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Abstract A new strategy for solving multi-attribute decision-

making problem has been presented by using different entro-

pies and unknown attribute weights, where preferences related

to the attributes are in the form of interval-valued intuitionistic

fuzzy sets. Some generalized properties have also been proved

for justification. An illustrative example has been provided to

demonstrate and effectiveness the approach along with the

sensitivity analysis on the decision-maker parameter.
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1 Introduction

Decision making is one of the most important topics in

various fields to make a right decision so as to reach the final

goal. However, the key issue in the decision-making process

is to find the suitable attribute weights and the process to

aggregate the decision makers’(DM) preferences. In a clas-

sical multi-attribute decision-making (MADM), the rating,

as well as attribute weights, are assumed to be a precise

number. But due to growing complexities of the systems day-

by-day, it is not possible to give preferences towards the

alternative under the different attribute in terms of a single or

exact number. Although, intuitionistic fuzzy set(IFS) theory

[1] has been successfully applied by the researchers [2–5] in

different fields for handling the uncertainties. But, in some

situations, it is difficult to give the preference of an object in

terms of a point value and hence Atanassov and Gargov [6]

extended IFS theory to interval-valued IFSs (IVIFSs). In

recent years, the researchers are highly active in IVIFSs by

including the investigations on their basic operations, their

corresponding properties, similarity measure, aggregation

operators etc. For instance, Xu [7] presented different

methods for aggregating the interval-valued intuitionistic

fuzzy numbers (IVIFNs). Later on, Wang and Liu [8]

extended these operators by using Einstein norm operations

under IFS environment. Garg [9] presented a generalized

intuitionistic fuzzy interactive geometric interaction opera-

tors using Einstein norm operations for aggregating the dif-

ferent intuitionistic fuzzy information. Garg [10], further,

proposed some series of interactive aggregations operators

for IFNs. Hung and Chen [11] presented a fuzzy Technique

for Order of Preference by Similarity to Ideal Solution

(TOPSIS) method with entropy weight for solving the

decision-making problems under the intuitionistic fuzzy

environment. Garg [12] presented a new generalized score

function for ranking the different interval-valued IFSs. Garg

[13] presented a generalized intuitionistic fuzzy aggregation

operator under the intuitionistic multiplicative preference

relation instead of intuitionistic fuzzy preference relations.

Ye [14] presented an accuracy function for ranking the

interval-valued intuitionistic fuzzy numbers (IVIFNs). Garg

[15, 16] extended the theory of the IFS to the Pythagorean

fuzzy set environment in which sum of their membership

function is less than one has been relaxed to the square sumof

its membership functions and presented a generalized geo-

metric as well as averaging aggregation operators. Apart

from that, many authors [17–27] have been showing growing

interest in the study of the decision-making problems under

the different environments by using these above theories.

However, it has been analyzed that the final ranking order

of alternatives highly depends on the attribute weights and
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hence these particular weights play a significant role during

the aggregation process. According to the attribute weight

information, the considered decision-making situations can

be mainly classified into the following three types: (a) the

decision-making situation where the attribute weights are

completely known; (b) the decision-making situation where

the attribute weights are completely unknown; (c) the deci-

sion-making situation where the attribute weights are par-

tially known. Based on the information acquisition, the

attribute weights in MADM are classified as both subjective

and objective. The former one is determined by preference

information on the attributes as given by the decision-maker

while the latter one is determined by the decision-making

matrix. The Shannon entropy [28] method, used for deter-

mining the objective attribute weights, which express the

relative intensities of attribute importance to signify the

average intrinsic information transmitted to the decision

maker. Thus, it is an important task to determine the proper

attribute weights which will help the decision maker for

obtaining the efficient decision in a reasonable time.

Therefore, this paper studies the multi-attribute fuzzy group

decision-making problems with complete unknown attribute

weight information under IVIFSs environment. The weight

vector has been given by using intuitionistic fuzzy entropy

measure. Although, the different preferences are aggregated by

using an averaging aggregation operator for rating the alter-

natives. Furthermore, an effect of the various parameters of

entropies functions on the ranking of the system has been

accessed.

2 Preliminaries

In this section, a brief introduction about the IFS, IVIFS

and their corresponding entropies have been presented over

the universal set X.

2.1 Intuitionistic Fuzzy Set

An IFS [1] A over X is defined by

A ¼ fhx; lAðxÞ; mAðxÞi j x 2 Xg ð1Þ

where lA and mA represent the degrees of membership and

non-membership of A. For convenience, this pair hlA; mAi is
called as intuitionistic fuzzy number (IFN), where

lA; mA 2 ½0; 1� and lA þ mA 2 ½0; 1�.

2.2 Entropy on IFSs

An entropy E : IFSðXÞ �! Rþ on IFS(X) is a real-valued

functional which satisfying the following four axioms for

A;B 2 IFSðXÞ [29]

(P1) EðAÞ ¼ 0 if and only if A is a crisp set, i.e., either

lAðxÞ ¼ 1; mAðxÞ ¼ 0 or lAðxÞ ¼ 0; mAðxÞ ¼ 1 for all

x 2 X.

(P2) EðAÞ ¼ 1 if and only if lAðxÞ ¼ mAðxÞ for all x 2 X.

(P3) EðAÞ ¼ EðAcÞ
(P4) If A�B, that is, if lAðxÞ� lBðxÞ and mAðxÞ� mBðxÞ

for any x 2 X then EðAÞ�EðBÞ.

2.3 Interval-Valued Intuitionistic Fuzzy Sets

(IVIFS)

An IVIFS A in X is defined as [6]

A ¼ fhx; ½lLAðxÞ; lUA ðxÞ�; ½mLAðxÞ; mUA ðxÞ�i j x 2 Xg

where lLAðxÞ; lUA ðxÞ and mLAðxÞ; mUA ðxÞ represents the lower

and upper bound of the membership and non-membership

degrees such that lLAðxÞ; lUA ðxÞ 2 ½0; 1�, mLAðxÞ; mUA ðxÞ 2 ½0; 1�
and lUA ðxÞ þ mUA ðxÞ� 1 for each x 2 X.

2.4 Entropy on IVIFSs

A real functionE : IVIFSsðXÞ �! Rþ is called an entropy if

it satisfies the following properties A;B 2 IVIFSðXÞ [21]:

(P1) EðAÞ ¼ 0 if and only if A is a crisp set i.e., lLAðxÞ ¼
lUA ðxÞ and mLAðxÞ ¼ mUA ðxÞ and lLAðxÞ þ mLAðxÞ ¼ 1 and

lUA ðxÞ þ mUA ðxÞ ¼ 1.

(P2) EðAÞ ¼ 1 if and only if lAðxÞ ¼ mAðxÞ for all x 2 X.

(P3) EðAÞ ¼ EðAcÞ
(P4) If A�B, then EðAÞ�EðBÞ.

3 Construction of New Entropy Measure
for IVIFS

In this section, we have presented a method for the con-

struction of the new entropies measure under an IVIFS

environment.

Consider an IVIFS A which can be converted into an IFS

with membership function

lAðxÞ ¼ lLAðxÞ þ pMlAðxÞ ð2Þ

and non-membership function

mAðxÞ ¼ mLAðxÞ þ pMmAðxÞ ð3Þ

where MlAðxÞ ¼ lUA ðxÞ � lLAðxÞ; MmAðxÞ ¼ mUA ðxÞ �
mLAðxÞ and p 2 ð0; 1Þ for all x 2 X. Then based on it, we

have presented a generalized entropy measure for IVIFSs

as follows.

Theorem 1 Let X be a universe of discourse consisting of

N elements, say fx1; x2; . . .; xNg, then a real-valued func-

tional E : IVIFSðXÞ �! Rþ defined as
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EðAÞ ¼ 1

N

XN

i¼1

1� UðnAðxiÞ;uAðxiÞÞ½ �; nAðxiÞ;uAðxiÞ 2 IFSðXÞ

ð4Þ

is an entropy measure for IVIFSs, where U satisfies the

following conditions for x; y 2 IVIFSðXÞ

(a) Uðx; yÞ ¼ 1 if and only if xþ y ¼ 1.

(b) Uðx; yÞ ¼ 0 if and only if x ¼ y.

(c) Uðx; yÞ ¼ Uðy; xÞ.
(d) If x� x0 and y� y0, then Uðx; yÞ�Uðx0; y0Þ.

Proof Consider an IVIFS A ¼ fhx, ½lLAðxÞ, lUA ðxÞ�, ½mLAðxÞ,
mUA ðxÞ�i j x 2 Xg which can be converted into the IFS A ¼
fhx; nAðxÞ;uAðxÞi j x 2 Xg where nðxÞ ¼ lLAðxÞ þ pMlAðxÞ
and uðxÞ ¼ mLAðxÞ þ pMmAðxÞ such that MlAðxÞ ¼ lUA ðxÞ �
lLAðxÞ and MmAðxÞ ¼ mUA ðxÞ � mLAðxÞ for all x 2 X and

p 2 ð0; 1Þ. Now, in order to prove the valid entropy mea-

sure, the properties (P1)-(P4) as described in above section

have been proved here.

(P1) To show EðAÞ ¼ 0 if and only if A is a crisp set i.e.,

lLAðxÞ ¼ lUA ðxÞ and mLAðxÞ ¼ mUA ðxÞ and lLAðxÞ þ
mLAðxÞ ¼ 1 and lUA ðxÞ þ mUA ðxÞ ¼ 1. Firstly, assume

that

EðAÞ ¼ 0 ) 1

N

XN

i¼1

½1� UðnðxiÞ;uðxiÞÞ� ¼ 0

)UðnðxiÞ;uðxiÞÞ ¼ 1

)nðxiÞ þ uðxiÞ ¼ 1

)ð1� pÞðlLAðxiÞ þ mLAðxiÞÞ
þ pðlUA ðxiÞ þ mUA ðxiÞÞ ¼ 1

Then, the only possible solution of above is lLAðxÞ þ
mLAðxÞ ¼ 1 and lUA ðxÞ þ mUA ðxÞ ¼ 1. Because if lLAðxÞ þ
mLAðxÞ\1 then from nðxÞ þ uðxÞ ¼ 1 becomes lUA ðxÞ þ
mUA ðxÞ[ 1 which is contradict to the definition of degree of

membership and non-membership. Thus, lLAðxÞ þ mLAðxÞ ¼
1 and hence A is fuzzy set.

Conversely, assume that A is fuzzy set, then

lLAðxÞ ¼ lUA ðxÞ, mLAðxÞ ¼ mUA ðxÞ and lLAðxÞ þ mLAðxÞ ¼ 1 for

all x 2 X. Then by using the condition (a) of U, we get

UðnðxÞ;uðxÞÞ ¼ 1 and hence EðAÞ ¼ 0.

(P2) To show EðAÞ ¼ 1 if and only if lAðxÞ ¼ mAðxÞ for
all x 2 X.

Assume that lAðxÞ ¼ ½0; 0� and mAðxÞ ¼ ½0; 0� for all
x 2 X which implies that nðxÞ ¼ 0, uðxÞ ¼ 0, ði ¼
1; 2; . . .;NÞ for any p 2 ð0; 1Þ. Thus, by condition

(b) of U, we get Uðn;uÞ ¼ 0 and hence EðAÞ ¼ 1.

Conversely, assume that EðAÞ ¼ 1 which implies

that UðnðxiÞ;uðxiÞÞ ¼ 0, ði ¼ 1; 2; . . .;NÞ for any

p 2 ð0; 1Þ and hence nðxiÞ ¼ 0 and uðxiÞ ¼ 0. Thus,

ð1� pÞlLAðxiÞ þ plUA ðxiÞ ¼ 0 and ð1� pÞmLAðxiÞ þ
pmUA ðxiÞ ¼ 0 for any p 2 ð0; 1Þ. Therefore, lLA ¼ 0

and lUA ¼ 0 for all x. Similarly, mLA ¼ 0 and mUA ¼ 0

for all x. Hence, lAðxÞ ¼ ½0; 0� and mAðxÞ ¼ ½0; 0� for
all x 2 X.

(P3) To show EðAÞ ¼ EðAcÞ for all A 2 IVIFSðXÞ
As Ac ¼ fhx; mAðxÞ; lAðxÞi j x 2 Xg and by condi-

tion of (c) of U, we get EðAÞ ¼ EðAcÞ.
(P4) To show, if A�B, then EðAÞ�EðBÞ.

If A�B then for all x 2 X, we have lLAðxÞ� lLBðxÞ,
lUA ðxÞ� lUB ðxÞ, mLAðxÞ� mLBðxÞ, and mUA ðxÞ� mUB ðxÞ.
Thus, for any p 2 ð0; 1Þ we have

pðlUB ðxÞ � lUA ðxÞÞ þ ð1� pÞðlLBðxÞ � lLAðxÞÞ� 0

) plUB þ ð1� pÞlLB � plLA þ ð1� pÞlLA
) lLB þ pðlUB � lLBÞ� lLA þ pðlUA � lLAÞ
) lLBðxÞ þ pMlBðxÞ� lLAðxÞ þ pMlAðxÞ
or nAðxÞ� nBðxÞ

Similarly, we have uAðxÞ�uBðxÞ. Thus, by the condition

(d) of U, we get

UðnAðxiÞ;uAðxiÞÞ�UðnBðxiÞ;uBðxiÞÞ
) 1� UðnAðxiÞ;uAðxiÞÞ� 1� UðnBðxiÞ;uBðxiÞÞ
) EðAÞ�EðBÞ

Hence, EðAÞ ¼ 1

N

XN

i¼1
1� UðnAðxiÞ;uAðxiÞÞ½ �, is a valid

entropy measure on A. h

Further, from the above measure, it has been observed

that the proposed entropy measure also satisfies the fol-

lowing additional properties:

Theorem 2 Let A ¼ fhx; ½lLAðxÞ; lUA ðxÞ�, ½mLAðxÞ; mUA ðxÞ�i j
x 2 Xg and B ¼ fhx, ½lLBðxÞ, lUB ðxÞ�, ½mLBðxÞ, mUB ðxÞ�i j x 2
Xg be two IVIFSs, such that for any x 2 X either A � B or

A � B; then

EðA [ BÞ þ EðA \ BÞ ¼ EðAÞ þ EðBÞ

Proof Since A and B are two IVIFSs then their equivalent

IFSs are obtained for all p 2 ð0; 1Þ as
nAðxÞ ¼ lLAðxÞ þ pðlUA ðxÞ � lLAðxÞÞ;
uAðxÞ ¼ mLAðxÞ þ pðmUA ðxÞ � mLAðxÞÞ;
nBðxÞ ¼ lLBðxÞ þ pðlUB ðxÞ � lLBðxÞÞ;
uBðxÞ ¼ mLBðxÞ þ pðmUB ðxÞ � mLBðxÞÞ

Divide the universe X into two parts X1 and X2, where

X1 ¼ fx 2 X j A � Bg ; X2 ¼ fx 2 X j A � Bg

That is for all x 2 X1
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nAðxÞ� nBðxÞ; uAðxÞ�uBðxÞ

and, for all x 2 X2

nAðxÞ� nBðxÞ; uAðxÞ�uBðxÞ

Thus, by definition of EðA [ BÞ, we have

EðA [ BÞ ¼ 1

N

XN

i¼1

½1� UðnA[BðxiÞ;uA[BðxiÞÞ�

¼ 1

N

X

xi2X1

½1� UðnBðxiÞ;uBðxiÞÞ�
"

þ
X

xi2X2

½1� UðnAðxiÞ;uAðxiÞÞ�
#

Similarly,

EðA \ BÞ ¼ 1

N

XN

i¼1

½1� UðnA\BðxiÞ;uA\BðxiÞÞ�

¼ 1

N

X

xi2X1

½1� UðnAðxiÞ;uAðxiÞÞ�
"

þ
X

xi2X2

½1� UðnBðxiÞ;uBðxiÞÞ�
#

Therefore,

EðA [ BÞ þ EðA \ BÞ

¼ 1

N

X

xi2X1

½2� UðnAðxiÞ;uAðxiÞÞ � UðnBðxiÞ;uBðxiÞÞ�
(

þ
X

xi2X2

½2� UðnAðxiÞ;uAðxiÞ � UðnBðxiÞ;uBðxiÞÞ�
)

¼ 1

N

Xn

i¼1

2� UðnAðxiÞ;uAðxiÞÞ � UðnBðxiÞ;uBðxiÞÞ½ �

¼ 1

N

Xn

i¼1

1� UðnAðxiÞ;uAðxiÞÞf g½

þ 1� UðnBðxiÞ;uBðxiÞÞf g�
¼ EðAÞ þ EðBÞ

This prove the result. h

Corollary 1 For any IVIFS A and Ac is the complement

of A, we have

EðAÞ ¼ EðAcÞ ¼ EðA [ AcÞ ¼ EðA \ AcÞ

Theorem 3 The maximum and minimum value of

E(A) are independent of its parameters i.e., p and n.

Proof It has been proved in the Theorem 1 that the

E(A) is maximum if and only if A is most IVIFS i.e.,

lAðxÞ ¼ mAðxÞ; 8 x 2 X and minimum when A is crisp

set. Therefore, in order to prove the above result, it is

sufficient to show that the maximum and minimum value

is constant. Let A be the most IVIFS i.e.,

lAðxÞ ¼ mAðxÞ; 8 x 2 X, then we get lLAðxÞ ¼ mLAðxÞ and

lUA ðxÞ ¼ mUA ðxÞ and hence

nðxÞ ¼ lLAðxÞ þ pðMlAðxÞÞ ¼ mLAðxÞ þ pðMmAðxÞÞ ¼ uðxÞ

Therefore, by the condition (b) of U, we get

Uðn;uÞ ¼ 0 ) EðAÞ ¼ 1.

If A is crisp set i.e., lLAðxÞ ¼ lUA ðxÞ ; mLAðxÞ ¼ mUA ðxÞ and
lLAðxÞ þ mLAðxÞ ¼ 1, lUA ðxÞ þ mUA ðxÞ ¼ 1 8 x 2 X then by the

condition (a) of U, we get U ¼ 1 and hence EðAÞ ¼ 0.

Thus, maximum and minimum value of E(A) is indepen-

dent of p and n. h

Here, in the present paper, we have analyzed the effect

of different entropy functions on the decision-making

process. For it, we have taken the different function of

Uðx; yÞ which are stated as follows:

Un;expðx; yÞ ¼ ðxþ yÞne1�ðxþyÞn ð5Þ

Un;sinðx; yÞ ¼ ðxþ yÞn sin p
2
ðxþ yÞn

� �
ð6Þ

Un;logðx; yÞ ¼ ðxþ yÞn logð2� ðxþ yÞnÞ ð7Þ

Un;log 2ðx; yÞ ¼ 1� 1

n
log ðxþ yÞn þ 2nð1� ðxþ yÞnÞð Þ

ð8Þ

These above defined functions have been explained with a

suitable numerical example, which can be read as:

Consider six IVIFNs, namely A1 ¼ h½0; 0�; ½0; 0�i,
A2 ¼ h½1; 1�, ½0; 0�i, A3 ¼ h½0:4; 0:4�, ½0:6; 0:6�i,
A4 ¼ h½0:1; 0:2�, ½0:3; 0:4�i, A5 ¼ h½0:3; 0:4�, ½0:1; 0:2�i and
A6 ¼ h½0:3; 0:4�, ½0:5; 0:6�i defined on X ¼ fxg. In order to

show the effect of the various entropy function by these

IVIFNs Aiði ¼ 1; 2; . . .; 6Þ, an analysis has been conducted

by taking different values of p and n. The results corre-

sponding to it have been summarized in Table 1 and 2

respectively, and the following conclusions have been

drawn.

(i) The effect of the variation of p on the different

entropies EUn;exp
, EUn;sin

, EUn;log
, EUn;log 2

have been

analyzed by taking n ¼ 1 and their corresponding

results are summarized in Table 1. From this table, it

has been concluded that by increasing the value of p,

the corresponding entropy values are decreasing.

(ii) On the other hand, the effect of the variation of n on

the different entropies is analyzed for a specified

value of p ¼ 0:4 (say) and are summarized in Table 2.
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From this table, it has been analyzed that for

increasing the value of n, the corresponding entropy

values are increasing.

4 Proposed Entropy Based MADM Approach

In this section, a decision-making method by using above

defined entropy measure for IVIFSs have been presented

followed by an illustrative example for demonstrating the

approach.

4.1 Proposed Approach

Let A ¼ fA1;A2; . . .;Amg be a set of alternatives and G ¼
fG1;G2; . . .;Gng be set of attributes with completely

unknown weights. Assume that these different alternatives

Aiði ¼ 1; 2; . . .;mÞ are evaluated by the decision makers

with respect to the criteria and give their preferences in

terms of IVIFNs aij ¼ h½aij; bij�; ½cij; dij�i, where

½aij; bij� 	 ½0; 1�, ½cij; dij� 	 ½0; 1� and bij þ dij � 1, i ¼
1; 2; . . .;m; j ¼ 1; 2; . . .; n such that ½aij; bij� indicates the

degree that the alternative Ai satisfies the attribute Gj,

Table 1 Effect of p on IVIF Entropy functions values

EUn;exp
EUn;sin

EUn;log
EUn;log 2

EUn;exp
EUn;sin

EUn;log
EUn;log 2

EUn;exp
EUn;sin

EUn;log
EUn;log 2

p ¼ 0:1 p ¼ 0:3 p ¼ 0:5

A1 1 1 1 0.6931 1 1 1 0.6931 1 1 1 0.6931

A2 0 0 1 0 0 0 1 0 0 0 1 0

A3 0 0 1 0 0 0 1 0 0 0 1 0

A4 0.2499 0.7426 0.8643 0.4574 0.2106 0.6958 0.8014 0.4318 0.1756 0.6464 0.7973 0.4055

A5 0.2499 0.7426 0.8079 0.4574 0.2106 0.6958 0.8014 0.4318 0.1756 0.6464 0.7973 0.4055

A6 0.0183 0.2126 0.8643 0.1655 0.0108 0.1607 0.8873 0.1310 0.0053 0.1111 0.9142 0.0953

p ¼ 0:7 p ¼ 0:9

A1 1 1 1 0.6931 1 1 1 0.6931

A2 0 0 1 0 0 0 1 0

A3 0 0 1 0 0 0 1 0

A4 0.1446 0.5949 0.7956 0.3784 0.1173 0.5417 0.7966 0.3507

A5 0.1446 0.5949 0.7956 0.3784 0.1173 0.5417 0.7966 0.3507

A6 0.0019 0.0642 0.9452 0.0583 0.0002 0.0205 0.9806 0.0198

Table 2 Effect of n on IVIF Entropy functions values

EUn;exp
EUn;sin

EUn;log
EUn;log 2

EUn;exp
EUn;sin

EUn;log
EUn;log 2

EUn;exp
EUn;sin

EUn;log
EUn;log 2

n ¼ 1 n ¼ 2 n ¼ 3

A1 1 1 1 0.6931 1 1 1 0.6931 1 1 1 0.6931

A2 0 0 1 0 0 0 1 0 0 0 1 0

A3 0 0 1 0 0 0 1 0 0 0 1 0

A4 0.1926 0.6714 0.7990 0.4187 0.5026 0.9184 0.8685 0.5983 0.7309 0.9809 0.9296 0.6592

A5 0.1926 0.6714 0.7990 0.4187 0.5026 0.9184 0.8685 0.5983 0.7309 0.9809 0.9296 0.6592

A6 0.0078 0.1356 0.7990 0.1133 0.0296 0.2737 0.8425 0.2584 0.0629 0.4021 0.8116 0.3908

n ¼ 4 n ¼ 5 n ¼ 6

A1 1 1 1 0.6931 1 1 1 0.6931 1 1 1 0.6931

A2 0 0 1 0 0 0 1 0 0 0 1 0

A3 0 0 1 0 0 0 1 0 0 0 1 0

A4 0.8632 0.9956 0.9646 0.6804 0.9325 0.9990 0.9827 0.6881 0.9672 0.9998 0.9916 0.6911

A5 0.8632 0.9956 0.9646 0.6804 0.9325 0.9990 0.9827 0.6881 0.9672 0.9998 0.9916 0.6911

A6 0.1051 0.5150 0.7981 0.4866 0.1537 0.6109 0.7959 0.5500 0.2066 0.6905 0.8008 0.5913
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½cij; dij� indicates the degree that the alternative Ai doesn’t

satisfy the criteria Gj given by the decision maker.

Therefore, an interval-valued intuitionistic fuzzy decision

matrix is expressed as

Then, the procedure for solving the MADM problem based

on entropy measure has been summarized in the following

steps:

(Step 1:) Set p 2 ð0; 1Þ and then the above defined

decision matrix is converted into its entropy

matrix by using Eq. (4) corresponding to

different functions of U as defined in the

Eqs. (5)-(8) for different values of n. There-

fore, the IVIFS entropy matrix E of Ai on Gj

can be written as under

EðaijÞ ¼

E11ða11Þ E12ða12Þ . . . E1nða1nÞ
E21ða21Þ E22ða22Þ . . . E2nða2nÞ

..

. ..
. . .

. ..
.

Em1ðam1Þ Em2ðam2Þ . . . EmnðamnÞ

0

BBBB@

1

CCCCA

ð9Þ

(Step 2:) Based on the entropy matrix, EðaijÞ defined in

Eq. (9), the degree of divergence ðdjÞ of the

average intrinsic information provided by the

correspondence

on the attribute Gj can be defined as dj ¼ 1� jj
where jj ¼

Pm
i¼1 EðaijÞ; j ¼ 1; 2; . . .; n. Here,

the value of dj represents the inherent contrast

intensity of attribute Gj, and hence based on it,

the attributes weight xjðj ¼ 1; 2; . . .; nÞ is given
as:

xj ¼
djPn
j¼1 dj

¼ 1� jjPn
j¼1ð1� jjÞ

¼ 1� jj
n�

Pn
j¼1 jj

ð10Þ

(Step 3:) By using the decision matrix D and the attribute

weights x ¼ ðx1;x2; . . .;xnÞT , the different

preferences of each alternative is aggregated

into #i by using an averaging aggregation

operator termed as generalized IVIF weighted

averaging (GIVIFWA) operator and is defined

as

#i ¼GIVIFWAð#i1;#i2; . . .;#inÞ

¼ x1#
k
i1
x2#

k
i2
 . . .
xn#

k
in

� �1=k

¼ 1�
Yn

j¼1

ð1� akijÞ
wj

 !1=k

; 1�
Yn

j¼1

ð1� bkijÞ
wj

 !1=k
2
4

3
5;

*

1� 1�
Yn

j¼1

ð1�ð1� cijÞkÞwj

 !1=k

;

2
4

1� 1�
Yn

j¼1

ð1�ð1� dijÞkÞwj

 !1=k
3

5
+

(Step 4:) Compute the score value of #i ¼ h½ai;bi�, ½ci;di�i
by score formula: Sð#iÞ ¼ aiþbi�ci�di

2
and hence

the best alternative has been selected in

accordance with descending values of Sð#iÞ.

4.2 Numerical Example

The above mentioned approach has been illustrated with a

practical example of the decision-maker which can be read

as:

An example adapted from Zhang et al [21] has been

discussed here from the field of supplier selection problem

which contain five alternatives denoted by Aiði ¼
1; 2; . . .; 5Þ exist on the six attributes denoted by

Gjðj ¼ 1; 2; . . .; 6Þ. The rating of these alternatives are

measured in the form of interval-valued decision matrix

which are shown in Table 3.

Based on this information matrix and by using the dif-

ferent entropies functions of U as given in Eqs. (5)-(8), the

entropy value Eij of each alternative with respect to each

criteria are calculated. Hence, the attribute weights corre-

sponding to these entropy functions EUn;exp
, EUn;sin

, EUn;log

and EUn;log 2
are computed by using the step 2 of the pro-

posed approach for the different values of n ¼ 1; 5; 10; 100

and p ¼ 0:1; 0:5; 0:9 and are summarized in Table 4. From

these weights, it has been concluded that

(i) For a fixed value of n, the weight vectors corresponding

to each attribute are increasing with the increasing of the

value of p. On that other hand, by varying the value of

n from 1 to 100 correspond to a fixed value of p implies

that the value of attribute weights are firstly increasing

and then becomes stationary for larger value of n. In

other words, the attribute weights are independent w.r.t.

the entropy functions as well as for the value of n.

134 H. Garg

123



Table 3 IVIF decision matrix

G1 G2 G3

A1 h½0:2; 0:5�; ½0:4; 0:5�i h½0:3; 0:4�; ½0:3; 0:4�i h½0:3; 0:4�; ½0:4; 0:6�i
A2 h½0:3; 0:4�; ½0:3; 0:5�i h½0:5; 0:8�; ½0:1; 0:2�i h½0:5; 0:6�; ½0:2; 0:4�i
A3 h½0:4; 0:5�; ½0:2; 0:3�i h½0:7; 0:8�; ½0:0; 0:1�i h½0:6; 0:7�; ½0:1; 0:3�i
A4 h½0:4; 0:7�; ½0:0; 0:2�i h½0:9; 1:0�; ½0:0; 0:0�i h½0:7; 0:8�; ½0:0; 0:1�i
A5 h½0:6; 0:7�; ½0:1; 0:3�i h½0:4; 0:6�; ½0:1; 0:2�i h½0:7; 0:8�; ½0:0; 0:1�i

G4 G5 G6

A1 h½0:3; 0:5�; ½0:4; 0:5�i h½0:2; 0:4�; ½0:5; 0:6�i h½0:3; 0:4�; ½0:4; 0:5�i
A2 h½0:5; 0:6�; ½0:2; 0:3�i h½0:4; 0:6�; ½0:3; 0:4�i h½0:6; 0:7�; ½0:1; 0:3�i
A3 h½0:7; 0:8�; ½0:1; 0:2�i h½0:3; 0:4�; ½0:4; 0:5�i h½0:5; 0:6�; ½0:1; 0:2�i
A4 h½0:8; 0:9�; ½0:0; 0:1�i h½0:5; 0:7�; ½0:2; 0:3�i h½0:5; 0:8�; ½0:1; 0:2�i
A5 h½0:3; 0:4�; ½0:2; 0:3�i h½0:8; 0:9�; ½0:0; 0:1�i h½0:4; 0:5�; ½0:3; 0:4�i

Table 4 Attributes weights based on EU

EUn;exp
EUn;sin

EUn;log
EUn;log 2

EUn;exp
EUn;sin

EUn;log
EUn;log 2

EUn;exp
EUn;sin

EUn;log
EUn;log 2

n ¼ 1; p ¼ 0:1 n ¼ 1; p ¼ 0:5 n ¼ 1; p ¼ 0:9

x1 0.1112 0.1482 0.1691 0.1519 0.1789 0.1790 0.1658 0.1789 0.1988 0.2004 0.1641 0.2018

x2 0.1191 0.1371 0.1521 0.1405 0.1435 0.1482 0.1542 0.1497 0.2894 0.2193 0.1594 0.2118

x3 0.2999 0.2319 0.1737 0.2196 0.2868 0.2312 0.1739 0.2193 0.2862 0.2281 0.1715 0.2162

x4 0.0636 0.1067 0.1666 0.1172 0.0478 0.0898 0.1665 0.1013 0.0332 0.0695 0.1662 0.0797

x5 0.2511 0.2086 0.1661 0.2011 0.2033 0.1922 0.1689 0.1876 0.0493 0.1134 0.1731 0.1161

x6 0.1551 0.1676 0.1724 0.1697 0.1397 0.1596 0.1707 0.1632 0.1432 0.1693 0.1657 0.1743

n ¼ 5; p ¼ 0:1 n ¼ 5; p ¼ 0:5 n ¼ 5; p ¼ 0:9

x1 0.1694 0.1739 0.1658 0.1686 0.1919 0.1831 0.1657 0.1724 0.2141 0.2096 0.1667 0.1865

x2 0.1395 0.1521 0.1626 0.1595 0.1545 0.1555 0.1659 0.1594 0.2720 0.2073 0.1570 0.1735

x3 0.2219 0.1777 0.1766 0.1737 0.2364 0.1863 0.1761 0.1768 0.2471 0.1885 0.1696 0.1784

x4 0.1093 0.1555 0.1551 0.1595 0.0818 0.1379 0.1537 0.1532 0.0540 0.1070 0.1710 0.1366

x5 0.1954 0.1708 0.1733 0.1706 0.1799 0.1669 0.1743 0.1698 0.0501 0.1019 0.1683 0.1471

x6 0.1645 0.1700 0.1666 0.1681 0.1555 0.1702 0.1644 0.1684 0.1627 0.1858 0.1675 0.1778

n ¼ 10; p ¼ 0:1 n ¼ 10; p ¼ 0:5 n ¼ 10; p ¼ 0:9

x1 0.1779 0.1689 0.1693 0.1675 0.1924 0.1750 0.1707 0.1687 0.2269 0.2086 0.1620 0.1739

x2 0.1468 0.1595 0.1619 0.1646 0.1567 0.1555 0.1653 0.1641 0.2490 0.1926 0.1676 0.1672

x3 0.1845 0.1689 0.1709 0.1678 0.1975 0.1730 0.1730 0.1690 0.2022 0.1672 0.1780 0.1700

x4 0.1471 0.1663 0.1619 0.1657 0.1201 0.1590 0.1565 0.1638 0.0841 0.1304 0.1565 0.1575

x5 0.1727 0.1678 0.1683 0.1672 0.1643 0.1656 0.1679 0.1670 0.0523 0.1072 0.1751 0.1601

x6 0.1710 0.1686 0.1677 0.1672 0.1690 0.1720 0.1665 0.1675 0.1855 0.1939 0.1607 0.1712

n ¼ 100; p ¼ 0:1 n ¼ 100; p ¼ 0:5 n ¼ 100; p ¼ 0:9

x1 0.1667 0.1667 0.1667 0.1667 0.1668 0.1667 0.1667 0.1667 0.1821 0.1687 0.1703 0.1668

x2 0.1667 0.1667 0.1667 0.1667 0.1661 0.1667 0.1667 0.1667 0.1552 0.1605 0.1640 0.1665

x3 0.1667 0.1667 0.1667 0.1667 0.1668 0.1667 0.1667 0.1667 0.1725 0.1685 0.1681 0.1667

x4 0.1667 0.1667 0.1667 0.1667 0.1668 0.1667 0.1667 0.1667 0.1542 0.1664 0.1637 0.1666

x5 0.1667 0.1667 0.1667 0.1667 0.1668 0.1667 0.1667 0.1667 0.1575 0.1673 0.1645 0.1666

x6 0.1667 0.1667 0.1667 0.1667 0.1668 0.1667 0.1667 0.1667 0.1784 0.1686 0.1694 0.1667
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(ii) It has also been observed from the table that the

values of attributes weight corresponding to different

types of entropies functions are conservative in

nature.

Based on these weights corresponding to different values of

n and p, the weighted arithmetic average values for

different alternatives Ai; i ¼ 1; 2; . . .; 5 are computed using

GIVIFWA operator corresponding to k ¼ 1. Finally, the

score values of it for the different entropy functions are

summarized in Table 5. From this, it has been concluded

that corresponding to different values of n and p, the score

values lie between -1 and 1. Also, from these scores values,

we conclude that the most desirable attributes is A4

corresponding to each value of p and n. On the other

hand, the ranking order for the decision maker are shown in

the table as (45321) which indicates the order of the

different attributes is of form A4 � A5 � A3 � A2 � A1

where ‘‘ �’’ means ‘‘preferred to’’. Hence, A4 is the most

desirable one while A1 is the least one.

4.3 Comparison with the Existing Methodologies

In order to compare the performance of the proposed

approach with some existing approaches under the IVIFS

environment, we conducted a comparison analysis based

on the different approaches as given by the authors in

[7, 14, 21, 22]. The results corresponding to these are

summarized as follows.

4.3.1 Xu [7] Approach

If we take Xu [7] approach for aggregating the differ-

ent preferences then, the aggregated values by their

operator, denoted by #i, ði ¼ 1; 2; 3; 4; 5Þ are summarized

Table 5 Score values SðAiÞ corresponding to k ¼ 1

EUn;exp
EUn;sin

EUn;log
EUn;log 2

EUn;exp
EUn;sin

EUn;log
EUn;log 2

EUn;exp
EUn;sin

EUn;log
EUn;log 2

n ¼ 1; p ¼ 0:1 n ¼ 1; p ¼ 0:5 n ¼ 1; p ¼ 0:9

SðA1Þ -0.1556 -0.1441 -0.1319 -0.1419 -0.1478 -0.1421 -0.1323 -0.1404 -0.1261 -0.1319 -0.1325 -0.1314

SðA2Þ 0.2669 0.2688 0.2727 0.2700 0.2564 0.2634 0.2736 0.2651 0.3097 0.2885 0.2741 0.2867

SðA3Þ 0.3179 0.3398 0.3700 0.3453 0.3261 0.3389 0.3705 0.3436 0.4297 0.3846 0.3711 0.3822

SðA4Þ 0.8092 0.8172 0.8282 0.8193 0.8137 0.8177 0.8287 0.8193 0.8594 0.8387 0.8297 0.8370

SðA5Þ 0.5556 0.5022 0.4421 0.4911 0.5366 0.5000 0.4440 0.4900 0.4383 0.4503 0.4464 0.4450

Ranking (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321)

n ¼ 5; p ¼ 0:1 n ¼ 5; p ¼ 0:5 n ¼ 5; p ¼ 0:9

SðA1Þ -0.1413 -0.1332 -0.1335 -0.1327 -0.1407 -0.1340 -0.1336 -0.1331 -0.1240 -0.1270 -0.1316 -0.1312

SðA2Þ 0.2642 0.2704 0.2748 0.2736 0.2619 0.2693 0.2752 0.2727 0.3048 0.2871 0.2735 0.2773

SðA3Þ 0.3414 0.3644 0.3689 0.3692 0.3416 0.3607 0.3694 0.3670 0.4218 0.3892 0.3726 0.3727

SðA4Þ 0.8177 0.8264 0.8292 0.8289 0.8192 0.8253 0.8298 0.8280 0.8548 0.8383 0.8298 0.8306

SðA5Þ 0.4930 0.4504 0.4510 0.4472 0.4978 0.4559 0.4520 0.4498 0.4179 0.4171 0.4415 0.4380

Ranking (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321)

n ¼ 10; p ¼ 0:1 n ¼ 10; p ¼ 0:5 n ¼ 10; p ¼ 0:9

SðA1Þ -0.1344 -0.1318 -0.1321 -0.1316 -0.1351 -0.1322 -0.1324 -0.1317 -0.1215 -0.1258 -0.1335 -0.1313

SðA2Þ 0.2677 0.2740 0.2744 0.2756 0.2670 0.2720 0.2748 0.2752 0.2994 0.2843 0.2759 0.2762

SðA3Þ 0.3589 0.3718 0.3713 0.3739 0.3558 0.3679 0.3711 0.3731 0.4137 0.3865 0.3717 0.3738

SðA4Þ 0.8239 0.8297 0.8298 0.8310 0.8236 0.8278 0.8301 0.8306 0.8494 0.8258 0.8309 0.8309

SðA5Þ 0.4566 0.4419 0.4441 0.4411 0.4635 0.4439 0.4461 0.4420 0.3924 0.4058 0.4528 0.4389

Ranking (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321)

n ¼ 100; p ¼ 0:1 n ¼ 100; p ¼ 0:5 n ¼ 100; p ¼ 0:9

SðA1Þ -0.1314 -0.1314 -0.1314 -0.1314 -0.1314 -0.1314 -0.1314 -0.1314 -0.1315 -0.1317 -0.1314 -0.1314

SðA2Þ 0.2764 0.2764 0.2764 0.2764 0.2762 0.2764 0.2764 0.2764 0.2722 0.2744 0.2754 0.2764

SðA3Þ 0.3752 0.3752 0.3752 0.3752 0.3750 0.3752 0.3752 0.3752 0.3676 0.3723 0.3734 0.3752

SðA4Þ 0.8317 0.8317 0.8317 0.8317 0.8315 0.8317 0.8316 0.8317 0.8272 0.8300 0.8306 0.8316

SðA5Þ 0.4400 0.4400 0.4400 0.4400 0.4401 0.4400 0.4400 0.4400 0.4390 0.4413 0.4398 0.4400

Ranking (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321) (45321)
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as #1 ¼ h½0:2665; 0:4319�, ½0:4019; 0:5260�i, #2 ¼
h½0:4744; 0:6179�, ½0:1872; 0:3580�i, #3 ¼ h½0:5343,
0.6399], ½0; 0:2570�i, #4 ¼ h½0:6455; 1:000�, ½0:00; 0:00�i
and #5 ¼ h½0:5993; 0:7242�, ½0; 0:1966�i. Thus, their cor-

responding score values are Sð#1Þ ¼ �0:1147,

Sð#2Þ ¼ 0:2735, Sð#3Þ ¼ 0:4586, Sð#4Þ ¼ 0:8227 and

Sð#5Þ ¼ 0:5634. Hence, the ranking of the alternative is

A4 � A5 � A3 � A2 � A1 and the best alternative is A4.

Similarly, if we utilize geometric aggregation operator

as proposed by Xu [7], then their overall score values of

each alternative is Sð#1Þ ¼ �0:1267, Sð#2Þ ¼ 0:2273,

Sð#3Þ ¼ 0:3207, Sð#4Þ ¼ 0:5753, Sð#5Þ ¼ 0:4249. Thus,

the best alternative is A4.

4.3.2 Ye [14] Approach

If we utilize Ye [14] approach to the considered problem

then, the aggregating value corresponding to each alter-

native is obtained as #1 ¼ h½0:2603; 0:4277�, [0.4071,

0:5343�i, #2 ¼ h½0:4528, 0.5872], [0.2091, 0:3764�i,
#3 ¼ h½0:4958; 0:5993�, [0.1641, 0:2896�i, #4 ¼ h½0:5782,
0.7899], [0.0531, 0:1644�i and #5 ¼ h½0:5379, 0.6690],

Table 6 Score values and ranking by taking different values of k and p ¼ 0:5

Entropy Sða1Þ Sða2Þ Sða3Þ Sða4Þ Sða5Þ Ranking

k ! 0 EU1;exp
�0.5735 -0.3786 -0.3374 0.7994 -0.2425 (45321)

EU1;sin
�0.5721 -0.3754 -0.3315 0.8029 -0.2621 (45321)

EU1;log
�0.5687 -0.3696 -0.3168 0.8131 -0.2884 (45321)

EU1;log 2
�0.5715 -0.3745 -0.3292 0.8044 -0.2670 (45321)

k ¼ 0:4 EU1;exp
�0.2498 0.1839 0.0132 0.8042 0.2621 (45231)

EU1;sin
�0.2524 0.1747 0.0191 0.8080 0.2206 (45231)

EU1;log
�0.2482 0.1590 0.0645 0.8187 0.1450 (42531)

EU1;log 2
�0.2524 0.1720 0.0238 0.8096 0.2080 (45231)

k ¼ 0:8 EU1;exp
�0.1695 0.2422 0.2610 0.8102 0.4828 (45321)

EU1;sin
�0.1653 0.2463 0.2728 0.8142 0.4444 (45321)

EU1;log
�0.1565 0.2519 0.3079 0.8252 0.3836 (45321)

EU1;log 2
�0.1639 0.2472 0.2776 0.8158 0.4337 (45321)

k ¼ 1 EU1;exp
�0.1478 0.2564 0.3261 0.8137 0.5366 (45321)

EU1;sin
�0.1421 0.2634 0.3389 0.8177 0.5000 (45321)

EU1;log
�0.1323 0.2736 0.3705 0.8287 0.4440 (45321)

EU1;log 2
�0.1404 0.2651 0.3436 0.8193 0.4900 (45321)

k ¼ 2 EU1;exp
�0.1039 0.2849 0.4493 0.8321 0.6334 (45321)

EU1;sin
�0.0962 0.2959 0.4623 0.8360 0.6042 (45321)

EU1;log
�0.0853 0.3116 0.4860 0.8461 0.5610 (45321)

EU1;log 2
�0.0941 0.2986 0.4663 0.8375 0.5963 (45321)

k ¼ 10 EU1;exp
�0.0323 0.3563 0.6112 0.8577 0.7025 (45321)

EU1;sin
�0.0281 0.3650 0.6195 0.8608 0.6887 (45321)

EU1;log
�0.0222 0.3754 0.6330 0.8672 0.6672 (45321)

EU1;log 2
�0.0269 0.3670 0.6218 0.8617 0.6849 (45321)

k ¼ 15 EU1;exp
�0.0010 0.3905 0.5843 0.8577 0.7121 (45321)

EU1;sin
0.0016 0.3969 0.5893 0.8609 0.7004 (45321)

EU1;log
0.0055 0.4040 0.5998 0.8672 0.6818 (45321)

EU1;log 2
0.0024 0.3984 0.5908 0.8617 0.6971 (45321)

k ¼ 25 EU1;exp
0.0413 0.4358 0.6736 1.0000 0.8759 (45321)

EU1;sin
0.0426 0.4395 0.6764 1.0000 0.8710 (45321)

EU1;log
0.0449 0.4433 0.6824 1.0000 0.8639 (45321)

EU1;log 2
0.0430 0.4403 0.6773 1.0000 0.8696 (45321)

k ¼ 50 EU1;exp
0.2505 0.6472 0.8658 1.0000 0.8873 (45321)

EU1;sin
0.2513 0.6492 0.8664 1.0000 0.8847 (45321)

EU1;log
0.2523 0.6507 0.8671 1.0000 0.8810 (45321)

EU1;log 2
0.2516 0.6496 0.8666 1.0000 0.8840 (45321)
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[0.1177, 0:2394�i. Now, by using their proposed novel

accuracy function Mð#iÞ ¼ ai þ bi � 1þ ciþdi
2

correspond-

ing to alternative #i ¼ h½ai; bi�; ½ci; di�i (for more detail, we

refer to Ye [14]), we get Mð#1Þ ¼ 0:1587,

Mð#2Þ ¼ 0:3328, Mð#3Þ ¼ 0:3219, Mð#4Þ ¼ 0:4769 and

Mð#5Þ ¼ 0:3855. Therefore, the best alternative is A4.

4.3.3 Bai [22] Approach

If we apply Bai [22] approach to the considered problem

then, based on their approach, firstly the decision matrix is

converted into the score matrix R by using IðaijÞ ¼
aijþaijð1�aij�cijÞþbijþbijð1�bij�dijÞ

2
(for more detail, we refer to

Bai [22]), and hence their corresponding score matrix,

denoted by R, is given as

R¼

0:3900 0:4500 0:3950 0:4450 0:3300 0:4150

0:4300 0:7500 0:6250 0:6550 0:5600 0:7400

0:5800 0:8950 0:7400 0:8200 0:4150 0:7100

0:7050 0:9950 0:8950 0:9300 0:6750 0:7500

0:7400 0:6600 0:8950 0:5250 0:9300 0:5350

0
BBBBBB@

1
CCCCCCA

Based on this score matrix, if we apply their approach to

rank the alternative, then we obtained the relative closeness

coefficient of each alternative Ai, ði ¼ 1; 2; . . .; 5Þ as

CðA1Þ ¼ 0:3964; CðA2Þ ¼ 0:6029; CðA3Þ ¼ 0:6608;

CðA4Þ ¼ 0:7850; CðA5Þ ¼ 0:7267. Thus, ranking order of

the alternative is A4 � A5 � A3 � A2 � A1 and hence the

best alternative is A4.

4.3.4 Zhang et al. [21] Approach

If we analyzed Zhang et al. [21] approach to the considered

data corresponding to entropy function Unðx; yÞ ¼ ðxþ yÞn
then the score values SðAiÞ corresponding to alternative

Aiði ¼ 1; 2; . . .; 5Þ for n ¼ 1; 10; 100; p ¼ 0:1; 0:5; 0:9 are

summarized as below

From their results, it has been seen that for these dif-

ferent pairs, the ranking order remains same and hence the

best alternative is A4.

4.4 Sensitivity Analysis

In order to analyze the impact of the parameter k during

the aggregation phase by the GIVIFWA operator as

described in step 3, an experiment has been conducted in

which the effect of the the parameter k on to the ranking

of the alternative have been analyzed. For it, the different

values of k’s, (k ! 0; k ¼ 0:4; 0:8, 1, 2, 10, 15, 25, 50)

have been taken and by varying the value of n from 1 to

100 corresponding to p ¼ 0:5. Based on these values, the

proposed approach steps have been performed for each

pairs of n and k and the score values corresponding to

each entropy functions EUn;exp
, EUn;sin

, EUn;log
and EUn;log 2

are

computed and are summarized in Table 6. From this

analysis, it has been observed that the best alternative is

remain same i.e., A4 which shows that the proposed

approach is more stable and can be effectively used to

solve the decision-making problems in a more efficient

ways.

5 Conclusion

In this manuscript, multi-attribute decision making method

based on entropy weights has been proposed under IVIFSs

environment. Different entropy functions have been pro-

posed for accessing the impact of the decision-making

parameters and hence the weight vector corresponding to

each attribute is computing by using entropy measures.

Based on it, different preferences are aggregated by using

generalized averaging aggregation operator under IVIFS

environment. Further, the impact of the different decision

(n, p) Score values of the alternative Ranking

A1 A2 A3 A4 A5

(1, 0.1) -0.1168 0.2872 0.4647 0.8408 0.5785 A4 � A5 � A3 � A2 � A1

(1, 0.5) -0.1139 0.2817 0.4643 0.8398 0.5754 A4 � A5 � A3 � A2 � A1

(1, 0.9) -0.0968 0.3042 0.4965 0.8526 0.5412 A4 � A5 � A3 � A2 � A1

(10, 0.1) -0.1044 0.2922 0.4855 0.8472 0.5399 A4 � A5 � A3 � A2 � A1

(10, 0.5) -0.1050 0.2905 0.4829 0.8459 0.5429 A4 � A5 � A3 � A2 � A1

(10, 0.9) -0.0951 0.3024 0.4977 0.8510 0.5213 A4 � A5 � A3 � A2 � A1

(100, 0.1) -0.1021 0.2968 0.4917 0.8503 0.5349 A4 � A5 � A3 � A2 � A1

(100, 0.5) -0.1021 0.2967 0.4916 0.8503 0.5349 A4 � A5 � A3 � A2 � A1

(100, 0.9) -0.1029 0.2941 0.4883 0.8481 0.5351 A4 � A5 � A3 � A2 � A1
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makers’ parameters on the ranking of the alternative has

been done. The approach has been illustrated with a

numerical example for showing their effectiveness as well

as stability. From their computed results, it has been

observed that the proposed approach can be equivalently

utilize to solve the MADM problems. In the future, we may

extend this technique to other domains such as multi-ob-

jective programming, clustering, uncertain system and

pattern recognition.
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