to be highly vulnerable due to high sensitivity(driven

parameters are GCA, %RCF, %TAg.L, %Mig.R) during

summer season. Nalgonda district shows the highest rise in

intensity/degree of vulnerability in future ADVI during

summer monsoon and summer season due to influence of

climate variability (decrease in rainfall). Thus, the present

and projected future vulnerability status independently for

three periods is important because it captures vulnerability

of districts of the respective/corresponding cropping

seasons.

Figure 11 illustrates current and projected/future vul-

nerability comparison at state level during the three crop-

ping seasons. The extent of vulnerability decreases in TS

and AP due to increase in adaptive coping parameters

(Ag.W and GIr) and climate variation (increase in rainfall)

during June–September. It is observed that in winter and

summer seasons, total geographical area of TS

(141.62 km2) is vulnerable in recent-past and future. The

increase in vulnerable area in TS and AP is likely due to

the impact of climate (increase in minimum temperature).

4 Conclusions

India, in the past few decades, has been experiencing

failure of crops due to variability in the climate, com-

mercialization of agriculture, shortage of labor and

urbanization among others. There have been efforts to

enhance the irrigated area in India. For example, 33.5% of

irrigation growth has been taken place in India since

2011. The states of Telangana and Andhra Pradesh being

major contributors of agricultural production in India have

been experiencing frequent crop failure due to drought.

The state irrigation has grown from 2.90 million hectares

in 1960–1961 to 4.21 million hectares in 2009–2010

(SCR 2009-10). Although, drought stress prevails, crop

growth and vulnerability of drought remains quite sig-

nificant for these states. Our results clearly demonstrate

the change in climate and soil moisture has impacted the

length of growing period as well as agriculture growth/

stress, which may further affect the total crop production.

Seasonal future agricultural NDVI for IPCC projected

AR5 2050 RCP 2.6 climate scenario behaves similar to

that of a normal year, and that the major decline in

agricultural performance was observed during summer

and winter seasons, particularly in coastal regions of AP

state. This information is of vital significance while

addressing climate change within a vulnerability planning

framework and pathways of impact on the natural

resources. An integrated impact assessment approach

provides an evaluative framework to elucidate these

linkages and identify sources of uncertainty. Sector based

Fig. 9 Comparison of projected ADVI for IPCC AR5 2050 and 2070 2.6 scenario a summer monsoon/June–September; b winter season/

October–January; and c summer season/February–May at district wise
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vulnerability assessments provide a foundation for inte-

grating multi-dimensional attributes from variety of

sources. This study illustrates a process for integrating

information obtained from vulnerability assessments into

a conceptual modelling process to identify and rank

administrative units likely to be vulnerable to the impacts

of changing climate.
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