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Abstract In this paper, explicit expressions are proposed

to estimate the unknown process model parameters during

online and offline mode of operation. Mathematical

expressions which are derived for second order system with

time delay are generalized for second order overdamped,

underdamped, critically damped, first order and unsta-

ble systems. The process information is extracted using

relay with hysteresis which also reduces the effect of

measurement noise. Under noisy environment as the pro-

cess output is corrupted due to measurement noise, a closed

loop denoising block is used to obtain noise free output.

Validity of the presented method, with and without mea-

surement noise, is demonstrated through simulation results

which are compared with available methods in literature.

Keywords Estimation � Parameters �
Relay with hysteresis � Measurement noise

1 Introduction

Recently, estimation of process model parameters from

relay feedback technique has gained considerable attention

for controller tuning in process industries. In relay based

identification, the system generates sustained oscillations

or limit cycle, with relay input. Liu et al. [1] presented a

detailed tutorial review on process model identification in

the past three decades. Fedele [2] suggested step response

test to obtain the first order plus time delay (FOPTD)

process model. But relay feedback method is more time

efficient as compared to step test [3]. Many authors used

describing function approximation (DFA) method to

develop the analytical expressions for estimation of process

model parameters. Li et al. [4] proposed algorithms for

identification of stable and unstable process dynamics by

using two relay tests which takes more time as the number

of experiments doubled. Shen et al. [5] suggested an input

biased relay test to find out two points on the Nyquist curve

by applying dual input describing function approach to

estimate the process model parameters of stable systems.

Marchetti et al. [6] employed ideal relay to identify

unstable processes. Lee et al. [7] used relay with hysteresis

and DFA method to obtain the process dynamics of

stable FOPTD systems. Padhy and Majhi [8] derived ana-

lytical expressions based on DFA method to calculate the

process model parameters of stable and unstable FOPTD

systems employing ideal relay. Bajarangbali and Majhi

[9–13] applied DFA approach to identify process dynamics

of FOPTD and second order plus time delay (SOPTD)

systems, without considering generalized expressions. As

in DFA technique the non-linear device relay is approxi-

mated by a gain (N) hence, the estimated process model

parameters are approximate. So, many identification

methods are proposed to obtain accurate process dynamics.

Vivek and Chidambaram [14] employed Laplace transform

approach for estimation of FOPTD process model param-

eters using symmetrical relay test. Thyagarajan and Yu

[15] proposed shape factor of relay feedback response to

estimate unknown process model parameters. Majhi and
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Atherton [16, 17] and Majhi [18] developed relay based

identification algorithms for different types of systems

using ideal relay and state-space method. Similarly,

Bajarangbali et al. [19], Bajarangbali and Majhi [20, 21]

used relay with hysteresis and state space technique for

estimation of various process model parameters. These

techniques involve extensive calculation and need to solve

set of nonlinear equations simultaneously. In literature,

system identification methods are available for one or two

types of systems in general and few authors have consid-

ered the effect of noise. In this paper, a generalized SOPTD

system is considered and explicit expressions are derived to

estimate the parameters of second order overdamped,

underdamped, critically damped, stable and unstable first

order and unstable second order systems during offline and

online mode of operation. Under noisy environment an

ideal relay is subjected to chattering hence, to avoid

incorrect relay switching, relay with hysteresis is applied

for system identification [1, 7]. Relay with hysteresis

reduces the effect of measurement noise and further noise

elimination is carried out with the help of a closed loop

denoising block consisting of a derivative and an integrator

in series feedback. This denoising block is modified from

the one considered in [19] where it consists of two

derivative blocks and an integrator. Generally, the hys-

teresis width is selected as twice the standard deviation of

noise [3].

2 Proposed Method and Analytical Expressions

A relay in parallel with PID controller is connected to the

system in closed loop to generate sustained oscillations

during online identification whereas in offline mode the

relay test is conducted without controller. The DFA tech-

nique is applied to derive explicit expressions for estima-

tion of unknown process model parameters. The

generalized transfer function of stable and unstable SOPTD

system is given by

GðsÞ ¼ Ke�hs

ms2 þ ns� 1
ð1Þ

where K is steady state gain, h is time delay, m and n are

system parameters. The nonlinear device relay with

hysteresis is approximated by a gain of

N ¼
4h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � e2
p

� je
� �

pA2

ð2Þ

where h is relay height, A is limit cycle amplitude and e is
hysteresis width. The standard form of PID controller in

frequency domain is represented as

GcðjxÞ ¼ Kp 1þ 1

TiðjxÞ
þ TdðjxÞ

� �

ð3Þ

where Kp is proportional gain, Ti integral time constant and

Td is derivative time constant. Similarly the system

represented by eq. (1) can be written as

GðjxÞ ¼ Ke�jxhab
ðjx� aÞðjx� bÞ

ð4Þ

where

a ¼ �2

nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � 4m
p ; b ¼ �2

n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � 4m
p ð5Þ

In this paper, eq. (1) is realized in the form of six typical

transfer function models: overdamped SOPTD (OSOPTD),

underdamped SOPTD (UDSOPTD), unstable SOPTD

(UNSOPTD), critically damped SOPTD (CSOPTD),

stable FOPTD (SFOPTD) and unstable FOPTD

(UNFOPTD). The detailed derivation of expressions to

estimate unknown process model parameters of these

systems are given below. The condition to get sustained

oscillations for online identification is

GðjxÞ þ 1

N þ GcðjxÞð Þ ¼ 0 ð6Þ

Substituting eqs. (2), (3) and (4) in eq. (6) and further

solving we get

Ke�jxhab
ðjx� aÞðjx� bÞ þ

1

uþ jvð Þ ¼ 0 ð7Þ

where

u ¼ Kp þ
4h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � e2
p

pA2
; v ¼ xKpTd �

Kp

xTi
� 4he
pA2

ð8Þ

2.1 Expressions for SOPTD Systems

The transfer function given in eq. (1) can be realized as

stable and unstable SOPTD system with the condition

n2 [ 4m for OSOPTD, UNSOPTD systems and with

n2\4m for UDSOPTD system. Substituting a and b given

in eq. (5) into eq. (7) and solved further to get

Ke�jxh

mx2 � jxn� 1
¼ u� jv

u2 þ v2
ð9Þ

where x ¼ 2p=T , T is time period of limit cycle. Equating

the magnitude on both sides of eq. (9), the following

expression is obtained

m ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 u2 þ v2ð Þ � xnð Þ2
q

x2

ð10Þ

Similarly, equating the phase angle on both sides of eq. (9)

we can write
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n ¼ mx2 � 1

x
tan xh� tan�1 v

u

� �� �h i

ð11Þ

Now, utilizing eqs. (10) and (11) the below mentioned

explicit expressions are derived

m ¼ 1

x2
1þ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

cos xh� tan�1 v

u

� �� �h i

ð12Þ

for OSOPTD system.

m ¼ 1

x2
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

cos xh� tan�1 v

u

� �� �

� 1
h i

ð13Þ

for UNSOPTD system.

n ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

x

" #

sin xh� tan�1 v

u

� �� �

ð14Þ

for OSOPTD and UNSOPTD systems. Hence, the expres-

sions given in eqs. (12) and (14) are used to estimate the

process model parameters (m and n) for OSOPTD system

and eqs. (13) and (14) are utilized to obtain the parameters

of UNSOPTD system. Similarly, the expressions given in

eqs. (12) and (14) are also used to estimate the process

model parameters of UDSOPTD system.

Now, a critically damped SOPTD system is represented

as

GðsÞ ¼ Ke�hs

ffiffiffiffi

m
p

sþ 1ð Þ2
ð15Þ

which is obtained by substituting n ¼ 2
ffiffiffiffi

m
p

in eq. (1).

Hence, this value of n, is put in eq. (5) to get a ¼ b ¼
�1=

ffiffiffiffi

m
p

which are utilized in (7) and reduced to

Ke�jxh uþ jvð Þ
jx

ffiffiffiffi

m
p

þ 1ð Þ2
¼ �1 ð16Þ

Again, equating the magnitude and phase angle on both

sides of eq. (16) to obtain

ffiffiffiffi

m
p

¼ 1

x
cot xh� tan�1 v

u

� �� �

= 2
� �h i

ð17Þ

K ¼ mx2 þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p ð18Þ

2.2 Expressions for FOPTD Systems

The following stable and unstable FOPTD system is

obtained with m ¼ 0 in eq. (1)

GðsÞ ¼ Ke�hs

ns� 1
ð19Þ

Using m ¼ 0 in (5), one can get a ¼ �1=n and b ¼ 1
which are substituted in eq. (7) and solved to obtain

Ke�jxh uþ jvð Þ
ðjxn� 1Þ ¼ �1 ð20Þ

Considering the magnitude and phase angle on both sides

of eq. (20) the following explicit expressions are obtained

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 u2 þ v2ð Þ � 1
p

x
ð21Þ

for SFOPTD and UNFOPTD.

h ¼ 1

x
pþ tan�1 v� uxn

uþ vxn

� �� �

ð22Þ

for SFOPTD.

h ¼ 1

x
tan�1 vþ uxn

u� vxn

� �h i

ð23Þ

for UNFOPTD.

Here, eqs. (21) and (22) are used to estimate the process

model parameters n and h of SFOPTD system and eqs. (21)

and (23) are utilized to get the parameters (n and h) of

UNFOPTD system. From the above derivations it can be

observed that the DFA technique gives expressions for two

parameters for a particular system so, estimation of remaining

parameters is carried out as explained next. Steady state gain

(K) is assumed to be positive and estimated from steady state

simulation [3] for all process models except CSOPTD, and

process time delay h is estimated from themeasurements of t1
and t0 [18] as h = ðt1 � t0Þ, for all models except SFOPTD and

UNFOPTD, where t0 is the relay switching time with refer-

ence to limit cycle and t1 is the time at which instant change

occurs in second derivative output of limit cycle. The

expressions obtained in Sects. 2.1 and 2.2 are applied for

online system identification where the initial controller

parameters, Kp = 0.01 for stable systems and 0.001 for

unstable systems,Ti =0.5 andTd =0.125 are selected based on

many simulation results. Once the process dynamics are

identified then suitable model based controller is designed.

2.3 Expressions for Offline System Identification

As mentioned earlier during offline mode of operation, the

relay test is conducted in absence of controller. Hence, the

expressions derived in Sects. 2.1 and 2.2 are modified with

the following changes to identify the process dynamics

during offline mode

u ¼ ð4h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � e2
p

Þ=pA2; v ¼ �4he=pA2 ð24Þ

The final expressions obtained for different types of sys-

tems are given in Table 1 and the procedure to estimate the

remaining parameters is as explained in Sect. 2.2.

3 Simulation Study

The proposed method is validated with simulation results

for both online and offline mode of operation. The exam-

ples available in literature in the form of transfer function
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models obtained from processes are considered. To con-

duct the test under noisy environment, a normally dis-

tributed random additive noise with zero mean and certain

variance, (0, r2n), is added at the process output to generate

noisy oscillations, the details are given in examples. To

estimate the parameters in presence of measurement noise,

the noisy process output is passed through the denoising

block to obtain the noise free limit cycle output as men-

tioned earlier. The frequency domain estimation error

index (eE) for each of the process models is found by

applying integral of absolute error (IAE) criterion as

eE ¼
Z f

0

GpðjxÞ � GðjxÞ
GpðjxÞ

	

	

	

	

	

	

	

	

dx ð25Þ

where GðjxÞ is actual process, GpðjxÞ is proposed model

both in frequency domain and f is phase cross over fre-

quency of the actual process. During online identification

the initial controller settings mentioned in Sect. 2.2 are

used to generate the sustained oscillations in the following

examples. For both offline and online test, same relay

settings are used.

Remark: In online identification the PID controller

remains in operation during the identification test. There-

fore, estimated process model parameters depend on initial

or updated controller parameters. The error index (eE) for

proposed models for online identification can be fine tuned

(than offline) by setting desirable controller parameters.

Once the process models are identified, then a suit-

able controller can be designed.

Example 1 Let us consider the following process model

[2] for an OSOPTD system

GðsÞ ¼ e�4s

20s2 þ 12sþ 1
:

During online identification the relay with parameters h ¼
1 and e ¼ 0:02 is applied to the above system to generate

limit cycle and its second derivative output as shown in

Fig. 1. The measured limit cycle parameters are

A ¼ 0:3599, T ¼ 20:1205 and t0 ¼ 0:2246 whereas t1 ¼
4:2246 is measured from second derivative output of limit

cycle. The process model parameters K ¼ 1:0 and h ¼ 4:0

are estimated from the procedure explained in Sect. 2.2.

Substituting these parameters along with limit cycle

parameters in eqs. (12) and (14) and solved to estimate

m ¼ 19:2277 and n ¼ 11:0269 respectively. Similarly for

offline identification the limit cycle and its second

derivative output parameters measured are A ¼ 0:353,

T ¼ 19:9445, t0 ¼ 0:2263 and t1 ¼ 4:2263. The process

model parameters K ¼ 1:0 and h ¼ 4:0 are obtained using

the procedure explained above in this example. The

parameters for K, h and other limit cycle parameters are

substituted in the corresponding expressions as mentioned

in Table 1 for OSOPTD system to estimate m ¼ 19:2163

and n ¼ 11:0831. Fedele [2] proposed FOPTD model for

this system using step input method. The identified process

models during online and offline mode of operation, in the

form of transfer functions are given in Table 2 along with

the model proposed by Fedele [2] and the corresponding

estimation error for each process model. Eventhough the

model suggested by Fedele [2] has less estimation error but

the author has not considered online identification test. To

show the efficiency of proposed method under noisy

environment, the process dynamics are identified in pres-

ence of measurement noise of 0.001 NSR. This noise effect

Table 1 Expressions for offline system identification

Models Explicit expressions

OSOPTD and m ¼ 1
x2 1þ cos xhþ tan�1 e

ffiffiffiffiffiffiffiffiffi

A2�e2
p

� �� �

4hK
pA

h i

UDSOPTD n ¼ sin xhþ tan�1 e
ffiffiffiffiffiffiffiffiffi

A2�e2
p

� �� �

4hK
xpA

UNSOPTD m ¼ 1
x2 cos xhþ tan�1 e

ffiffiffiffiffiffiffiffiffi

A2�e2
p

� �� �

4hK
pA � 1

h i

n ¼ sin xhþ tan�1 e
ffiffiffiffiffiffiffiffiffi

A2�e2
p

� �� �

4hK
xpA

CSOPTD
ffiffiffiffi

m
p

¼ 1
x cot xhþ tan�1 e

ffiffiffiffiffiffiffiffiffi

A2�e2
p

� �� �

= 2
� �h i

K ¼ mx2þ1ð ÞpA
4h

SFOPTD n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4hKð Þ2� pAð Þ2
p

xpA

h ¼ 1
x p� tan�1 xn

ffiffiffiffiffiffiffiffiffi

A2�e2
p

þe
ffiffiffiffiffiffiffiffiffi

A2�e2
p

�exn

� �h i

UNFOPTD n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4hKð Þ2� pAð Þ2
p

xpA

h ¼ 1
x tan�1 xn

ffiffiffiffiffiffiffiffiffi

A2�e2
p

�e
ffiffiffiffiffiffiffiffiffi

A2�e2
p

þexn

� �h i

80 90 100 110 120 130 140 150 160 170
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time in sec

O
u

tp
u

t 
si

g
n

al
s

Limit cycle output
Second derivative of limit cycle output

Fig. 1 Limit cycle and its second derivative output signals
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is achieved using a normally distributed random additive

noise with zero mean and 5:1665� 10�5 noise variance for

online identification. The noisy process output and

denoised limit cycle output are as shown in Fig. 2 and the

proposed model is given in Table 6 along with estimation

error.

Example 2 In this example an UDSOPTD system [22] is

considered with the following transfer function model

GðsÞ ¼ e�0:01s

s2 þ 0:6sþ 1
:

For online identification the relay (h ¼ 1 and e ¼ 0:3) input

to the system generates limit cycle and its second deriva-

tive output, with the parameters A ¼ 0:6274, T ¼ 3:774,

t0 ¼ 0:2791 and t1 ¼ 0:2891. Similar to Example 1, the

process model parameters K ¼ 1:0 and h ¼ 0:01 are esti-

mated. These parameters are substituted in eqs. (12) and

(14) with limit cycle quantities to estimate m ¼ 1:0014 and

n ¼ 0:6066 respectively. Similarly for offline identification

the measured limit cycle and its second derivative param-

eters are A ¼ 0:6239, T ¼ 3:7766, t0 ¼ 0:2809 and

t1 ¼ 0:2909. So, K ¼ 1:0 and h ¼ 0:01 are estimated

similar to Example 1 and these parameters are utilized with

limit cycle quantities in the corresponding expressions for

UDSOPTD system mentioned in Table 1 to estimate m ¼

1:0017 and n ¼ 0:6076. The proposed models and the

model suggested by Lavanya et al. [22] are given in

Table 3 along with the respective estimation error. It can

be observed that the proposed models have less estimation

error than the model suggested by Lavanya et al. [22]. The

results are also compared using Nyquist plots as shown in

Fig. 3. In presence of measurement noise of 0.01 NSR, the

identified model during online mode is given in Table 6.

Example 3 This example illustrates identification of

CSOPTD process dynamics for the following system [15]

GðsÞ ¼ e�0:01s

2sþ 1ð Þ2
:

Application of online relay (h ¼ 1 and e ¼ 0:1) feedback test

generates the limit cycle and its second derivative output

with the quantities A ¼ 0:1558, T ¼ 4:6557, t0 ¼ 0:4877

and t1 ¼ 0:4977. So, the time delay parameter, h ¼ 0:01 is

obtained. Substituting the required parameters in eqs. (17)

and (18), the remaining process model parameters are esti-

mated as
ffiffiffiffi

m
p

¼ 1:9962 and K ¼ 1:0084. Similarly the

parameters measured during offline test are A ¼ 0:1555,

T ¼ 4:6582, t0 ¼ 0:4888 and t1 ¼ 0:4988, so, h ¼ 0:01.

Utilizing these parameters in the expressions mentioned in

Table 1 for CSOPTD system, the process model parameters

are obtained as
ffiffiffiffi

m
p

¼ 1:9938 and K ¼ 1:0054. These

Table 2 Comparison of process models for Example 1

Proposed model (online) 1:0e�4:0s

19:2277s2þ11:0269sþ1
eE ¼ 0:0218

Proposed model (offline) 1:0e�4:0s

19:2163s2þ11:0831sþ1
eE ¼ 0:0206

By Fedele [2] (offline) 1:0015e�5:6474s

10:4495sþ1
eE ¼ 0:0143
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Fig. 2 Noisy and denoised outputs

Table 3 Comparison of process models for Example 2

Proposed model (online) 1:0e�0:01s

1:0014s2þ0:6066sþ1
eE ¼ 0:0253

Proposed model (offline) 1:0e�0:01s

1:0017s2þ0:6076sþ1
eE ¼ 0:0296

By Lavanya et al. [22] (offline) 1:0e�0:01s

0:8953s2þ0:922sþ1
eE ¼ 1:427

Fig. 3 Nyquist plots for example 2

Table 4 Comparison of process models for Example 3

Proposed model (online) 1:0084e�0:01s

1:9962sþ1ð Þ2
eE ¼ 0:1183

Proposed model (offline) 1:0054e�0:01s

1:9938sþ1ð Þ2
eE ¼ 0:1112

By Thyagarajan and Yu [15] (offline) 0:8709e�0:013s

1:8978sþ1ð Þ2
eE ¼ 0:4659
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identified process dynamics are represented in transfer

function models in Table 4 along with the model proposed

by Thyagarajan and Yu [15]. To illustrate the robust per-

formance of the proposed method, the relative range in %

error for system parameter, m (for online identification)

against the deviations in limit cycle parameters, A and T in

the range of ±10%, is plotted as shown in Fig. 4. for this

example. Under noisy environment of 0.1 NSR, the process

model parameters are estimated during offline mode and the

proposed model is given in Table 6. The noisy and denoised

process outputs are as shown in Fig. 5.

Example 4 Estimation of process model parameters of the

following UNSOPTD system [14] is explained in this example

GðsÞ ¼ e�0:5s

s2 þ 1:5s� 1
:

The online identification is carried out using the relay set-

tings h ¼ 1 and e ¼ 0:2 to generate limit cycle and its second

derivative output with the parameters A ¼ 0:8627,

T ¼ 13:2162, t0 ¼ 0:3631 and t1 ¼ 0:8631. Hence, K ¼ 1:0

and h ¼ 0:50 are obtained as explained in Sect. 2.2. These

parameters are utilized in eqs. (13) and (14) to find out the

remaining process model parameters m ¼ 1:3925 and n ¼
1:4195 respectively. Similarly the limit cycle parameters

measured during offline mode are A ¼ 0:857, T ¼ 13:0391,

t0 ¼ 0:3646 and t1 ¼ 0:8646. Using these quantities with

K ¼ 1:0 and h ¼ 0:50 in expressions mentioned in Table 1

for UNSOPTD system, the model parameters are estimated

as m ¼ 1:3797 and n ¼ 1:4142. For this system Vivek and

Chidambaram [14] suggested FOPTD model as given in

Table 5 along with proposed models. The process model

identified in presence of measurement noise of 0.01 NSR,

during online mode is mentioned in Table 6.

4 Conclusion

A simple DFA technique is used to derive explicit

expressions in terms of relay and limit cycle parameters to

estimate process model parameters during online and off-

line mode of operation. Relay with hysteresis is applied to

get process information in the form of limit cycle. A sec-

ond order system with time delay is generalized in terms of

six different types of systems and accordingly expressions

are derived. Examples are considered in the form of

transfer function models and parameters are estimated to

show efficacy and robustness of the proposed method.

Process dynamics are also identified in presence of mea-

surement noise of different NSR values.
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