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Abstract In this paper an attempt has been made to

develop a mathematical model to study intracellular cal-

cium distribution in T lymphocyte for a one dimensional

unsteady state case. The model incorporates the parameters

like diffusion coefficient, ryanodine receptors (RyRs),

source influx and buffers. The boundary conditions have

been framed using biophysical conditions of the problem.

The finite element method has been employed to obtain the

solution of the proposed mathematical model. The

numerical results are used to study relationship between

concentration and position with respect to source influx,

buffers and ryanodine receptors (RyRs).
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1 Introduction

Calcium (Ca2?) is a universal second messenger, found in

almost all cell types. Its intracellular level is regulated by

finely tuned machinery responsible for calcium uptake,

release, and intracellular storage. T lymphocytes are no

exception in this regard. There are several calcium channels

and transporters that play a key role in balancing cytoplasmic

calcium levels in T lymphocytes. Pathways of calcium

homeostasis participate in a number of cellular processes that

determine short and long-term function of T lymphocytes.

Therapeutic strategies are now evolving based on the modu-

lation of T lymphocyte calcium homeostasis in order to

combat immune—mediated disorders [1]. Ca2? entry across

the plasmamembrane is the most important Ca2? stores for T

lymphocyte activation [2]. The ion channels that regulate

calcium influx from the extracellular space in T lymphocytes

either by conducting calcium ions or by modulating the

membrane potential that provides driving force for calcium

influx [3, 4]. The best characterized calcium channel in T

lymphocytes is the calcium released-activated calcium

(CRAC) channel, which is composed of ORAI and stromal

interaction molecule (STIM) proteins [1]. The ORAI proteins

andmost prominentlyORAI1 are themolecular basis forCa2?

release-activated calcium (CRAC) channels. CRAC/ORAI1

channels are well defined through their biophysical and

pharmacological properties [2].

Ca2? dynamics [5] is the exchange of Ca2? ions between

intracellular Ca2? stores and the cytosol, entering and leaving

ions between the cells and binding activity of calcium and

calcium binding proteins. The most important calcium bind-

ing proteins are itself buffers that are located in Ca2? stores.

The buffers bind more calcium molecules when the calcium

concentration is higher in the cell [6, 7]. In T lymphocytes, the

main buffer within cytosol is calmodulin (CaM) [8] with 4

calcium binding sites per CaM. There is a diversity of mea-

sured CaM concentrations depending on cell type and organ

[8]. The binding of Ca2? concentration to buffers serves as an

indicator of free calcium concentration in intracellular mea-

surements. Furthermore other second messengers derived

from the adenine dinucleotides, nicotinamide adenine dinu-

cleotide (NAD), and nicotinamide adenine dinucleotide
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phosphate (NADP) have also been implicated in T lympho-

cyte calcium signaling [9]. Nicotinic acid adenine dinu-

cleotide phosphate (NAADP) acts as a very early second

messenger upon TCR/CD3 engagement, while cyclic ADP-

ribose (cADPR) is mainly involved in sustained partial

depletion of the endoplasmic reticulum by stimulating cal-

cium release via ryanodine receptors (RyRs) [1].

A good number of theoretical attempts [10–24] are

reported in the literature for the study of calcium signaling in

neuron cells, astrocytes, oocytes, acinar cells, fibroblasts,

etc. But very few attempts are reported [2, 8, 25] for theo-

retical study of calcium signaling in T lymphocytes. No

attempt is reported in the literature for calcium diffusion

based study of calcium signaling in T lymphocytes. In the

present paper an attempt has been made to develop a model

for intracellular calcium distribution in T lymphocyte

involving calcium diffusion, buffers and influx of Ca2? from

ryanodine receptors (RyRs) channels. The model has been

developed for a one dimensional unsteady state case. The

finite element method has been used to obtain the solution.

2 Mathematical Formulation

Calcium kinetics in T lymphocytes is governed by a set of

reaction–diffusion equations which can be framed assum-

ing the following bimolecular reaction between Ca2? and

buffer species [17, 26–28]

Ca2þ
� �

þ Bj

� �
 !
kþ
j

k�
j

CaBj

� �
ð1Þ

where [Ca2?], [Bj] and [CaBj] represent the cytosolic Ca
2?

concentration, free buffer concentration and calcium bound

buffer concentration respectively and ‘j’is an index over

buffer species, kj
? and kj

- are ‘on’ and ‘off’ rates for jth

buffer respectively. Using Fickian diffusion, the buffer

reaction diffusion system in one dimension is expressed as

[10, 11, 17, 26, 27]

o Ca2þ
� �

ot
¼ DCar2 Ca2þ

� �
þ
X

Rj ð2Þ

o½Bj�
ot
¼ DBj

r2½Bj� þ
X

Rj ð3Þ

o½CaBj�
ot

¼ DCaBj
r2½CaBj� �

X
Rj ð4Þ

where reaction term Rj is given by

Rj ¼ �kþj ½Ca2þ�½Bj� þ k�j ½CaBj� ð5Þ

DCa, DBj
, DCaBj

are diffusion coefficients of free calcium,

free buffer and Ca2? bound buffer respectively and rRyR is

the influx of Ca2? from ryanodine receptors (RyRs). Let

[Bj]T = ([Bj] ? [CaBj]) be the total buffer concentration of

jth buffer and the diffusion coefficient of buffer is not

affected by the binding of calcium i.e., DBj
¼ DCaBj

. The

Eq. (5) can be written as [17, 26]

Rj ¼ �kþj ½Ca2þ�½Bj� þ k�j ½Bj�T � ½Bj�
� �

: ð6Þ

We assume that the buffer concentration is present in

excess inside the cytosol so that the concentration of free

buffer is constant in space and time i.e., [Bj] % [Bj]?.

Under this assumption Eq. (6) is approximated by

[12, 17, 20, 26, 28]

kþj ½Ca2þ�½Bj� � k�j ½Bj�T � ½Bj�1
� �

ð7Þ

where ½Bj�1 ¼
k�j ½Bj�T

k�
j
þkþ

j
½Ca2þ�1

� � is the background buffer

concentration. Thus for single mobile buffer species

Eq. (2) can be written as [17, 18, 26]

o½Ca2þ�
ot

¼ DCar2½Ca2þ� � kþj ½Bj�1 ½Ca2þ� � ½Ca2þ�1
� �

þ rRyR þ drðrÞ
ð8Þ

Here [Ca2?] is background calcium concentration. rRyR is

the influx of calcium through ryanodine receptor channels

which is given by [12, 17, 29]

rRyR ¼ VRyRPo ½Ca2þ�ER � ½Ca2þ�
� �

ð9Þ

We assume a single point source of Ca2?, r(r) at r = 0;

there are no sources for buffers and buffer concentration is

in equilibrium with Ca2? far from the source and r is the

Laplacian operator i.e., r2 ¼ o2

or2
þ 2

r
o
or
.

Combining Eqs. (8) and (9) we get the mathematical

model as given below

o½Ca2þ�
ot

¼ DCar2½Ca2þ� � kþj ½Bj�1 ½Ca2þ� � ½Ca2þ�1
� �

þ VRyRPo ½Ca2þ�ER � ½Ca2þ�
� �

þ drðrÞ
ð10Þ

The T lymphocyte cell is assumed to be spherical in shape

[8]. The Eq. (10) for a one dimensional unsteady state case

in polar spherical coordinates is given by

o½Ca2þ�
ot

¼ 1

r2
o

or
DCar

2 o½Ca2þ�
or

� �

� kþj ½Bj�1 ½Ca2þ� � ½Ca2þ�1
� �

þ VRyRPo ½Ca2þ�ER � ½Ca2þ�
� �

þ drðrÞ ð11Þ

The point source of calcium is assumed at r = 0 and as we

move away from the source, the calcium concentration

achieves its background value i.e. 0.1 lM. Thus the initial

and boundary conditions for the above problem are

[26, 27, 30].
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The boundary conditions are given by

lim
r!0

4pDCar
2 o½Ca2þ�

or

� �
¼ r ð12Þ

lim
r!5
½Ca2þ� ¼ 0:1 lM ð13Þ

The initial condition is given by

½Ca2þ�t¼0 ¼ 0:1 lM ð14Þ

Our problem is to solve Eq. (11) along with Eqs. (12–

14). For our convenience we write’u’in lieu of [Ca2?]. The

Eq. (11) in discretized variational form is given by

IðeÞ ¼ 1

2

Zrj

ri

r2
ouðeÞ

or

� �2

þar2 uðeÞ
� 	2

�2br2uðeÞ þ r2

DCa

oðuðeÞÞ2

ot

" #

� dr þ wðeÞ
ruðeÞ

4pDCa

� �

r¼0

ð15Þ

where a ¼ 1
DCa

kþj ½Bj�1 þ VRyRPo

� 	
; b ¼ 1

DCa
VRyRPouER
�

þkþj ½Bj�1u1Þ; w(e) = 1 for e = 1 and w(e) = 0 for rest

of the elements, where e = 1, 2, 3, … 50. The shape

function of concentration variation within each element is

defined as:

uðeÞ ¼ c
ðeÞ
1 þ c

ðeÞ
2 r ð16Þ

or

uðeÞ ¼ pTcðeÞ ð17Þ

where

pT ¼ 1 r½ � ð18Þ

and

cðeÞ
T

¼ c
ðeÞ
1 c

ðeÞ
2

h i
ð19Þ

Substituting nodal conditions in Eq. (17), we get

�uðeÞ ¼ PðeÞ � cðeÞ ð20Þ

where

�uðeÞ ¼ ui
uj


 �
; PðeÞ ¼ 1 ri

1 rj


 �
ð21Þ

From the Eq. (20), we have

cðeÞ ¼ RðeÞ � �uðeÞ ð22Þ

where

RðeÞ ¼ PðeÞ
�1

ð23Þ

Substituting c(e) from Eq. (22) in (17), we get

uðeÞ ¼ pTRðeÞ�uðeÞ ð24Þ

Now the integral I(e) can be written in the form

IðeÞ ¼ I
ðeÞ
l þ IðeÞm � IðeÞn � I

ðeÞ
k þ IðeÞp ð25Þ

where

I
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1
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I
ðeÞ
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r
4pDCa
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IðeÞp ¼
1

DCa

d

dt

Zrj

ri

r2 uðeÞ
� 	2

dr ð30Þ

Now, we extremize the integral I(e) w.r.t. each nodal

calcium concentration ui as given below

dIðeÞ

d�uðeÞ
¼ dI

ðeÞ
l

d�uðeÞ
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ðeÞ
m

d�uðeÞ
� dI

ðeÞ
n

d�uðeÞ
� dI

ðeÞ
k

d�uðeÞ
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ðeÞ
p

d�uðeÞ
¼ 0 ð31Þ

dI

d�u
¼

X
�MðeÞ

dIðeÞ

d�u
�MðeÞ

T

¼ 0 ð32Þ

where �MðeÞ ¼

0 0

: :
1 0

0 1

: :
0 0

2

6666664

3

7777775

; �u ¼

u1
u2
:
:
:
u51

2

6666664

3

7777775

Assembling the integrals (25), we get

I ¼
X50

e¼1
IðeÞ ð33Þ

This leads to a following system of linear differential

equations

½A�51�51½�u�51�1 þ ½C�51�51
ou

ot


 �

51�1
¼ ½B�51‘�1 ð34Þ

Here, �u½ � ¼ ½u1 u2 u3 … u51]
T, A and C are the system

matrix and B is the system vector. A computer program has

been developed in MATLAB 7.10 for the whole problem

and executed on Intel(R) CoreTM i3 CPU, 4.00 GB RAM,

2.40 GHz processor.
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3 Results and Discussion

In this section, the numerical computations were performed

using a ‘‘finite difference in time, finite element in space’’

using linear basis functions. The simulations reported here

have been designed to investigate the intracellular calcium

concentration in T lymphocytes in presence and absence of

the parameters. Our simulations also reproduce the relative

values of intracellular calcium in the measured time

courses.

The numerical values of biophysical parameters used in

the model are stated in the Table 1. [8, 12, 17, 18, 26, 29].

Figure 1 shows radial calcium concentration for differ-

ent source amplitudes and B = 25 lM. The calcium con-

centration is maximum at r = 0 lM i.e., source and it

decreases as we go away from the source up to r = 5 lM.

It is observed that the calcium concentration is higher for

higher values of source amplitudes.

Figure 2 shows radial calcium concentration distribution

for r = 1 pA and different values of BAPTA buffer con-

centrations B = 50, 100, 150 and 200 lM. The calcium

concentration is maximum at source i.e. r = 0. The peak

value of calcium decreases with the increase in the buffer

concentration. The gaps among the curves in Fig. 2 indi-

cate that buffer has significant effect on calcium concen-

tration distribution in the cell.

Figure 3 shows the radial calcium concentration distri-

bution in presence and absence of RyR. It is observed that

the presence of RyR raises the peak calcium concentration

at the source r = 0. Further the gap between the curves

indicates the effect of RyR on calcium concentration dis-

tribution in the cell.

Figure 4 shows the radial calcium concentration distri-

bution due to the two different types of buffers namely

BAPTA and EGTA buffers. The fall in the calcium con-

centration profiles for BAPTA buffer is sharper as com-

pared to that for EGTA buffer. This is because the BAPTA

buffer is a fast buffer and binds the calcium ions at faster

rate than the EGTA buffer.

Figure 5 shows that the temporal variation of Ca2?

concentration in T lymphocytes for different concentra-

tions of buffer. The effect of changing buffer concentration

is clear in this figure. We observe that calcium concen-

tration reaches steady state in less than 1000 ms. The peak

value of Ca2? concentration is different for different values

of buffer concentration. The peak value of Ca2? concen-

tration is higher for lower concentration of buffer. It is also

observed that the steady state is achieved early for higher

buffer concentration. The reason for this is that the higher

concentration of buffers binds more calcium and then

forcing the system to reach steady state early.

Figure 6 shows temporal variation of Ca2? concentration

in T lymphocytes in presence and absence of Ryanodine

Receptor Ca2? channel. It is observed that Ca2? concentra-

tion is lower in absence of Ryanodine receptor. The fig-

ure further shows that the Ca2? concentration is higher in

presence of the receptor as receptor releases the Ca2? thus

Table 1 Values of biophysical parameters [8, 12, 17, 26, 29]

Symbol Parameter Value

DCa Diffusion coefficient 250 lM2/s

kj
? On rate for EGTA 3/lM s

kj
- Off rate for EGTA 1/s

kj
? On rate for BAPTA 100/lM s

kj
- Off rate for BAPTA 10/ s

[Bj]? Total buffer concentration 100 lM

r Source amplitude 1 pA

VRyR RyR receptor rate 0.5 lM/s

[Ca2?]ER Calcium concentration of ER 400 lM

Po Rate of calcium efflux 0.5 M/s

Fig. 1 Radial variation of calcium concentration for different source

amplitudes i.e., r = 1 pA, 2 pA, 3 pA, B = 25 lM

Fig. 2 Radial variation of calcium concentration for r = 1 pA for

different concentration of BAPTA buffer i.e., B = 50, 100,

150, 200 lM
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causes increase in Ca2? concentration. The Ca2? concen-

tration is higher from t = 100 ms tot = 500 ms and then

remains in steady state. The Ca2? concentration in presence

of ryanodine receptor is maximum and reaches up to 3 lM.

The Ca2? concentration is higher at 100 ms after that it

decreases rapidly and becomes almost steady at 800 ms.

The results obtained here are in agreement with the

biological facts. But no such experimental results are

available for comparison. Similar results have been

observed in other cells like neuron cells, astrocytes,

oocytes etc. [10–24] and our results are in agreement with

them.

4 Conclusion

The proposed finite element model has been employed

successfully to study the relationships of spatial–temporal

calcium concentration distribution with buffers, source

amplitude, RyR etc. in T lymphocytes. From the results it

can be concluded that the source amplitude, buffers and

RyR have significant impact on calcium concentration

distribution patterns in T lymphocytes required for main-

taining the structure and function of the cell. Such models

can be developed further to get deeper insights of calcium

concentration regulation mechanism in T lymphocytes and

generate information which can be useful to biomedical

scientists for developing protocols for diagnosis and

treatment of diseases associated with T lymphocytes.
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