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Abstract This paper presents the propagation of ther-

moelastic waves along circumferential direction in homo-

geneous, transradially isotropic spherical curved plates.

Mathematical modeling of the problem to obtain dispersion

curves for transversely isotropic thermally conducting

spherically curved elastic plates leads to coupled differ-

ential equations. The coupled differential equations of

motion and heat conductions equation in conjunction with

stress free, rigidly fixed thermal boundary conditions on the

inner and outer surfaces of a spherical curved plate are

solved with matrix Fröbenius method. In order to illustrate

theoretical development, numerical solutions are obtained

and presented graphically for a zinc, cobalt and silicon

nitride plate. The graphical results are compared with the

available literature. Thermal variations for the non-axially

symmetric case of plane strain vibrations, these modes

remain coupled and are affected by temperature change.

Moreover, these vibration modes are found to be dispersive

in nature.
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1 Introduction

The phenomenon of thermoelastic material finds a wide

range of applications in all fields of science including

atomic physics, industrial engineering, thermal power

plants, submarine structures, pressure vessel, aerospace,

chemical pipes and metallurgy. The spherically curved

plate, like structures are used in pressure vessels, spherical

domes of power plants in addition to many other industrial

applications. For non-destructive evaluation of such

spherical structures, the mechanics of elastic wave propa-

gation in spherical curved plates must be understood. The

current literature shows some valuable studies on Rayleigh

surface wave propagation in isotropic solids with spherical

boundaries.

The phenomenon of elastic wave propagation in

cylindrical structures has received a significant attention

recently [1–5]. Shah et al. [6] have analyzed three-di-

mensional hollow spheres using shell theory and found

that the characteristic frequency equation is independent

of the longitudinal wave number. Buldyev and Lanin [7]

studied the surface wave propagation in solids with

curved boundary conditions. Wang et al. [8] studied the

stress wave- propagation in orthotropic laminated spheri-

cal shells subjected to arbitrary radial dynamic load with

the help of finite Hankel transforms and Laplace trans-

forms. Towfighi et al. [9, 10] studied the guided wave

propagation problem in circumferential direction of

cylindrical curved plate. Towfighi and Kundu [11] studied

wave propagation of anisotropic spherical curved plates.

Sharma and Pathania [12] investigated the generalized

wave propagation in circumferential direction of trans-

versely isotropic cylindrical curved plates. Yu et al. [13]

used an orthogonal polynomial series expansion approach

for determining the guided wave dispersion curves and
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the distribution of displacements in homogeneous aniso-

tropic spherical curved plates based on three-dimensional

elasticity and compared the results with Towfighi and

Kundu [11]. Yu et al. [14] used a Legendre orthogonal

polynomial series expansion approach for determining the

characteristics of guided waves in continuous functionally

graded piezoelectric materials as spherical curved plates.

They reported the influence of radius to thickness ratio on

dispersion curves. Yu et al. [15] presented an elastody-

namic solution for the stress wave propagation in spher-

ical curved plates composed of functionally graded

materials. Yu and Xue [16] investigated the propagation

of thermoelastic waves in orthotropic spherical curved

plates subjected to stress-free, isothermal boundary con-

ditions in context of the Green-Naghdi (GN) generalized

thermoelastic theory. Yu and Dong [17] solved linearized

three-dimensional piezoelasticity equations through

orthogonal polynomial approach and determined the

elastic wave propagation modes in a piezoelectric spher-

ical curved plate. Sharma et al. [18] focused on the

analysis of free vibrations of axisymmetric functionally

graded hollow spheres. The material is assumed to be

graded in radial direction with a simple power law.

The spherically curved plate like structures are used in

pressure vessels, spherical domes of power plants in

addition to many other industrial applications. From the

perspective of non-destructive evaluation of such spherical

structures, it is important to understand the mechanics of

elastic wave propagation in spherical curved plates through

various mathematical techniques. The current literature

shows some valuable studies on Rayleigh surface wave

propagation in isotropic solids with spherical boundaries.

Considering various applications of spherical curved plates

in industrial applications, it is proposed to model and study

the propagation of circumferential waves in transradially

isotropic and thermally conducting spherically curved

elastic plates. The partial differential equations of motion

and heat conduction along with boundary conditions on the

inner and outer surfaces of a spherical curved plate con-

stitute the mathematical model for this problem. The model

has been solved using matrix Fröbenius method. The

numerical solutions have also been obtained and presented

for zinc, cobalt and silicon nitride material plate. It is

expected that the wave characteristics may remain coupled

and may be affected by temperature changes except for

purely shear-harmonic (SH) wave motion wherein they get

decoupled and have no effect of temperature. The obtained

results compared with those existing in literature to vali-

date the present approach and brief summary of the present

work is given at the end of the paper.

2 Formulation and Solution

We consider a homogeneous, transversely isotropic, ther-

mally conducting, elastic spherical curved plate with inner

and outer radii a and b respectively. The plate is assumed

initially at uniform temperature T0 in the undisturbed state.

The geometry of the problem is shown in Fig. 1 and we

considered the problem of wave propagation in the direc-

tion of the curvature. Here we represent wave carrier by

different names like a curved plate/a spherical plate/a pipe

segment or simply a pipe (all these nouns represent wave

carrier only). Moreover, we do not include the reflected

guided waves from the plate boundary. The considered

geometry of the problem can be a segment of a sphere or a

complete sphere. But we focus on analysis of the dispersive

waves in the curved plate for waves propagating from

section S1 to S2 (see Fig. 1). Clearly, the wave speed is

proportional to radius of curvature. According to Towfighi

and Kundu [11] the wavefront on the surface of a spherical

shell is assumed to be toroidal. To study wave propagation

in a spherical plate segment, the points S1 and S2 is aligned

along the equator of a sphere by adjusting the positions of

north and south poles. Therefore, in order to study the wave

propagation between two points in a spherical plate seg-

ment, it is sufficient to solve the governing equations for

h ¼ p
2
only. The linear governing equations of motion and

heat conduction in the absence of body forces and heat

sources for a thermoelastic spherical structure have been

considered here. These govern the displacement u
* ¼

ur; uh; u/
� �

and temperature change T r;/; tð Þ in the plate

and are given by Dhaliwal and Singh [19]:

rrr;r þ
1

r
rr/;/ þ 1

r
2rrr � rhh � r//
� �

¼ q€ur ð1Þ

rr/;r þ
1

r
r//;/ þ 3

r
rr/ ¼ q€u/ ð2Þ

rrh;r þ
1

r
r/h;/ þþ 3

r
rrh ¼ q€uh ð3Þ

S1 S2

a
b

z

r

y

x

Fig. 1 Geometry of the problem
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K3 Trr þ
2

r
T;r

� �
þ K1

1

r2
T;// � qCe

_T

¼ T0 b1 _ehh þ _e//
� �

þ b3 _err
� �

ð4Þ

where

rhh ¼ c11ehh þ c12e// þ c13err � b1T; rrh ¼ 2c44erh

r// ¼ c12ehh þ c11e// þ c13err � b1T ; rr/ ¼ 2c44er/

ð5Þ

rrr ¼ c13ehh þ c13e// þ c33err � b3T ; rh/ ¼ 2c66eh/

err ¼
our

or
; ehh ¼

ur

r
; e// ¼ 1

r

ou/

o/
þ ur

r

er/ ¼ 1

2

1

r

our

o/
� u/

r
þ ou/

or

� 	
; erh ¼

1

2

ouh

or
� uh

r

� 	

e/h ¼
1

2

ouh

o/

� 	
:

ð6Þ

Here c11; c12; c13; c33 and c44 are isothermal elastic

parameters; a1, a3 are the coefficient of Linear thermal

expansion, K1, K3 are the coefficients of thermal

conductivities, along and perpendicular to the axis of

symmetry, q and Ce, are the density and specific heat at

constant strain respectively. The comma notation is used

for spatial derivatives and the superposed dot denotes time

differentiation. Sharma and Sharma [20] proved

thermodynamically that K1 [ 0; K3 [ 0 and of course

q[ 0 and T0 [ 0. In addition it is proved that Ce [ 0 and

the isothermal elasticities are components of a positive

definite fourth-order tensor. The necessary and sufficient

conditions for the satisfaction of latter requirements are

c11[0; c11[c12; c
2
11[c212; c44[0; c33 c11 þ c12ð Þ[c213:

ð7Þ

On substituting Eqs. (5) and (6) by Eqs. (1)–(4) the

governing differential equations in non-dimensional form

are obtained and are given as:

uh;rr �
2

r
uh;r þ

1

r2
uh þ

c1 � c2ð Þ
2r2

uh;// þ 3

r
uh;r �

uh

r


 �

� €uh ¼ 0

ð8Þ

c4ur;rr þ
2c4

r
ur;r þ

2 c3 � c1 � c2ð Þ
r2

ur þ
1

r2
ur;// þ 1þ c3

r
u/;r/

þ c3 � c1 � c2 � 1

r2
u/;/ � €ur � b � o

or
þ 2

r
� 2�b

r

� �
T ¼ 0

ð9:1Þ

u/;rr þ
2

r
u/;r �

2

r2
u/ þ c1

r2
u/;// þ 1þ c3ð Þ

r
ur;r/

þ 2þ c1 þ c2

r2
ur;/ � €u/ �

�bb � T;/
r

¼ 0 ð9:2Þ

T;rr þ
2

r
T;r þ

1

r2
T;// � X� _T

� e�X� _ur;r þ
2

r
_ur þ

1

r
_u/;/

� �
�b

� �
¼ 0 ð9:3Þ

We define:

f ¼ r=R; Ui ¼ ui=R; sij ¼
rij
c44

; eT ¼ b23T0
qCec44

; 11 ¼ a=R;

12 ¼ b=R; c1 ¼
c11

c44
; c2 ¼

c12

c44
; c3 ¼

c13

c44
; c4 ¼

c33

c44
; e� ¼ eTX

�

b�
;

�b ¼ b1
b3

; �K ¼ K1

K3

; s ¼ vs

R
t; T 0 ¼ T

T0
; X� ¼ x�R

vs
; b� ¼ b1T0

c44

9
>>>>>>>=

>>>>>>>;

ð10Þ

Here dashes are ignored for convenience, x� ¼ Cec44
K3

is the

thermoelastic characteristic frequency of the plate and

v2s ¼ c44
q shear wave velocity in the medium respectively

and the quantity e is called the thermoelastic coupling

parameters.

Introducing quantities (10) in Eqs. (8) and (9), we obtain

o2

of2
þ 2

f
o

of
þ 1

f2
� o2

os2

� �
Uh þ

c1 � c2ð Þ
2f2

o2

o/2
Uh

þ 3

f
o

of
� 1

f

� �
Uh ¼ 0 ð11Þ

c4
o2

of2
þ 2

f
o

of

� �
þ 2 c3 � c1 � c2ð Þ

f2
� o2

os2

� �
Uf

þ 1

f2
o2

o/2
Uf þ

1þ c3

f
o2

ofo/
U/

þ c3 � c1 � c2 � 1

f2
o

o/
U/ � b�

o

of
þ 2

f
� 2�b

f

� �
H ¼ 0

ð12Þ

o2

of2
þ 2

f
o

of
þ 1

f2
� o2

os2

� �
U/ þ c1

f2
o2

o/2
U/

þ 1þ c3ð Þ
f

o

ofo/
Uf þ

2þ c1 þ c2

f2
o

o/
Uf �

�bb�
f

oH
o/

¼ 0

ð13Þ

o2

of2
þ 2

f
o

of
þ 1

f2
� X� o

os

� �
H

� e�X� o

os
Uf;f þ

2

f
oUf

of
þ 1

f
oU/

o/

� �
�b

� �
¼ 0 ð14Þ

For further simplification of the Eqs. (11)–(14), we

introduce the following transformations

Uf ¼ �U=
ffiffiffi
f

p

Uh ¼ �V=
ffiffiffi
f

p

U/ ¼ �W=
ffiffiffi
f

p

H ¼ �H=
ffiffiffi
f

p

9
>>>>>=

>>>>>;

ð15Þ
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In light of the transformation (15), the Eqs. (11)–(14),

upon simplification provide us

o2

of2
þ 1

f
o

of
� 9

4f2
þ c1 � c2

f2
þ c1 � c2

2f2
o2

o/2
� o2

os2

� �
�V ¼ 0

ð16Þ

c4
o2

of2
þ1

f
o

of
�� 1

4f2

� �
�2 c1�c3þc2ð Þ

f2
þ 1

f2
o2

o/2
� o2

os2

� 	
�W

� 1þc3

f
o

of
�1

f
� 1

2f

� �
þ 1

f2
2c3�c1�c2ð Þ

� 	
o2

o/2
�U

�b�
o

of
� 1

2f
þ2

f
�2�b

f

� �
�H¼0 ð17Þ

o2

of2
þ 1

f
o

of
� 1

4f2
þ c1

f2
o2

o/2
� 2� c1 þ c2

f2
þ o2

os2

� �
�U

þ 1þ c3

f
o

of
� 1

2f

� �
þ 2þ c1 þ c2

f2

� �
�W � 1

f
�bb� �H ¼ 0

ð18Þ

o2

of2
þ 1

f
o

of
� 1

4f2
þ

�K

f2
o2

o/2
� X�

� �
�H

� X�e�
o

of
� 1

2f
þ 2�b

f

� �
�W þ b

f
o2

o/2
�G

� 	
¼ 0 ð19Þ

According to Yu et al. [13] in toroidal wave travel path,

the wave front position is only a function of / because, all

points with the same / and for different values of h are in

phase and hence the motion is independent of h. In a

spherical geometry, waves travel a constant angle /ð Þ
rather than a constant linear distance in a given time

interval. Therefore the toroidal wave travel path length is

defined as the product m12/ which is dimensionally

identical to Xs. Thus, the displacement components and

temperature of this toroidal has been written as Yu et al.

[13]:

�U f;/; sð Þ ¼ U fð Þ exp im12/þ iXsð Þ
�V f;/; sð Þ ¼ V fð Þ exp im12/þ iXsð Þ
�W f;/; sð Þ ¼ W fð Þ exp im12/þ iXsð Þ
�H f;/; sð Þ ¼ H� fð Þ exp im12/þ iXsð Þ

9
>>>=

>>>;

ð20Þ

where U fð Þ; V fð Þ; W fð Þ and H� fð Þ represent the ampli-

tude of vibration in the radial and two tangential directions,

m is the magnitude of wave vector along wave propagation

direction, and 12 is the non-dimensional outer radius of the

plate.

Upon using solution (20) in Eqs. (16)–(19) and further

simplifying, we obtain

r2
2 þ 1� g20=n

2
� �

V ¼ 0 ð21Þ

where

r2
2 ¼

o2

on2
þ 1

n
o

on
; n ¼ fX; l21 ¼

3þ 2 c1 þ c2ð Þ � c3

2

l22 ¼
9þ 4c1m

2122
4

; l23 ¼
c4 þ 8 c1 þ c2 � c3ð Þ þ 4m2122

4

l24 ¼
1þ 4 �Km2122

4
; g20 ¼

9þ 2 c1 � c2ð Þm2122
4

9
>>>>>>>=

>>>>>>>;

ð23Þ

Equation (21) gives purely shear wave, which is not

affected by temperature change. The solution of Eq. (21) is

given as

V ¼ f�
1
2 M11Jg0 fXð Þ þM12Yg0 fXð Þ
� �

exp im12/þ iXsð Þ
ð24Þ

where Jg and Yg are the Bessel function of first and second

kind and g20 ¼ 9� 2 c1 � c2ð Þm2122
� �

=4[ 0 and M11 and

M12 are arbitrary constants to be determined by boundary

conditions.

2.1 Matrix Fröbenius Solution

Equation (22) has been solved with the help of matrix

Fröbenius method. Clearly the point r ¼ 0 (i.e.n ¼ 0) is a

regular singular point of Eq. (22) and all the coefficients of

this differential equations are finite, single valued and

continuous in the interval g1 � n� g2, where g1 ¼ 11X and

c4r2
2 im12

1þ c3

n
o

of
� l 2

1=n
2

� �
�X�1b�

o

on
þ 3� 4�b

2n

� �

im12
1þ c3

n
o

of
þ l 2

1=n
2

� �
r2

2 þ 1� l 2
2=n

2
� �

� im 12 X
�1 �bb�

n

ie� X� o

on
þ 4�b� 1

2n

� �
ie� X�m12 �b

n
r2

2 þ �iX�1 � l 2
4=n

2
� �

2

66666664

3

77777775

U

W

H�

2

4

3

5 ¼
0

0

0

2

4

3

5 ð22Þ
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g2 ¼ 12X. The field quantities satisfy all the necessary

conditions to have series expansions and hence the

Fröbenius power series method is applicable to solve the

coupled system of differential equations. Thus, we have

taken the solution vector of the type

Yn ¼
X1

k¼0

Zkn
sþk ð25Þ

where

Yn ¼ U W H�½ �0 ; ð26Þ

Zk ¼ Ak Bk Dk½ �0: ð27Þ

Here s is a constant (real or complex) to be determined and

Ak ; Bk, Dk are unknown coefficients to be determined. We

need solution in the domain g1 � f� g2, f1 [ 0. The

solution (25) is valid in some deleted interval 0\f\R0,
R0 [ g2 (about the origin) where R0 is the radius of

convergence.

Upon substituting solution (25) along with its deriva-

tives in Eq. (22) and simplifying, we get

X1

k¼0

H1 tþ kð Þn�2 þ H2 tþ kð Þn�1 þ H
� �

ntþkZk ¼ 0

ð28Þ

where

H ¼ diag 1; 1; �im12X
�1 �b

� �

H1ðtþ kÞ ¼ Hiq tþ kð Þ
� �

; i; q ¼ 1; 2; 3

H2ðtþ kÞ ¼ Hiq tþ kð Þ
� �

; i; q ¼ 1; 2; 3

9
>=

>;
ð29Þ

The non-zero elements, Hiq and H0
iq, of matrices H1 and

H2 are given as under:

H11 tþ kð Þ ¼ c4 tþ kð Þ2�l23


 �
;

H12 tþ kð Þ ¼ m12 1þ c3ð Þ tþ kð Þ � l21
� �

;

H21 tþ kð Þ ¼ 1þ c3ð Þ tþ kð Þ þ l21
� �

;

H22 tþ kð Þ ¼ tþ kð Þ2�l22


 �
;

H33 tþ kð Þ ¼ tþ kð Þ2�l24


 �

9
>>>>>>>>>>=

>>>>>>>>>>;

ð30Þ

H0
13 tþ kð Þ ¼ �X�1b� tþ k þ 3� 4�b

2

� �
;

H0
23 tþ kð Þ ¼ �im12X

�1 �bb�;

H0
31 tþ kð Þ ¼ iX�1e�X� tþ k þ

4�b� 1
� �

2

� �
;

H0
32 ¼ �m12e

�X�X�1 �b

9
>>>>>>>>>=

>>>>>>>>>;

ð31Þ

Equating the coefficients of lowest powers of n (i.e.

coefficient of nt�2 ¼ 0) to zero in Eq. (28), we obtain:

H1 tð ÞẐ0 ¼ 0 ð32Þ

where

Ẑ0 ¼ A0 B0 C0½ �0

H1 tð Þ ¼ Hiq tð Þ i; q ¼ 1; 2; 3

)

ð33Þ

For the existence of non-trivial solution of Eq. (32) one

must have H1 tð Þj j ¼ 0, This results in the following system

of indicial equations

t4 � A�t2 þ D� ¼ 0

t2 � l24 ¼ 0

)

ð34Þ

where

A� ¼ l23 þ c4l22 � m12 1þ c3ð Þ2

c4

D� ¼ l22l
2
3 � m2122l

4
1

c4

ð35Þ

The roots of indicial Eqs. (34) are given as

t21 ¼
A� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�2 � 4D�

p

2

t22 ¼
A� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�2 � 4D�

p

2

t23 ¼ l24

9
>>>>>=

>>>>>;

ð36Þ

The roots tj ðj ¼ 1; 2; 3; 4; 5; 6Þ of Eq. (36) are

related through the relation t4 ¼ �t1; t5 ¼ �t2;
t6 ¼ �t3. Out of these t3 is real and the roots t1 and t2
may be, in general, complex. If s is complex, then leading

terms in the series solution (28) are of the type:

A0

B0

D0

2

4

3

5ns ¼ Z0n
sRþsI

¼ Z0n
sR cos sI log nð Þ þ i sin sI log nð Þ½ � ð37Þ

According to Neuringer [21], in order to obtain two

independent real solutions, it is sufficient to use any one of

the complex roots in a part and then taking its real and

imaginary parts. The treatment of complex case is unlike

that of the real root case with the advantage that the

differential equation is required to be solved only once in

the former case rather than twice in latter one. For the

choice of roots of the indicial equations, Eq. (28) leads to

following eigen-vectors:
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Z0 t1ð Þ ¼ Z0 t4ð Þ ¼
1

QB t1ð Þ
0

2

64

3

75V0;

Z0 t2ð Þ ¼ Z0 t5ð Þ ¼
1

QB t2ð Þ
0

2

64

3

75V0;

Z0 t3ð Þ ¼ Z0 t6ð Þ ¼
0

0

1

2

64

3

75V0

9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

ð38Þ

where

QB tj
� �

¼ � 1þ c3ð Þtj þ a21
t2j � a22

¼ �
c4t2j � a23

im12 1þ c3ð Þtj � a21
� � ;

j ¼ 1 ; 2; 4; 5ð Þ;

V0 is a constant.

Thus we have

A0 ¼ 1 1 0½ �V0;

B0 ¼ QB 1ð Þ QB 2ð Þ 0½ �V0; D0 ¼ 0 0 1½ �V0

ð39Þ

Again equating to zero the coefficients of next lowest

degree term ns�1, which corresponds to k ¼ 1, in Eq. (28),

we get:

H1 tj þ 1
� �

Z1 þ H2 tj
� �

Z0 ¼ 0; j ¼ 1; 2; 3; 4; 5; 6

ð40Þ

Clearly H1 tj þ 1
� �

is non singular for each tj, therefore
we have:

Z1 ¼ �H1 tj þ 1
� ��1

H2 tj
� �

Z0 ¼ D�
1Z0 ð41Þ

where

D�
1 ¼ �H1 tj þ 1

� ��1
H2 tj
� �

¼
0 0 A13

0 0 A23

A31 A32 0

2

4

3

5 ð42Þ

where A32 is defined in Appendix A1.

Now equating the coefficients of powers of nsþk equal to

zero, we have

H1 sþ k þ 2ð ÞZkþ2 ¼ �H2 sþ k þ 1ð ÞZkþ1 � HZk

k ¼ 0 ; 1 ; 2 ð43Þ

where the matrices H1; H2 and H are defined in Eq. (29).

The Eq. (43) implies that:

Zkþ2 ¼ � H1 tj þ k þ 2
� �� ��1

H2 tj þ k þ 1
� �

Zkþ1 þ HZk
� �

ð44Þ

Now putting k ¼ 0; 1; 2; 3. . . successively we get

Z2 ¼ � H1 tj þ 2
� �� ��1

H2 tj þ 1
� �

D�
1 þ H

� �
Z0 ¼ D�

2Z0

Z3 ¼ � H1 tj þ 3
� �� ��1

H2 tj þ 2
� �

D�
2 þ HD�

1

� �
Z0 ¼ D�

3Z0

Z4 ¼ � H1 tj þ 4
� �� ��1

H2 tj þ 3
� �

D�
3 þ HD�

2

� �
Z0 ¼ D�

4Z0

..

.

Zkþ2 ¼ � H1 tj þ k þ 2
� �� ��1

H2 tj þ k þ 1
� �

D�
kþ1 þ HD�

k

� �
Z0

¼ D�
kþ2Z0

where D�
0
¼ I, D�

kþ2 ¼ � H1 tj þ k þ 2
� �� ��1

H2 tjþ
��

k þ
1ÞD�

kþ1þ HD�
k �; k ¼ 1; 2; 3. . .

It can be shown that the matrix Dkþ2 has similar form as

that of H1 tj þ k þ 2
� �

for even values of k and it is alike

H2 tj þ k þ 2
� �

for odd values of k. Thus, we have:

Z2kþ2 ¼ D�
2kþ2Z0

Z2kþ1 ¼ D�
2kþ1Z0

)

ð45Þ

where

D�
2kþ2 ¼ � H1 tj þ 2k þ 2

� �� ��1
H2 tj þ 2k þ 1
� �

D�
2kþ1 þ HD�

2k

� �
;

D�
2kþ1 ¼ � H1 tj þ 2k þ 1

� �� ��1
H2 tj þ 2k
� �

D�
2k þ HD�

2k�1

� �

)

ð46Þ

Upon simplification, we get

D�
2kþ2 ¼

K11 K12 0

K21 K22 0

0 0 K33

2

4

3

5 ð47Þ

D�
2kþ1 ¼

0 0 K 0
13

0 0 K 0
23

K 0
31 K 0

32 0

2

4

3

5 ð48Þ

where Kij; K 0
ij i; j ¼ 1; 2; 3ð Þ given by Eqs. (A.2)–(A.3)

as are defined in Appendix.

2.2 Convergence of the Series

According to Cullen [22], in case of a matrix sequence

Pkf g in Ck�k, we have Limk!1 Pk ¼ P Pkf g ! Pð Þ if each
of k2 component sequence converges. That is

Limk!1 entij Pkð Þ
� �

¼ pij; i; j ¼ 1; 2; 3; . . .; k. More-

over, if the matrix sequence Pkf g and Qkf g converge to

matrices P and Q, respectively, then the sequence

Pk; Qkf g ! PQ and aPk þ bQkð Þ ! aPþ bQ for any

a; b 2 C.

Further from Eqs. (47)–(48), it can be shown that

D�
2kþ2 � o k�2

� �
D� and D�

2kþ1 � o k�1
� �

D�� ð49Þ

where D� ¼ ie�X�X�1

c4
diag 1 0 1½ � and D�� is a 3� 3 null

matrix.

By using above facts, both the matrices D�
2kþ2 ! 0 and

D�
2kþ1 ! 0 as k ! 1. This implies that the series (25) are
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absolutely and uniformly convergent having infinite radius

of convergence. Therefore, the considered series in

Eq. (25) is analytic and hence can be differentiated term by

term.

Thus the general solution of Eq. (18) has the form

ðUf;U/;H Þ f ; / ; sð Þ

¼ f
�1
2

X6

j¼1

X1

k¼0

EjkðAk tj
� �

; Bk tj
� �

;Ck tj
� �

Þ Xfð Þ
tjþk

� exp i m12/þ Xsð Þð Þ
Uh f ; / ; sð Þ ¼ f

�1
2 ðM11Jg Xfð Þ þM22Yg Xfð ÞÞ

� exp i m12/þ Xsð Þð Þ

9
>>>>>>>>>>=

>>>>>>>>>>;

ð50Þ

The unknowns M11, M22 and Ejk j ¼ 1; 2; 3; 4; 5; 6ð Þ
can be evaluated by using boundary conditions.

The formal solution for displacements and stresses is

given by

Uf ¼ f
�1
2

X1

k¼0

X6

j¼1

EjkAk tj
� �

nð Þtjþk
exp i m12/þ Xsð Þð Þ

ð51Þ

Uh ¼ f�
1
2 M11Jg nð Þ þM12Yg nð Þ
� �

exp i m12/þ Xsð Þð Þ
ð52Þ

U/ ¼ f
�1
2

X1

k¼0

X6

j¼1

EjkBk sj
� �

nð Þsjþk
exp i m12/þ Xsð Þð Þ

ð53Þ

sff ¼ f
�1
2 f
X6

j¼1

Ej0 c34 þ c4 tj þ 1
� �� �

A0 tj
� �

þ im12c3B0 tj
� � �

ntj�1

þ
X1

k¼0

X6

j¼1

Ejk

c34 þ c4 tj þ k þ 1
� �� �

Akþ1 tj
� �

þim12c3Bkþ1 tj
� �

� X�1b�Ck tj
� �

( )

nð Þtjþkg

� exp i m12/þ Xsð Þð Þ
ð54Þ

sfh ¼ f�
1
2 M11 J0g nð Þ � 3

2n
Jg nð Þ

� �
þM12 Y 0

g nð Þ � 3

2n
Yg nð Þ

� �� �

� exp i m12/þ Xsð Þð Þ
ð55Þ

sf/ ¼ f
�1
2 ½
X6

j¼1

Ej0 im12A0 þ tj �
3

2

� �
B0

� �
nð Þs�1

þ
X1

k¼0

X6

j¼1

Ejk

im12Akþ1þ

tj þ k � 1

2

� �
Bkþ1

8
><

>:

9
>=

>;
nð Þtjþk�

� exp i m12/þ Xsð Þð Þ

ð56Þ

oH
of

¼ f
�1
2

X6

j¼1

Ej0 tj �
1

2

� �
C0 tj
� �

nð Þtj�1

þ
X1

k¼0

X6

j¼1

Ejk tj þ kþ 1
� �

Ckþ1 tj
� �� �

nð Þtjþk

2

666664

3

777775

� exp i m12/þXsð Þ
ð57Þ

Equations (51)–(57) constitute the formal solution of the

system of coupled partial differential equations.

3 Boundary Conditions

The following types of boundary conditions are taken on

the surfaces f ¼ f1 (inner surface) and f ¼ 12 (outer sur-

face) of spherical curved plate. The boundary conditions

are:

Set I: Stress free and thermally insulated condition

sff ¼ 0; sfh ¼ 0; sf/ ¼ 0;
oH
of

¼ 0 ð58Þ

Set II: Stress free and isothermal condition

sff ¼ 0; sfh ¼ 0; sf/ ¼ 0; H ¼ 0 ð59Þ

Set III: Rigidly fixed and thermally insulated condition

Uf ¼ 0; Uh ¼ 0; U/ ¼ 0;
oH
of

¼ 0 ð60Þ

Set IV: Rigidly fixed and isothermal condition

Uf ¼ 0; Uh ¼ 0; U/ ¼ 0; H ¼ 0 ð61Þ

4 Dispersion Relations

In this section we derive the secular equations for a

spherical curved plate subjected to traction-free ther-

mally insulated/isothermal or rigidly fixed, thermally

insulated/isothermal boundary conditions at the

surfaces.

4.1 Stress Free Curved Plate

In this subsection we derive the characteristic equations for

stress free, thermally insulated and stress free isothermal

spherical curved plate.
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Set I:

Upon using the boundary condition (58) in the expres-

sions (54)–(57) at the surface n ¼ g1 and n ¼ g2 we get the
following equations

X6

j¼1

Ej0 c4 tj þ 1
� �

þ c34
� �

A0 tj
� �

þ im12c3B0 tj
� � �

gið Þtj�1

þ
X1

k¼0

X6

j¼1

Ejk

c4 tj þ k þ 1
� �

þ c34
� �

Akþ1 tj
� �

þim12c3Bkþ1 tj
� �

� X�1Ck tj
� �

( )

gið Þtjþk¼ 0

ð62Þ

M11 J0g gið Þ � 3

2gi
Jg gið Þ

� �
þM12 Y 0

g gið Þ � 3

2gi
Yg gið Þ

� �

¼ 0

ð63Þ
X6

j¼1

Ej0i m 12A0 tj
� �

þ tj �
3

2

� �
B0 tj
� �

gið Þtj�1þ

X1

k¼0

X6

j¼1

Ejki m 12Akþ1 tj
� �

þ tj þ k � 1

2

� �
Bkþ1 tj

� �
gið Þtjþk¼ 0

ð64Þ
X6

j¼1

Ej0 tj �
1

2

� �
C0 tj
� �

gið Þsj�1

þ
X1

k¼0

X6

j¼1

Ejk tj þ k þ 1
� �

Ckþ1 tj
� �� �

gið Þtjþk¼ 0 ð65Þ

where i ¼ 1 for inner surface and i ¼ 2 for outer surface of

the spherical curved plate.

Equations (62)–(65) is a system of simultaneous linear

algebraic equations in eight unknowns M11; M12 and

Ejk ; j ¼ 1; 2; 3; 4; 5; 6ð Þ. These are uniformly and abso-

lutely convergent series. Thus the above system of equa-

tions can be expressed in compact form as given below:

G0X0 þGkXk ¼ 0 ð66Þ

where

X0 ¼ E10 E20 E30 E40 E50 E60 M11 M12½ �;

G0 ¼ G0
ij


 �

8�8
ð67Þ

Xk ¼ E1k E2k E3k E4k E5k E6k M11 M12½ �;

Gk ¼ Gk
ij


 �

8�8
ð68Þ

G0
11 ¼ c4 t1 þ 1ð Þ þ c34ð ÞA0 t1ð Þ þ im12c3B0 t1ð Þð Þ g1ð Þt1�1

G0
51 ¼ im12A0 t1ð Þ þ t1 �

1

2

� �
B0 t1ð Þ

� �
g1ð Þt1�1

G0
71 ¼ t1 �

1

2

� �
C0 g1ð Þt1�1

9
>>>>>=

>>>>>;

ð69Þ

G0
37 ¼

Jg�1 g1ð Þ � Jgþ1 g1ð Þ
g1

� 3

2g21
Jg g1ð Þ

� �

G0
47 ¼

Jg�1 g2ð Þ � Jgþ1 g2ð Þ
g2

� 3

2g22
Jg g2ð Þ

� �

9
>>>=

>>>;

ð70Þ

Gk
11 ¼ c4 t1þ kþ 1ð Þþ c34ð ÞAkþ1 t1ð Þþ im12c3Bkþ1 t1ð Þð

�X�1b�Ck t1ð Þ
�
g1ð Þt1þk

Gk
51 ¼ im12Akþ1 t1ð Þþ t1þ k� 1

2

� �
Bkþ1 t1ð Þ

� �
g1ð Þt1þk

Gk
71 ¼ t1þ kþ 1=2ð ÞCkþ1 g1ð Þt1þk

Gk
ij ¼G0

ij; i¼ 3; 4 and j¼ 7; 8

Gk
ij ¼G0

ij ¼ 0; i¼ 3; 4; j¼ 1; 2; 3; 4; 5; 6 or

i¼ 1; 2; 5; 6; 7; 8 ; j¼ 7; 8

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

ð71Þ

where g1 ¼ X11 and g2 ¼ X12:
Here the elements G0

ij and Gk
ij i ¼ 1; 5; 7 ;ð j ¼

2; 3; 4; 5; 6Þ in Eq. (66) are obtained from G0
ij and

Gk
ij i ¼ 1; 5; 7ð Þ in Eqs. (70) and (71) by replacing t1 with

tj; ðj ¼ 2; 3; 4; 5; 6Þ, respectively. The elements

Gk
ij,G

k
ij, 3; 4; 5; 6Þ are written from G0

ij and

Gk
ij i ¼ 1; 5; 7; j ¼ 1; 2; 3; 4; 5; 6ð Þ by replacing g1

with g2 therein. The elements G0
38; G0

48 are obtained from

G0
37; G0

47 respectively by replacing Bessel functions of first

kind with Bessel function of second kind.

Equation (66) holds if and only if each term vanishes

separately. This implies that

G0X0 ¼ 0 ¼ 0 for k ¼ 0 ð72Þ

GkXk ¼ 0 for k[ 0 ð73Þ

Equations (72) and (73) has a non-trivial solution if and

only if

G0
�� �� ¼ 0 for k ¼ 0 ð74Þ

Gk
�� �� ¼ 0 for k[ 0 ð75Þ

After lengthy but straightforward simplifications and

reductions, the determinantal Eqs. (74) and (75) lead to the

following secular equations

G0
�� �� ¼ 0; i; j ¼ 1; 2; 3; 4; 5; 6 for k ¼ 0 ð76Þ

Gk
�� �� ¼ 0; i; j ¼ 1; 2; 3; 4; 5; 6 for k[ 0 ð77Þ

Jg�1 g1ð Þ � Jgþ1 g1ð Þ � 3

2g1
Jg g1ð Þ

� �

� Jg�1 g2ð Þ � Jgþ1 g2ð Þ � 3

2g2
Jg g2ð Þ

� �

� Yg�1 g1ð Þ � Ygþ1 g1ð Þ � 3

2g1
Yg g1ð Þ

� �

� Yg�1 g2ð Þ � Ygþ1 g2ð Þ � 3

2g2
Yg g2ð Þ

� �
ð78Þ
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where

G0
11 ¼ c4 t1þ 1ð Þþ c34ð ÞA0 t1ð Þþ im12c3B0 t1ð Þð Þ g1ð Þt1�1

G0
21 ¼ im12A0 t1ð Þþ t1�

1

2

� �
B0 t1ð Þ

� �
g1ð Þt1�1

G0
31 ¼ t1�

1

2

� �
C0 g1ð Þt1�1

9
>>>>>=

>>>>>;

ð79Þ

Gk
11 ¼ c4 t1 þ kþ 1ð Þ þ c34ð ÞAkþ1 t1ð Þ þ im12c3Bkþ1 t1ð Þð

�X�1b�Ck t1ð Þ
�
g1ð Þt1þk

Gk
31 ¼ im12Akþ1 t1ð Þ þ t1 þ k� 1

2

� �
Bkþ1 t1ð Þ

� �
g1ð Þt1þk

Gk
51 ¼ t1 þ kþ 1=2ð ÞCkþ1 g1ð Þt1þk

9
>>>>>>=

>>>>>>;

ð80Þ

The elements G0
ij j¼ 2; 3; 4; 5; 6ð Þ of determinant

Eqs. (76) and (77) are obtained by just replacing tj; j¼ 1

in G0
ij j¼ 1; 3; 5ð Þ with tj; j¼ 2; 3; 4; 5; 6 while

G0
ij i¼ 2; 4; 6ð Þ are obtained by replacing g1 in

G0
ij i¼ 1; 3; 5ð Þ with g2.
Set II:

Employing the boundary conditions (59) at the surface

n ¼ g1 and n ¼ g2 via expressions (54)–(56), we obtain a

system of simultaneous linear algebraic equations in eight

unknowns M11 ; M11 and Ejk ; j ¼ 1; 2; 3; 4; 5; 6ð Þ as

Eqs. (62)–(64), along with the equation as given below:

X1

k¼0

X6

j¼1

EjkCk tj
� �

gið Þtjþk¼ 0 ð81Þ

The system of linear algebraic homogeneous Eqs. (62)–

(64) and (81) are written in compact form as:

HkXk ¼ 0 ð82Þ

where Hk ¼ Hk
ij


 �

8�8
.

The elements Hk
ij ¼ Gk

ij are defined in Eqs. (79) and (80)

in the form of Gk
ij except the element Hk

51 which is given by

Hk
51 ¼ Ck t1ð Þ g1ð Þt1þk ð83Þ

Equation (82) will have a non-trivial solution if and only

if the determinant of the coefficients Xk vanishes. This

requirement of nontrivial solution leads to a determinantal

Eq. (82) along with the following equation:

Hk
�� �� ¼ 0 ð84Þ

The elements Hk
ij ¼ Gk

ij are defined in Eq. (80) except

the change in the value of Hk
51 i.e. given by

Hk
51 ¼ Ck t1ð Þ g1ð Þt1þk

Equation (84) represents the frequency for stress free

spherical curved plate.

4.2 Rigidly Fixed Curved Plate

In this subsection we derive the characteristic equations for

rigidly fixed, thermally insulated and rigidly fixed,

isothermal spherical curved plate.

Set III:

Upon imposing the boundary conditions (60), we obtain

a system of algebraic homogeneous equations as under:

X1

k¼0

X6

j¼1

EjkAk tj
� �

gið Þtjþk¼ 0 ð85Þ

X1

k¼0

X6

j¼1

EjkBk tj
� �

gið Þtjþk¼ 0 ð86Þ

M11Jg gið Þ þM12Yg gið Þ ¼ 0 ð87Þ

where i ¼ 1 for inner surface and i ¼ 2 for outer surface of

spherical curved plate.

Equations (85)–(87) and (65) in eight unknowns

M11 ; M12 and Ejk ; j ¼ 1; 2; 3; 4; 5; 6ð Þ after simplifica-

tion can be expressed as:

FkXk ¼ 0 ð88Þ

where Xk is defined in (68) and Fk ¼ Fk
ij


 �

8�8

F11 ¼ Ak t1ð Þ g1ð Þt1þk

F31 ¼ Bk t1ð Þ g1ð Þt1þk

F51 ¼ t1 þ k þ 1=2ð ÞCkþ1 g1ð Þt1þk

9
>>=

>>;
ð89Þ

F57 ¼ Jg g1ð Þ ð90Þ

The elements Flj j ¼ 2; 3; 4; 5; 6ð Þ of Eq. (89) are

obtained by replacing tj; j ¼ 1 in Flj l ¼ 1; 3; 5ð Þ with

tj; j ¼ 2; 3; 4; 5; 6 while Flj0s l ¼ 2; 4; 6ð Þ are obtained by

replacing g1 in Flj l ¼ 1; 3; 5ð Þ with g2. The element

Fil; i ¼ 7; 8 and l ¼ 8 in Eq. (90) are obtained by

replacing Bessel’s function of first kind Jg with that of

second kind Yg and the elements Fil i ¼ 8 and l ¼ 7; 8 are

obtained by replacing g1 in Fil i ¼ 7 and l ¼ 7; 8 with g2
respectively

Equation (88) has non-trivial solution if and only if we

have

Fk
�� �� ¼ 0 ð91Þ

Equation (91) can be split into the following equations:

Bij

�� �� ¼ 0; i; j ¼ 1; 2; 3; 4; 5; 6 ð92Þ

Jg g1ð ÞYg g2ð Þ � Jg g2ð ÞYg g1ð Þ
� �

¼ 0 ð93Þ

B11 ¼ Ak t1ð Þ g1ð Þt1þk

B31 ¼ Bk t1ð Þ g1ð Þt1þk

B51 ¼ t1 þ k þ 1=2ð ÞCkþ1 g1ð Þt1þk

9
>>=

>>;
ð94Þ
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The elements Blj j ¼ 2; 3; 4; 5; 6ð Þ of determinantal

Eq. (92) are obtained by replacing tj; j ¼ 1 in

Blj l ¼ 1; 3 ; 5ð Þ with tj; j ¼ 2; 3; 4; 5; 6 while

Blj0s l ¼ 2; 4; 6ð Þ are obtained by replacing g1 in

Blj l ¼ 1; 3; 5ð Þ with g2.
Set IV:

Invoking the boundary conditions (61) we obtain a

homogeneous system of linear algebraic equations in the

eight unknowns M11; M12 and Ejk ; j ¼ 1; 2; 3; 4; 5; 6ð Þ
given by Eqs. (81) and (85)–(87) above. Upon simplifying

this system of equations are expressed in compact form as:

F�kXk ¼ 0 ð95Þ

where F�k ¼ Fk
ij


 �

8�8
.

The elements Fk
ij are defined in Eqs. (89) and (90)

except the change in value of Fk
ij given by

Fk
51 ¼ Ck t1ð Þ g1ð Þt1þk ð96Þ

The Eq. (95) has non-trivial solution if and only if we

have

F�k�� �� ¼ 0 ð97Þ

Equation (97) further split into Eq. (93) along with the

following equation

Fk
ij

���
��� ¼ 0; i; j ¼ 1; 2; 3; 4; 6 ð98Þ

Equations (92) and (98) represent the frequency

equation for spherical curved plate in case of rigidly

fixed boundary.

5 Homogeneous Isotropic Curved Plate

The analysis reduces to that of an isotropic spherical plate;

we make the choice of material parameters as

c11 ¼ c33 ¼ kþ 2l ; c12 ¼ c13 ¼ k; c44 ¼ l ;

b1 ¼ b ¼ b3; K1 ¼ K ¼ K3:
ð99Þ

where k and l are the Lame constants. As there is no effect

of temperature on SH wave motion. For anisotropic mate-

rial the Eq. (78) agrees with (14) of Yu et al. [13].

For isotropic materials, Eq. (78) agrees with Eq. (29) of

Shah et al. [6]. Equation (78) governs the motion corre-

sponding to the case of shear where only the Uh dis-

placement occurs. These modes of vibrations are not

affected by temperature change. Equation (93) again gov-

erns the motion corresponding to the case of toroidal shear

in the rigidly fixed plate where only Uh displacement in

circumferential direction occurs. These modes of vibrations

are not affected by temperature change.

6 Numerical Results and Discussion

In order to illustrate the analytical development we have

proposed to carry out some numerical calculations to

compute lowest frequency of zinc, cobalt and silicon

nitride materials whose physical data are given in Table 1.

Due to the presence of dissipation term in heat conduction

Eq. (4), the secular equations are, in general, complex

transcendental equations which provide us complex values

of the frequency Xð Þ.
We assume that X ¼ XR þ iD, where XR ¼ XRR

vs
and D ¼

XIR
vs

denote the lowest frequency and dissipation factor of

the vibrations, respectively. Then each of the secular

Eq. (77) or (92) is rewritten as X ¼ f Xð Þ, which on sepa-

rating real and imaginary parts provides us the following

system of two real equations:

XR ¼ F XR;Dð Þ; D ¼ G XR;Dð Þ ð100Þ

Table 1 Physical data for zinc, cobalt and silicon nitride crystals

Quantity Units Dhaliwal and Singh [19] Silicon nitride SiN4

Yu and Xue [16]
Zinc Cobalt

c11 Nm-2 1:628� 1011 3:701� 1011 5:74� 1011

c12 Nm-2 0:362� 1011 1:650� 1011 1:27� 1011

c13 Nm-2 0:508� 1011 1:027� 1011 1:27� 1011

c33 Nm-2 0:627� 1011 3:581� 1011 4:33� 1011

c44 Nm-2 0:770� 1011 1:510� 1011 10:8� 1011

b1
b3

Nm-2 deg-1

Nm-2 deg-1

5:75� 106

5:17� 106
7:04� 106

6:90� 106
3:22� 106

2:71� 106

q Kg m-3 7:14� 103 8:84� 103 3200

Ce J K g-1 deg 3:9� 102 4:27� 102 670
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The functions F and G in Eq. (100) are selected in such

a way that they satisfy the conditions

oF

oXR

����

����þ
oF

oD

����

����\1;
oG

oXR

����

����þ
oG

oD

����

����\1 ð101Þ

for all XR; D is the neighborhood of the actual root. If

X0 ¼ XR0
;D0ð Þ be the initial approximation, then we can

construct the successive approximations as:

XR1
¼ F XR0

;D0ð Þ; D1 ¼ G XR1
;D0ð Þ

XR2
¼ F XR1

;D1ð Þ; D2 ¼ G XR2
;D1ð Þ

..

. ..
.

XRj
¼ F XRi�1

;Di�1ð Þ; Dj ¼ G XRi
;Di�1ð Þ; i ¼ 0; 1; 2; 3; . . .

9
>>>=

>>>;

ð102Þ

The sequence XRn
;Dnð Þ of approximations to the root

will converge to the actual root provided the initial guess

XR0
;D0ð Þ lies in its neighborhood. For initial value

X0 ¼ XR0
;D0ð Þ, the indicial roots sj j ¼ 1; 2; 3ð Þ given

by Eq. (36) are computed and used along with Eq. (38) in

the secular Eqs. (77) and (92) to obtain the current values

of XR and D each time which are further used to generate

the sequence (44). The process is terminated as and when

the condition Xiþ1 � Xij j\e0; e0 being arbitrarily small

number to be selected at random to achieve the accuracy

level, is satisfied. The procedure is continuously repeated

for different values of inner radius to thickness ratio of the

plate. The numerical computations for lowest frequencies

and dissipation factor in plate of zinc, cobalt and silicon

nitride materials have been presented in Figs. 2, 3, 4, 5, 6,

7, 8 and 9 for stress free or rigidly fixed boundary

conditions. In order to illustrate the analytical

developments in the previous sections, we now perform

some numerical computations and simulations. The secular

Eqs. (77) and (92) contain complete information about the

effect of different fields’ lowest frequency, ratio of inner
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Fig. 2 Variation of lowest frequency with wave number for different

values of ratio of inner radius to thickness of the plate for silicon

nitride material in stress free case
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Fig. 3 Variation of lowest frequency with wave number for different

values of ratio of inner radius to thickness of the plate for silicon

nitride material in rigidly fixed case

Fig. 4 Variation of damping factor with wave number for different

values of ratio of inner radius to thickness of the plate for silicon

nitride material

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2 3 4 5 6 7 8 9 10

Circumferential wave number (m)

L
ow

es
t f

re
qu

en
cy

 (
 Ω

R
).

η∗=1

η∗=2.5

η∗=5

η∗=10

η∗=100

Fig. 5 Variation of lowest frequency with wave number for different

values of ratio of inner radius to thickness of the plate for cobalt

material
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radius to thickness g� ¼ 11
12�11

and damping factor (D). The

results are presented graphically.

The numerical computations have been performed by

employing the iteration technique to the dispersion relation

(77) and (92) with the help of MATLAB programming.

The computations have been done for different values of

inner radius to thickness ratio (g�) for fixed outer radius

f2 ¼ 1:0.

Figures 2 and 3 show the variations of lowest frequency

with respect to the wave number (m) for g� ¼ 1 in case of

stress free and rigidly fixed boundary conditions for silicon

nitride (Si3N4) coupled thermoelastic plate and uncoupled

(elastic) thermoelastic plates. From the profiles in these

figures, it is noticed that the magnitude of lowest frequency

increase with wave number (m). The magnitude of vibra-

tions is quite high in thermoelastic (TE) plate as compared

to that in elastic (E) plate under considered mechanical

conditions, which exhibits the effect of thermal variations.

It is also revealed that the magnitude of lowest fre-

quency increases monotonically for g� in the absence and

presence of thermal field. Moreover, the magnitude of

vibrations is large for stress free thermally insulated plate

in comparison to rigidly fixed one, depicting the effect of

mechanical constraints. These results are similar to the

results of Yu and Xue [16] in case of elastic material (in the

absence of thermal variations). Figure 4 shows the varia-

tions of damping factor with respect to the wave number

(m) for g� ¼ 1 in case of stress free and rigidly fixed

boundary conditions for silicon nitride (Si3N4) coupled

thermoelastic plate and uncoupled (elastic) thermoelastic

plates. It is noticed that damping increases with wave

number (m). Also the magnitude of damping is greater for

stress free plate in comparison to the rigidly fixed plate.

Figures 5 and 7 show the variation of frequency with

wave number for different values of inner radius to thick-

ness ratio (g�) for zinc and cobalt materials respectively.

The dispersion behaviour of Lamb- like waves for cir-

cumferential spherical curved plates with different values

of inner radius to thickness ratio of the spherical curved

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10

Circumferential wave number (m)

D
am

pi
ng

 f
ac

to
r 

( D
).

η∗=1
η∗=2.5
η∗=5

η∗=10
η∗=100

Fig. 6 Variation of damping factor with wave number for different

values of ratio of inner radius to thickness of the plate for cobalt

material
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Fig. 7 Variation of lowest frequency with wave number for different

values of ratio of inner radius to thickness of the plate for zinc

material
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plate is calculated to analyze its influence on dispersion

curves. The thickness to mean radius ratio is defined as g�.
From both the figures it is observed that with the increase

of wave number the lowest frequency increases in linear

fashion. One can see that the influence of g� on group

dispersion curves is obvious. Here frequency increases

with the increase of wave number as the g� decreases the

changes are considerably greater for higher value of g�

there is curvilinear increase in frequency while as for lower

value of g� there is almost linear increase in frequency.

Figures 6 and 8 show the variations of dissipation with

wave number for different values of g� for zinc and cobalt

materials respectively. The influence of g� on dissipation is

more affected for both materials. For zinc in Fig. 6 for

higher value of g� dissipation increases with the increase of

wave number but for lower value of g� dissipation first

increases and then decreases curvilinear for n[ 2. In case

of cobalt material dissipation increases for higher values of

g� and for intermediate value i.e. for g� ¼ :01 it shows

fluctuating behaviour. It is noticed that there is constant

decrease in dissipation for low values of g�. In microscale

SAW devices, the operating frequency is usually very high

and the wavelength is very small (i.e. large wave number).

It can be seen that the thermal effect is so strong that it

influences the dissipation. The effect is significant for

higher value of g�.
Figures 9 and 11 show the variation of frequency with

wave number for different values of inner radius to thick-

ness ratio (g�) for zinc and cobalt materials respectively in

case of rigidly fixed boundary conditions. From both the

figures it is observed that with the increase of wave number

the lowest frequency increases. Figures 10 and 12 show the

variations of dissipation with wave number for different

values of g� for zinc and cobalt materials respectively. The

influence of g� on dissipation is more affected for both

materials in case of rigidly fixed boundary conditions. It is
observed that damping factor increases with increasing

value of wave number (m).

Figures 13 and 14 show the variation of non-dimen-

sional phase velocity vph ¼ XR=m
� �

with circumferential

wave number for stress-free and rigidly fixed, thermally

insulated boundary for first mode of vibrations for cobalt

and zinc materials respectively. From both the figures, it is

observed that phase velocities start from large values at

vanishing wave number and then exhibit strong dispersion

until the velocity flattens out to the value of the thermoe-

lastic Rayleigh wave velocity of the material at higher

wave numbers. It is noticed that there is no difference

between the plates i.e. spherical curved plate in Fig. 14

with the comparison of cylindrical curved plate given by

Sharma and Pathania [6]. Both are made up of zinc

material having same outer radius. The dispersion curves

are almost similar. The magnitude of phase velocity is

noticed to be large for stress free boundary as compared to
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Fig. 11 Variation of lowest frequency with wave number for

different values of ratio of inner radius to thickness of the plate for

zinc material rigidly fixed
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that of rigidly fixed boundary conditions depicting the

effect of mechanical constraints in the discussed problem.

7 Concluding remarks

After simplifying the system of governing equations of

motion and heat conduction equation for a circumferential

waves in transradially isotropic spherical curved plate with

the help of extended power series method (matrix Frobe-

nius method) is successfully used to obtain exact solution

of the resulting system of equations. The concluding

remarks are

a. The matrix Fröbenius method has been successfully

employed to investigate the vibration characteristics of

spherical curved plate structures.

b. It is observed that the shear wave motion of spherical

curved plate gets decoupled from the rest of the motion

and is not influenced by the thermal field and the

corresponding results of pure elastic spherical spher-

ical curved plate are in agreement with those of Shah

et al. [6] and Yu et al. [13].

c. It is noticed that the spherical curved plate structures

are highly influenced with inner radius to thickness

ratio.

d. The lowest frequency has been noticed to increase with

the increase of radius to thickness ratio for fixed outer

radius.

e. There is small change in damping with the increase of

radius to thickness ratio.

f. Almost similar trends of variations of vibration char-

acteristics have been observed for zinc and cobalt

material plates under stress free and rigidly fixed

boundary conditions.

g. The numerical results for silicon nitride (Si3N4) plate

compares well with those of Yu and Xue [16] in the

absence of thermal variations.

h. It is concluded that the behaviour of phase velocity is

similar for cylindrical and spherical curved plates

except the change for lower values of wave number.

Results for zinc material are in good agreement with

earlier results of Sharma and Pathania [12].
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Appendix

The quantities Aij tj
� �

; i; j ¼ 1; 2; 3 used in Eq. (42) are

defined as below

A11 ¼ 0;

A12 ¼ 0

A13 ¼
H22 tj þ 1
� �

H0
13 tj
� �

� H12 tj þ 1
� �

H0
23 tj
� �

H11 tj þ 1
� �

H22 tj þ 1
� �

þ H12 tj þ 1
� �

H21 tj þ 1
� �

A21 ¼ 0; A12 ¼ 0

A23 ¼
�H21 tj þ 1

� �
H0

13 tj
� �

þ H11 tj þ 1
� �

H0
23 tj
� �

H11 tj þ 1
� �

H22 tj þ 1
� �

þ H12 tj þ 1
� �

H21 tj þ 1
� �

A31 ¼
H0

31 tj
� �

H33 tj þ 1
� �

A32 ¼
H0

31 tj
� �

H33 tj þ 1
� � ;

A33 ¼ 0

9
>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>;

ð103Þ

The quantities Kij tj
� �

; K 0
ij tj
� �

i; j ¼ 1; 2; 3ð Þ used in

Eqs. (47) and (48) are given by
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and

K 0
13 ¼

H22 tj þ 2k þ 1
� �

H� tj þ 2k þ 1
� � H0

13 tj þ 2k
� �

�
H11 tj þ 2k þ 2
� �

H0
23 tj þ 2k
� �

H� tj þ 2k þ 2
� �

K 0
23 ¼

�H21 tj þ 2k þ 1
� �

H0
23 tj þ 2k
� �

H� tj þ 2k þ 1
� �

þ
H11 tj þ 2k þ 2
� �

H0
23 tj þ 2k
� �

H� tj þ 2k þ 1
� �

K 0
31 ¼

H0
31 tj þ 2k
� �

H33 tj þ 2k þ 1
� � ; K 0

32 ¼
H0

32 tj þ 2k
� �

H33 tj þ 2k þ 1
� �

9
>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>;

ð105Þ
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21. Neuringer JL (1978) The Fröbenius method for complex roots of

the indicial equation. Int J Math Educ Sci Technol 9:71–77

22. Cullen CG (1966) Matrices and Linear transformations. Addison-

Wesley Publishing Company, Reading

72 N. Sharma

123


	Circumferential Waves in Transradially Isotropic Thermoelastic Spherical Curved Plates
	Abstract
	Introduction
	Formulation and Solution
	Matrix Fröbenius Solution
	Convergence of the Series

	Boundary Conditions
	Dispersion Relations
	Stress Free Curved Plate
	Rigidly Fixed Curved Plate

	Homogeneous Isotropic Curved Plate
	Numerical Results and Discussion
	Concluding remarks
	Acknowledgments
	Appendix
	References




