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Abstract In this paper, we have studied the basic arith-

metic operations for two generalized positive parabolic

fuzzy numbers by using the concept of the distribution and

complementary distribution functions. The major advan-

tage of these operations is that they do not need the com-

putation of a-cut of the fuzzy number and hence it becomes

more powerful where the standard method i.e., a-cuts
method fails. Based on these operations, some elementary

applications on mensuration have been illustrated and

compared their results with generalized triangular fuzzy

numbers.
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1 Introduction

Under the growing complexities of the system, problems in

the real world quite often turn out to be complex owing to an

element of uncertainty either in the parameters which define

the problem or in the situations in which the problem

occurs. However, it is very difficult to make statistical

interference in case of systems where available data is

insufficient. As the probability approach has been applied

successfully for many real world engineering problems but

still there are some limitations to the probabilistic method.

For instance, probabilistic methods are based on mass

collection of data, which is random in nature, to achieve the

requisite confidence level. But in large scale the compli-

cated system has the massive fuzzy uncertainty due to

which it is difficult to get the exact probability of the events.

Furthermore, the assessment of the systems are usually

affected by aleatory and epistemic uncertainty. Aleatory

uncertainty arises from heterogeneity or the random char-

acter of natural processes while epistemic uncertainty arises

from the partial character of our knowledge of the natural

world. Epistemic uncertainty can be reduced by further

study while aleatory cannot be reduced. Thus, results based

on probability theory do not always provide useful infor-

mation to the practitioners due to the limitation of being

able to handle only quantitative information. Due to these

limitations, the results based on probability theory do not

always provide useful information to the practitioners and

hence probabilistic approach is inadequate to account for

such built-in uncertainties in the data.

To overcome these difficulties, methodologies based on

fuzzy set theory and logic represents a useful tool for

dealing with the uncertainties in addition to the probability

theory. Fuzzy set theory [1] has been viewed as a useful

tool, especially for dealing with the complex systems, in

which the interactions of the system’s variables may be too

complex to be precisely specified. However, we could find

that fuzzy logic may obtain different simulated efficiency

and performance while adopting various forms of fuzzy

arithmetic, and the fuzzy arithmetic operations have nec-

essary condition which operations have to use triangular

fuzzy numbers. In the framework of fuzzy arithmetic var-

ious operations as, e.g., addition, subtraction, etc., are

realized [2]. These operations are made with the use of

Zadeh’s possibilistic extension principle [3] or its new,

improved, and also possibilistic version proposed by Klir

[4], which takes into account the so-called requisite
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constraints. Arithmetic operations are also performed under

the assumption which was introduced by Zadeh [5] that the

membership function of a fuzzy set is of a possibilistic

character and that each element of the universal set, with a

non-zero membership grade, belongs to a fuzzy set. For the

past few years, some people have worked on arithmetic

operations on fuzzy numbers. Piegat [6] presented a defi-

nition of fuzzy which allows for a considerable fuzziness

decrease in the number of arithmetic operations. Stefanini

and Guerra [7] analyzed decomposition of fuzzy numbers

in order to study some properties of fuzzy arithmetic

operations and compared the proposed approximation with

the results of standard fuzzy mathematics. Gao et al. [8]

worked on four methods for solving multiplication opera-

tion of two fuzzy numbers. These are non-linear pro-

gramming method, analytical method, computer method

and computer simulation method. Akther and Ahmad [9]

presented a way of computing arithmetic operations of

fuzzy numbers as well as an analytic form of resultant

membership functions. Mahanta et al. [10] gave method

that can be utilized in cases where the method of a-cuts
fails. Taleshian and Rezvani [11] gave methods for solving

multiplication operation of two trapezoidal fuzzy numbers.

Chutia et al. [12] developed a method of finding mem-

bership function for functions of triangular fuzzy variable

from the concept of credibility theory and a method for

computation of basic arithmetical operations of fuzzy

variables is forwarded. Bansal [13] explored the arithmetic

properties of an arbitrary trapezoidal fuzzy number. Ous-

salah [14] addressed theoretical results about some

invariance properties concerning the relationships between

the defuzzification outcomes and the arithmetic of fuzzy

numbers. Kechagias and Papadopoulos [15] proposed a

computational method to evaluate the arithmetic operations

on fuzzy numbers with nonlinear membership functions.

Deschrijver [16] analyzed the arithmetic operations in both

interval and intuitionistic fuzzy set theory. Xue et al. [17]

presented an expression for the expected value of a func-

tion of fuzzy variable by taking fuzzy variables has a

continuous membership function. Banerjee and Roy [18]

studied defuzzification method for generalized trapezoidal

fuzzy numbers based on the Zadeh’s extension principle

method, interval method and vertex method. Garg [19]

presented an arithmetic operations based on weakest

t-norm and compute the various expression of reliability

indices corresponding to complex repairable system.

Vahidi and Rezvani [20] presented an arithmetic operations

on the trapezoidal fuzzy numbers. Garg [21] presented an

approach for computing the various arithmetic operations

using credibility theory corresponding to different type of

intuitionistic fuzzy numbers.

All the above studies have adopted the well-known

additions of fuzzy quantities by a well known extension

principle and a-cut methods for their computation. Here, a

former one is directly considering the membership func-

tions while the latter one is to deal with the a-cut sets

without considering the membership functions. Both the

methods have their own limitations, such as it is not always

possible to compute the a-cut of a fuzzy numbers and

hence their approaches are quite restricted. Moreover, it is

quite clear that there exists a large amount of uncertainties

during the computation when linear membership functions

have been taken. Therefore, there is a need of suit-

able methodology which will handle this problem and

compute the arithmetic operations in a fuzzy environment.

So, in this study, instead of using these methods, we

compute the membership functions by using distribution

and complementary distribution functions.

Thus, the objective of the paper is to present an alter-

native method for obtaining the membership functions of

the various arithmetic operations on fuzzy numbers. For

this distribution and complementary distribution function

has been used for finding the membership function of

generalized parabolic fuzzy numbers instead of triangular

fuzzy numbers. The major advantages of using their dis-

tribution and complementary functions are that they do not

need the computation of a-cuts and hence the method is

quite useful in those cases where it is difficult to compute

the a-cut of the fuzzy numbers. The operations have been

validated through some elementary applications and illus-

trated with their approximated/defuzzified values. Finally

results are compared with the a-cut method and shows the

supremacy of the result.

2 Preliminaries

Real-world problems are generally associated with differ-

ent types of uncertainties and imprecision’s. In the past, a

considerable amount of effort was made to model those

uncertainties and imprecision’s. Prior to 1965, people used

to consider probability theory (which works based on two-

valued logic either in or out) as the prime agent for dealing

with uncertainties. But the results based on probability

theory do not always provide useful information to the

practitioners due to the limitation of being able to handle

only quantitative information. To overcome this, mathe-

matical modeling of fuzzy concepts (a generalization of

crisp or classical set approach) was presented by Zadeh [1]

by allowing images of elements to be in the interval [0, 1]

rather than being restricted to the two-element set {0,1}

and defined the new concept called as fuzzy set.
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2.1 Fuzzy Set

Fuzzy sets [1] may be viewed as an extension and gener-

alization of the basic concepts of crisp sets which allows

partial membership i.e. between 0 and 1. A fuzzy set ~A can

be defined on the universe of discourse U as

~A ¼ fðx; l ~AðxÞ j x 2 Ug ð1Þ

where l ~A is the membership function of the fuzzy set ~A
defined as l ~A : U ! ½0; 1� and l ~AðxÞ indicates the degree

of membership of x in ~A and its value lies between zero

and one. When a set is an ordinary set, its membership

function can take on only two values 0 and 1, with

vAðxÞ ¼ 1 or 0 according as x does or does not belong to

A. vAðxÞ is referred to as the characteristic function of the

set A.

2.2 Convex Fuzzy Set [2, 4]

If the membership function has membership values those

are monotonically increasing, or, monotonically

decreasing, or they are monotonically increasing and

decreasing with increasing values for elements in the

universe, those fuzzy set ~A is called convex fuzzy set.

Mathematically, a fuzzy set ~A in the universe of

discourse U is called a convex fuzzy set if and only if

[2, 4]

l ~Aðkx1 þ ð1� kÞx2Þ� min½l ~Aðx1Þ; l ~Aðx2Þ� 8 x1; x2 2 U; k
2 ½0; 1�

If above inequality does not hold then it is said to be non-

convex fuzzy set.

2.3 Normal Fuzzy Set [2, 4]

A fuzzy set is said to be normal fuzzy set if there exists at

least one element x 2 U such that l ~AðxÞ ¼ 1. A fuzzy set

wherein no membership function has its value equal to 1 is

called subnormal fuzzy set.

2.4 Fuzzy Number [2, 4]

A fuzzy number is an extension of a regular number in

which the value corresponding to element has its own

weight between 0 and 1, called membership functions,

instead of one single values. In other words, a fuzzy

number is a normal and convex membership function on

the real line R such that

1. there exists at least one x0 2 R with l ~Aðx0Þ ¼ 1.

2. l ~A : R �! ½0; 1� is piecewise continuous.

and its membership function is defined as

l ~AðxÞ ¼

fAðxÞ; if a1 � x\a2
1; if x ¼ a2
gAðxÞ; if a2 � x\a3
0; if otherwise

8
>><

>>:

ð2Þ

where 0� l ~AðxÞ� 1 and a1; a2; a3 2 R such that

a1 � a2 � a3 and the two functions fA; gA : R ! ½0; 1� are
called the sides of the fuzzy numbers such that fA and gA
are nondecreasing and nonincreasing continuous functions

respectively. Dubois and Prade [3] named fAðxÞ as left

reference function and gAðxÞ as right or complementary

reference function of concerned fuzzy number. We denote

this fuzzy number as ~A ¼ ða1; a2; a3Þ where ~A represents

the fuzzy set of A.

2.5 Parabolic Fuzzy Number

A fuzzy number ~A ¼ ða1; a2; a3Þ is said to be a parabolic

fuzzy number if its membership function is defined as

below

l ~AðxÞ ¼

�
x� a1

a2 � a1

�2

; if a1 � x\a2

1 if x ¼ a2�
a3 � x

a3 � a2

�2

; if a2 � x\a3

0; if otherwise

8
>>>>>><

>>>>>>:

ð3Þ

2.6 Generalized Fuzzy Number

A fuzzy number ~A ¼ ða1; a2; a3;xÞ, defined on the uni-

versal set of real numbers R, is said to be generalized fuzzy

number it its membership function has the following

characteristics

1. l ~AðxÞ : R ! ½0; 1� is continuous.
2. l ~AðxÞ ¼ 0, for all x 2 ð�1; a1� [ ½a3;1Þ.
3. l ~AðxÞ is strictly increasing on ½a1; a2� and strictly

decreasing on ½a2; a3�.
4. l ~AðxÞ ¼ x for all x ¼ a2 where 0\x� 1.

2.7 Generalized Parabolic Fuzzy Number

A fuzzy number ~A ¼ ða1; a2; a3;xÞ, is called a generalized

parabolic fuzzy number if its membership function is

defined as

l ~AðxÞ ¼

x

�
x� a1

a2 � a1

�2

; if a1 � x\a2

x; if x ¼ a2

x

�
a3 � x

a3 � a2

�2

; if a2 � x\a3

0; if otherwise

8
>>>>>><

>>>>>>:

ð4Þ

or l ~AðxÞ ¼ maxðminðxð x�a1
a2�a1

Þ2;x;xð a3�x
a3�a2

Þ2Þ; 0Þ
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A generalized fuzzy number is said to be positive(neg-

ative) i.e. ~A� 0ð~A� 0Þ if and only if a1 � 0ða3 � 0Þ.

2.8 Defuzzification

In order to make decisions with respect to maintenance

actions it is necessary to convert the fuzzy output into a

crisp value. The process of converting the fuzzy output

to a crisp value is called defuzzification. Out of the

existence of the various defuzzification techniques in the

literature, center of area (COA) or center of gravity

(COG) method [22] is selected due to its property that it

is equivalent to the mean of the data. If the membership

function l ~AðxÞ of the output fuzzy set ~A is described on

the interval ½x1; x2�, then COA defuzzification �x is defined

as

�x ¼
R x2
x1
x � l ~AðxÞdx

R x2
x1
l ~AðxÞdx

3 Proposed Membership Function for Function
of a Fuzzy Variable

Let H be a nonempty set, PðHÞ be the power set of H, and

Pos a possibility measure, then the triplet ðH;PðHÞ;PosÞ
is called possibility space. Based on this space, a fuzzy

variable has been defined

Definition 1 A fuzzy variable [23, 24], say f, is defined
as a function from a possibility space ðH;PðHÞ;PosÞ to

the set of real numbers, then its membership function l is

derived from the possibility measure by

lðxÞ ¼ Posfh 2 H j fðhÞ ¼ xg; x 2 R

Let f : Rn ! R be a function, and let f1; f2; . . .; fn be

fuzzy variables on the possibility space ðH;PðHÞ;PosÞ.
Then f ¼ f ðf1; f2; . . .; fnÞ is a fuzzy variable defined as

fðhÞ ¼ f ðf1ðhÞ; f2ðhÞ; . . .; fnðhÞÞ for any h 2 H. If the

fuzzy variables are defined on different possibility

spaces, then f ¼ f ðf1; f2; . . .; fnÞ is a fuzzy variable

defined on the product possibility space ðH;PðHÞ;PosÞ
as fðh1; h2; . . .; hnÞ ¼ f ðf1ðh1Þ; f2ðh2Þ; . . .; fnðhnÞ for any

ðh1; h2; . . .; hnÞ 2 H.

Let f ¼ ða1; a2; a3;xÞ be the triangular fuzzy variable

with height of the variable is x, then FðfÞ ¼ ½Fða1Þ, Fða2Þ,
Fða3Þ;FðxÞ� be the fuzzy variable of the function FðfÞ. Let
the membership function of f is given as

lfðxÞ ¼

xL1ðxÞ if a1 � x\a2
x if x ¼ a2
xR1ðxÞ if a2 � x\a3
0 otherwise

8
>><

>>:

where L1ðxÞ and R1ðxÞ are the nondecreasing and

nonincreasing functions of x respectively. Let z ¼
FðxÞ; x 2 f or x ¼ wðzÞ. Hence the density functions for

the distribution functions L1ðxÞ and R1ðxÞ are obtained as

f1ðxÞ ¼
d

dx
ðL1ðxÞÞ ¼ g1ðzÞ at x ¼ w1ðzÞ

g1ðxÞ ¼
d

dx
ðR1ðxÞÞ ¼ g2ðzÞ at x ¼ w2ðzÞ

Now, let,

dx

dz
¼ d

dz
ðw1ðzÞÞ ¼ m1ðzÞ;

dx

dz
¼ d

dz
ðw2ðzÞÞ ¼ m2ðzÞ

Then the distribution function for FðfÞ would be given as

Zx

Fða1Þ

g1ðzÞm1ðzÞdz; Fða1Þ� x\Fða2Þ

while their complementary distribution function would be

given as

Zx

Fða3Þ

g2ðzÞm2ðzÞdz; Fða2Þ� x\Fða3Þ

Hence, the membership function for the fuzzy variable

function FðfÞ is given by

lFðfÞðxÞ ¼

FðxÞ
Rx

Fða1Þ
g1ðzÞm1ðzÞdz Fða1Þ� x\Fða2Þ

FðxÞ x ¼ Fða2Þ
FðxÞ

Rx

Fða3Þ
g2ðzÞm2ðzÞdz Fða2Þ� x\Fða3Þ

0 otherwise

8
>>>>>>><

>>>>>>>:

In order to evaluate the fuzzy arithmetic for the parabolic

fuzzy numbers, consider the two parabolic fuzzy numbers

X ¼ ½a1; a2; a3;x1� and Y ¼ ½b1; b2; b3;x2� where x1;x2

represents the degree of their membership functions in

crisp environment. Their corresponding membership

functions are defined as

lXðxÞ ¼

x1L1ðxÞ if a1 � x\a2
x1 if x ¼ a2
x1R1ðxÞ if a2 � x\a3
0 otherwise

8
>><

>>:

ð5Þ

and

lYðyÞ ¼

x2L1ðyÞ if b1 � y\b2
x2 if y ¼ b2
x2R1ðyÞ if b2 � y\b3
0 otherwise

8
>><

>>:

ð6Þ

where L1ðxÞ ¼ ð x� a1

a2 � a1
Þ2, L1ðyÞ ¼ ð y� b1

b2 � b1
Þ2 are the left

distribution functions and R1ðxÞ ¼ ð a3 � x

a3 � a2
Þ2, R1ðyÞ ¼

18 H. Garg, A. Ansha
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ð b3 � y

b3 � b2
Þ2 are the right distribution functions of X and Y re-

spectively. In order to find the distribution functions of their

corresponding arithmetic operations, we start with equating

L1ðxÞ with L1ðyÞ and R1ðxÞ with R1ðyÞ and obtain y ¼ /1ðxÞ
and y ¼ /2ðxÞ respectively, where /1ðxÞ ¼ b1�

ððx� a1Þðb2 � b1Þ
ða2 � a1Þ

Þ, /2ðxÞ ¼ b3� ðða3 � xÞðb3 � b2Þ
ða3 � a2Þ

Þ.

Let Z be the resultant of the arithmetic operations of

X and Y. Then at y ¼ /1ðxÞ and y ¼ /2ðxÞ we get x ¼
w1ðzÞ and x ¼ w2ðzÞ respectively. Based on these func-

tions, we get the density function corresponding to the

distribution and complementary distribution functions as

f1ðxÞ ¼
d

dx
ðL1ðxÞÞ ¼ g1ðzÞ at x ¼ w1ðzÞ

g1ðxÞ ¼
d

dx
ðR1ðxÞÞ ¼ g2ðzÞ at x ¼ w2ðzÞ

Also,

dx

dz
¼ d

dz
ðw1ðzÞÞ ¼ m1ðzÞ;

dx

dz
¼ d

dz
ðw2ðzÞÞ ¼ m2ðzÞ

Hence, the distribution function for fuzzy variable

F(z) where FðzÞ ¼ ½z1; z2; z3;x�, x ¼ minðx1;x2Þ are

lFðfÞðxÞ ¼

x
Rx

z1

g1ðzÞm1ðzÞdz if z1 � x\z2

x if x ¼ z2

x
Rx

z3

g2ðzÞm2ðzÞdz if z2 � x\z3

0 otherwise

8
>>>>>><

>>>>>>:

Based on these functions, we obtain the membership

functions of functions, such as addition, subtraction, mul-

tiplication, inverse etc., as given below

3.1 Addition of Fuzzy Numbers

Theorem 1 If X and Y be the two parabolic fuzzy number

over the universe U whose membership function are

defined in Eqs. (5) and (6) respectively then the fuzzy

variable Z ¼ X þ Y is also a parabolic fuzzy number with

membership function

lZðxÞ ¼

x

�
x� ða1 þ b1Þ

a2 � a1 þ b2 � b1

�2

a1 þ b1� x\a2 þ b2

x x¼ a2 þ b2

x

�
ða3 þ b3Þ � x

a3 � a2 þ b3 � b2

�2

a2 þ b2� x\a3 þ b3

0 otherwise

8
>>>>>><

>>>>>>:

Proof Consider two parabolic fuzzy numbers X and

Y whose membership functions are defined in Eqs. (5) and

(6) respectively. For addition of the fuzzy numbers X and

Y, the fuzzy number Z ¼ Xþ Y ¼ ½a1 þ b1;a2 þ b2;a3 þ b3�
be the resultant fuzzy number of X and Y. Now let z¼ xþ y

we get z¼ xþ/1ðxÞ and z¼ xþ/2ðxÞ which implies that

x¼ w1ðzÞ and x¼ w2ðzÞ where

x ¼ w1ðzÞ ¼
z� a2b1

a2�a1
þ a1b2

a2�a1

1þ ðb2�b1Þ
a2�a1

Hence, g1ðzÞ ¼
�

2

ða2 � a1Þ2
��

z� a1 � b1

1þ ðb2�b1Þ
a2�a1

�

, m1ðzÞ ¼1

1þ ðb2�b1Þ
a2�a1

Thus, left sided distribution function for the fuzzy

variable Z ¼ X þ Y is

Zx

a1þb1

g1ðzÞm1ðzÞdz ¼
Zx

a1þb1

�
2

ða2 � a1Þ2
��

z� a1 � b1

1þ ðb2�b1Þ
a2�a1

�

	
�

1

1þ ðb2�b1Þ
a2�a1

�

dz

¼
�

2

ða2 � a1Þ2
��

1

1þ ðb2�b1Þ
a2�a1

�2

	
Zx

a1þb1

ðz� a1 � b1Þdx

¼
�

1

a2 � a1

�2�
x� ða1 þ b1Þ
1þ ðb2�b1Þ

a2�a1

�2

¼
�

x� ða1 þ b1Þ
a2 þ b2 � a1 � b1

�2

;

a1 þ b1 � x\a2 þ b2

Similarly, if y ¼ /2ðxÞ then z ¼ xþ y becomes x ¼ w2ðzÞ
where

w2ðzÞ ¼
zþ �a2b3

a3�a2
þ a3b2

a3�a2

1þ b3�b2
a3�a2

Here, in this case

g2ðzÞ ¼
�

�2

ða3 � a2Þ2
��

a3 þ b3 � z

1þ ðb3�b2Þ
a3�a2

�

;

m2ðzÞ ¼
1

1þ b3�b2
a3�a2

Thus, right sided distribution function for the fuzzy

variable Z ¼ X þ Y is
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Zx

a3þb3

g2ðzÞm2ðzÞdz¼
Zx

a3þb3

�
�2

ða3 � a2Þ2
��

a3 þ b3 � z

1þ ðb3�b2Þ
a3�a2

�

	
�

1

1þ ðb3�b2Þ
a3�a2

�

dz

¼
�

�2

ða3 � a2Þ2
��

1

1þ ðb3�b2Þ
a3�a2

�2

	
Zx

a3þb3

ða3 þ b3 � zÞdz

¼
�

�2

ða3 � a2Þ2
��

1

1þ ðb3�b2Þ
a3�a2

�2

	 ða3 þ b3 � xÞ2

�2

¼
�

1

a3 � a2

�2� ða3 þ b3Þ � x

1þ ðb3�b2Þ
a3�a2

�2

¼
�

ða3 þ b3Þ � x

a3 � a2 þ b3 � b2

�2

;

a2 þ b2 � x\a3 þ b3

Therefore, the membership functions of the fuzzy variable

Z ¼ X þ Y is given by

lZðxÞ ¼

x

�
x� ða1 þ b1Þ

a2 � a1 þ b2 � b1

�2

a1 þ b1 � x\a2 þ b2

x x ¼ a2 þ b2

x

�
ða3 þ b3Þ � x

a3 � a2 þ b3 � b2

�2

a2 þ b2 � x\a3 þ b3

0 otherwise

8
>>>>>>>><

>>>>>>>>:

where x ¼ minðx1;x2Þ:

3.2 Scalar Multiplication of Fuzzy Variable

Theorem 2 If X be a parabolic fuzzy number and z ¼ kx

be the transformation then kX is also a parabolic fuzzy

number given by

kX ¼ ðka1; ka2; ka3;x1Þ if k[ 0

ðka3; ka2; ka1;x1Þ if k\0

�

Proof Using the transformation z ¼ kx, we get x ¼ z=k

and hence wðzÞ ¼ z=k. Thus j d
dz
x j¼ 1

k
¼ mðzÞ. Therefore,

Z x

ka1

g1ðzÞmðzÞdz¼
Z x

ka1

�
2ðz� ka1Þ
kða2� a1Þ2

��
1

k

�

dz¼
�

x� ka1

ka2� ka1

�2

Z x

ka3

g2ðzÞmðzÞdz¼
Z x

ka3

�
�2ðka3� zÞ
kða3� a2Þ2

��
1

k

�

dz¼
�

ka3� x

ka3� ka2

�2

Therefore, the membership functions of the fuzzy variable

k ~X, k[0 is given by

lkXðxÞ ¼

x1

�
x� ka1

ka2 � ka1

�2

ka1 � x\ka2

x1 x ¼ ka2

x1

�
ka3 � x

ka3 � ka2

�2

ka2 � x\ka3

0 otherwise

8
>>>>>><

>>>>>>:

Similarly, for k\0, the membership functions of the fuzzy

variable k ~X, is given by

lkXðxÞ ¼

x1

�
x� ka3

ka2 � ka3

�2

ka3 � x\ka2

x1 x ¼ ka2

x1

�
ka1 � x

ka1 � ka2

�2

ka2 � x\ka1

0 otherwise

8
>>>>>><

>>>>>>:

3.3 Subtraction of Fuzzy Variable

Theorem 3 If X and Y be the two parabolic membership

function over the universe U then the fuzzy variable Z ¼
X � Y is also a parabolic fuzzy number whose membership

function is given by

lZðxÞ ¼

x

�
x� ða1 � b3Þ

a2 � a1 þ b3 � b2

�2

a1 � b3 � x\a2 � b2

x x ¼ a2 � b2

x

�
ða3 � b1Þ � x

a3 � a2 þ b2 � b1

�2

a2 � b2 � x\a3 � b1

0 otherwise

8
>>>>>>>><

>>>>>>>>:

Proof The proof is trivial by using the addition and scalar

multiplication (k ¼ �1\0) of two parabolic fuzzy numbers.

3.4 Multiplication of a Fuzzy Variables

Theorem 4 If X and Y be the two parabolic membership

function over the universe U then the fuzzy variable Z ¼
X � Y is also a parabolic fuzzy number whose membership

function is given by

lXYðxÞ ¼

x

�
�B1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 � 4A1ðC1 � xÞ

p

2A1

�2

a1b1 � x\a2b2

x x ¼ a2b2

x

�
�B2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
2 � 4A2ðC2 � xÞ

p

2A2

�2

a2b2 � x\a3b3

0 otherwise

8
>>>>>>>><

>>>>>>>>:

where A1 ¼ ða2 � a1Þðb2 � b1Þ, B1 ¼ a1ðb2 � b1Þ þ b1
ða2 � a1Þ, C1 ¼ a1b1, A2 ¼ ða3 � a2Þðb3 � b2Þ, B2 ¼
�a3ðb3 � b2Þ � b3ða3 � a2Þ and C2 ¼ a3b3.

Proof As the parabolic membership functions of X and

Y are given in Eqs. (5) and (6) respectively, thus, in order to

find the membership functions of the fuzzy variable Z ¼ XY
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where the distribution functions of X and Y are defined in (5)

and (6) respectively. Thus at y ¼ /1ðxÞ, z ¼ xy becomes

x ¼
ða1b2 � a2b1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða1b2 � a2b1Þ2 þ 4ðb2 � b1Þða2 � a1Þz
q

2ðb2 � b1Þ
¼ w1ðzÞ; ðsayÞ

Take,

A1 ¼ ða2 � a1Þðb2 � b1Þ;
B1 ¼ a1ðb2 � b1Þ þ b1ða2 � a1Þ; C1 ¼ a1b1

Hence,

g1ðzÞ ¼
2

ða2 � a1Þ2

	
�
�a1b2 � a2b1 þ 2a1b1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 � 4A1ðC1 � zÞ

p

2ðb2 � b1Þ

�

¼ 1

a2 � a1

�
�B1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 � 4A1ðC1 � zÞ

p

A1

�

and mðzÞ ¼ j dx
dz

j¼ a2 � a1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 � 4A1ðC1 � zÞ

p :

)

Z x

a1b1

g1ðzÞm1ðzÞdz

¼
Z x

a1b1

1

a2 � a1

�
�B1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 � 4A1ðC1 � zÞ

p

A1

�

	 a2 � a1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 � 4A1ðC1 � zÞ

p dz

¼
Z x

a1b1

1

A1

�
�B1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 � 4A1ðC1 � zÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 � 4A1ðC1 � zÞ

p

�

dz

¼
Z x

a1b1

1

A1

�
�B1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 � 4A1ðC1 � zÞ

p þ 1

�

dz

¼ 1

A1

�
ð�B1Þ2 �B1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 � 4A1ðC1 � xÞ

p
þ 2A1x� 2A1C1

2A1

�

¼
�
�B1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 � 4A1ðC1 � xÞ

p

2A1

�2

;

a1b1� x\a2b2

Similarly, by taking

A2 ¼ ða3 � a2Þðb3 � b2Þ;
B2 ¼ �a3ðb3 � b2Þ � b3ða3 � a2Þ; C2 ¼ a3b3

we get, the membership function for the complementary

distribution functions as

Z x

a3b3

g1ðzÞm1ðzÞdz ¼
�
�B2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
2 � 4A2ðC2 � xÞ

p

2A2

�2

;

a2b2 � x\a3b3

Hence, the membership function of the fuzzy variable Z ¼
XY is given by

lXYðxÞ ¼

x

�
�B1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 � 4A1ðC1 � xÞ

p

2A1

�2

a1b1 � x\a2b2

x x ¼ a2b2

x

�
�B2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
2 � 4A2ðC2 � xÞ

p

2A2

�2

a2b2 � x\a3b3

0 otherwise

8
>>>>>>>><

>>>>>>>>:

3.5 Inverse of a Fuzzy Variable

Theorem 5 If fuzzy number X represent the parabolic

membership function given in Eq. (5) then the inverse of

X i.e X�1 ¼ ½a�1
3 ; a�1

2 ; a�1
1 ;x1� is also a parabolic fuzzy

number whose membership function is

lX�1ðxÞ ¼

x1

�
xa3 � 1

xða3 � a2Þ

�2

if a�1
3 � x\a�1

2

x1 if x ¼ a�1
2

x1

�
1� a1x

xða2 � a1Þ

�2

if a�1
2 � x\a�1

1

0 otherwise

8
>>>>>>><

>>>>>>>:

Proof Consider a fuzzy variable X ¼ ½a1; a2; a3;x1� with
membership function given in Eq. (5). Let z ¼ 1

x
so that

j dx
dz
j¼ 1

z2
. Therefore for X�1 we have

Za
�1
1

x

g1ðzÞmðzÞdz ¼
Za

�1
1

x

�
2

ða2 � a1Þ2
ð1
z
� a1Þ

��
1

z2

�

dz

¼
�

1� a1x

xða2 � a1Þ

�2

Zx

a�1
3

g2ðzÞmðzÞdz¼
Zx

a�1
3

�
2

ða3 � a2Þ2
ð1
z
� a3Þ

��
1

z2

�

dz

¼
�

xa3 � 1

xða3 � a2Þ

�2

Thus, based on these distribution functions, fuzzy

membership function of X�1 are

lX�1ðxÞ ¼

x1

�
xa3 � 1

xða3 � a2Þ

�2

if a�1
3 � x\a�1

2

x1 if x ¼ a�1
2

x1

�
1� a1x

xða2 � a1Þ

�2

if a�1
2 � x\a�1

1

0 otherwise

8
>>>>>>><

>>>>>>>:
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3.6 Division of Fuzzy Variables

Theorem 6 If X and Y be the two parabolic fuzzy num-

bers over the universe U then, for 0 62 Y , the fuzzy variable

Z ¼ X
Y
¼ X � Y�1 is also a parabolic fuzzy number.

Proof By using the Theorems 4 and 5, we get the mem-

bership function of Z ¼ X � Y�1

4 Illustrative Examples

The above methodology for computing the membership

functions of various arithmetic operation has been illus-

trated through a numerical examples as given below.

Example 1 Addition of two numbers

Let X ¼ ½1; 2; 4; 1� and Y ¼ ½3; 5; 6; 1� be two parabolic

fuzzy numbers with membership functions as

l ~X ¼

ðx� 1Þ2; if 1� x\2
�
4� x

2

�2

; if 2� x\4

0; otherwise

8
>>><

>>>:

;

l ~Y ¼

�
y� 3

2

�2

; if 3� y\5

ð6� yÞ2; if 5� y\6

0; otherwise

8
>>><

>>>:

In order to evaluate the degree of membership of X þ Y ,

we start with the equating of the distribution and comple-

mentary distribution functions and hence we get y ¼
2xþ 1 ¼ /1ðxÞ and y ¼ 8�x

2
¼ /2ðxÞ. Now for Z ¼ X þ Y ,

we get x ¼ w1ðzÞ ¼ z�1
3
, x ¼ w2ðzÞ ¼ 2z�8

3
, g1ðzÞ ¼ 2ðz�4

3
Þ,

g2ðzÞ ¼ 10�z
3
, m1ðzÞ ¼ 1

3
and m2ðzÞ ¼ 2

3
.

Therefore, the distribution function of the fuzzy variable

Z ¼ X þ Y would now be given as

Zx

4

g1ðzÞm1ðzÞdz ¼
�
x� 4

3

�2

; 4� x\7

and the complementary distribution function is

Zx

10

g2ðzÞm2ðzÞdz ¼
�
10� x

3

�2

; 7� x\10

Then the fuzzy membership function of X ? Y is

) lXþYðxÞ ¼

�
x� 4

3

�2

if 4� x\7

�
10� x

3

�2

if 7� x\10

0 otherwise

8
>>>><

>>>>:

The obtained results are depicted graphically in Fig. 1

along with the other existing results, linear and crisp, and

are explained as below.

1. The results computed by the crisp or traditional

methodology are independent of the uncertainty level

and hence it remain constant for all membership

values. Therefore, these results are suitable only for a

system whose data are precise.

2. The results computed by taking the linear membership

functions are shown in Fig. 1 with linear legend. From

the figure it is concluded that it contains a wide range

of spread in the form of support and hence results are

not so much practical as it contains a large amount of

uncertainties.

3. On the other hand, the results computed by taking

parabolic fuzzy numbers have reduced region and a

smaller spread than the other results at any level of

satisfaction. This means that uncertainties existing

during the analysis are reduced up to the desired

degree and hence decision makers/system analyst may

use these results for further analysis which leads to a

more sound and effective decision for future course of

actions in lesser time.

Also, it has been concluded that the value of their

resultant number is increasing from 4 to 7 cm at a non-

linear increasing rate 2
9
ðx� 4Þ and then decreases from 7 to

10 cm at a nonlinear decreasing rate 2
9
ð10� xÞ. The cor-

responding defuzzified value obtained by using COG

method is 7 cm.

Example 2 Length of the Rod

Let length of a rod is a parabolic fuzzy number
~A ¼ ð12; 13:5; 15 cm; 0.8). If the length ~B ¼ ð5; 6:5; 8 cm;

0.7), a parabolic fuzzy number, is cut off from this rod then

the remaining length of the rod ~C is ~Að�Þ~B.

4 5 6 7 8 9 10
0.1

0.3

0.5

0.7

0.9

1

Addition of numbers

m
em

be
rs

hi
p 

va
lu

es

Fuzzy Sum

Parabolic
linear
crisp

Fig. 1 Membership function of addition of two numbers

22 H. Garg, A. Ansha

123



The parabolic membership function corresponding to

fuzzy numbers ~A and ~B are defined as below

l ~AðxÞ ¼

0:8

�
x� 12

1:5

�2

if 12� x\13:5

0:8

�
15� x

1:5

�2

if 13:5� x\15

0 otherwise

8
>>>>><

>>>>>:

;

l ~BðxÞ ¼

0:7

�
y� 5

1:5

�2

if 5� y\6:5

0:7

�
8� y

1:5

�2

if 6:5� y\8

0 otherwise

8
>>>>><

>>>>>:

Now ~B ¼ ð�8;�6:5;�5 cm; 0.7) be the negative of the

fuzzy number ~B, then their corresponding membership

functions is given as

l� ~BðyÞ ¼

0:7

�
yþ 8

1:5

�2

if � 8� y\� 6:5

0:7 if y ¼ �6:5

0:7

�
yþ 5

1:5

�2

if � 6:5� y\� 5

0 otherwise

8
>>>>>><

>>>>>>:

Hence, using the property of the addition of the two

parabolic fuzzy numbers, the membership functions of the

remaining length of the rod is a parabolic fuzzy number ~C

and is given as:

) l ~CðxÞ ¼

0:7

�
x� 4

3

�2

if 4� x\7

0:7 if x ¼ 7

0:7

�
10� x

3

�2

if 7� x\10

0; otherwise

8
>>>>>><

>>>>>>:

From above, we conclude that the remaining length of the

rod lies between 4 and 10 cm. Moreover, the value of this

length is increased from 4 to 7 cm at a nonlinear increasing

rate 1:4
9
ðx� 4Þ and then decreases from 7 to 10 cm at a

nonlinear decreasing rate 1:4
9
ð10� xÞ. Also, there are 70 %

possibilities that the length takes the value 7 cm. The

corresponding membership values are plotted in Fig. 2 at

different level of significance and concluded that the pro-

posed one have less range of uncertainties than others. The

defuzzified value of the remaining length of the rod is

7 cm.

Example 3 Area of the rectangle

Let length and breadth of a rectangle are two parabolic

fuzzy numbers given by ~A ¼ ð1; 2; 4 cm; 0.75) and

~B ¼ ð3; 5; 6 cm; 0.85). Then the area ~C of the rectangle is
~Að�Þ~B.

In order to evaluate the membership functions of ~C, we

equate the distribution and complementary distribution

functions respectively of ~A and ~B and hence we get /1ðxÞ ¼

2xþ 1 and /2ðxÞ ¼
xþ 8

2
. Now for Z ¼ A:B we get

x ¼ w1ðzÞ ¼
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8z

p

4
, x ¼ w2ðzÞ ¼ �4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 2z

p
,

g1ðzÞ ¼ �5þ
ffiffiffiffiffiffiffiffi
1þ8z

p

2
and g2ðzÞ ¼

4� x

2
¼ 8�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 2z

p

2
,

m1ðzÞ ¼ 1ffiffiffiffiffiffiffiffi
1þ8z

p and m2ðzÞ ¼ 1ffiffiffiffiffiffiffiffiffi
16þ2z

p .

Therefore, the distribution function of the fuzzy variable
~C is given by

Zx

3

g1ðzÞm1ðzÞdz ¼
Zx

3

�
�5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8z

p

2

��
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8z

p
�

dz

¼ 1

2

Zx

3

�
�5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8z

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8z

p
�

dz

¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8x
p

� 5

4

�2

and the complimentary distribution function is given by

Zx

10

g2ðzÞm2ðzÞdz¼
Zx

10

�
8�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 2z

p

2

��
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 2z

p
�

dz

¼
�
8�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 2x

p

2

�2

Hence, the membership functions of the area of the

rectangle is given as
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Fig. 2 Membership function of length of the rod
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) l ~CðxÞ ¼

0:75

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8x

p
� 5

4

�2

if 3� x\10

0:75 if x ¼ 10

0:75

�
8�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 2x

p

2

�2

if 10� x\24

0 otherwise

8
>>>>>><

>>>>>>:

The variation of their membership functions corresponding

to linear and parabolic functions are summarized in Fig. 3

at different value of significance level. From this figure, it

is concluded that resultant fuzzy number is a convex-con-

cave type with a nonlinear increasing rate
ffiffiffiffiffiffiffiffi
1þ8x

p
�5

2
ffiffiffiffiffiffiffiffi
1þ8x

p from 3 to

10 cm2 and then decreases from 10 to 24 cm2 with non-

linear decreasing rate 8�
ffiffiffiffiffiffiffiffiffiffi
16þ2x

p

2
ffiffiffiffiffiffiffiffiffiffi
16þ2x

p . Also, there is a probability

of 75 % that the area of a rectangle is 10 cm2. Hence, the

area of a rectangle lies between 4 and 10 cm2 i.e. it does

not less than 4 cm2 and does not increase 10 cm2. The

defuzzified values corresponding to linear and parabolic

fuzzy numbers are 11.9768 and 11.2806 cm2 respectively.

Thus, there is less variation in their defuzzified values in

case of parabolic numbers as compared to linear numbers

when compared with their crisp value 10 cm2.

Example 4 Length of the rectangle

Let area and breadth of the rectangle be given as a

parabolic fuzzy numbers ~A ¼ ð1; 2; 4 cm2; 0.75) and
~B ¼ ð3; 5; 6 cm; 0.85) respectively, then the length of the

rectangle is given by ~Að
Þ~B or ~Að�Þ~B�1 .

Now based on the membership function of ~B we obtain

the membership functions of ~B�1 ¼ ð6�1; 5�1; 3�1; 0:85Þ as

l ~B�1ðyÞ ¼

0:85

�

6� 1

y

�2

if 6�1 � y\5�1

0:85 if y ¼ 5�1

0:85

�
1

y
� 3

2

�2

if 5�1 � y\3�1

0 otherwise

8
>>>>>>>><

>>>>>>>>:

Hence the membership function of the length of the

rectangle is obtained by multiplying the two fuzzy numbers
~A and ~B�1 as

l ~A� ~B�1ðxÞ ¼

0:75

�
6x� 1

xþ 1

�2

if
1

6
� x\

2

5

0:75 if x ¼ 2

5

0:75

�
4� 3x

2ðxþ 1Þ

�2

if
2

5
� x\

4

3
0 otherwise

8
>>>>>>>><

>>>>>>>>:

From this membership function, it has been concluded

that there is a 75 % probability that the length of the

rectangle is 0.4 cm and the range of the length of the

rectangle is ½1
6
; 4
3
�. The variation of their membership

values at different level of membership values are

plotted in Fig. 4 which shows that its value is increased

from 1
6
to 2

5
with a nonlinear increasing rate ð10:5Þ 6x�1

ðxþ1Þ3
while decreases from 2

5
to 4

3
with nonlinear rate

ð10:5
8
Þ 4�3x

ðxþ1Þ3. Thus membership functions are a concave-

convex type instead of linear one as in the case of linear

membership functions. The corresponding values of their

defuzzified values are 0.52028 and 0.59294 cm for

parabolic and linear membership functions while their

crisp value is 0.4 cm. Hence there is 23.11 and 32.54 %

decrease in the defuzzified values of crisp and linear

membership functions when parabolic membership

functions have been used.

Example 5 Perimeter of the rectangle

Let the length and breadth of a rectangle are two para-

bolic fuzzy numbers ~A ¼ ð12; 13:5; 14 cm; 0.9) and
~B ¼ ð6; 7:5; 9 cm; 0.8), then perimeter ~C of rectangle is

2½~AðþÞ~B�.
The parabolic membership functions of ~A and ~B are

given as
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Fig. 3 Membership function of area of the rectangle
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Fig. 4 Membership function of the length of the rectangle
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l ~AðxÞ ¼

0:9

�
x� 12

1:5

�2

if 12� x\13:5

0:9 if x ¼ 13:5

0:9

�
14� x

0:5

�2

if 13:5� x\14

0 otherwise

8
>>>>>>><

>>>>>>>:

l ~BðxÞ

¼

0:8

�
y� 6

1:5

�2

if 6� y\7:5

0:8 if y ¼ 7:5

0:8

�
9� y

1:5

�2

if 7:5� y\9

0 otherwise

8
>>>>>>>><

>>>>>>>>:

The corresponding membership function of 2~A and 2~B are

given as:

l ~2AðxÞ ¼

0:9

�
x� 24

3

�2

if 24� x\27

0:9 if x ¼ 27

0:9

�
28� x

1

�2

if 27� x\28

0 otherwise

8
>>>>>>><

>>>>>>>:

;

l ~2BðxÞ ¼

0:8

�
y� 12

3

�2

if 12� y\15

0:8 if y ¼ 15

0:8

�
18� y

3

�2

if 15� y\18

0 otherwise

8
>>>>>>>><

>>>>>>>>:

Now, by property of the addition of the two fuzzy numbers,

we get

l ~CðxÞ ¼

0:8

�
x� 36

6

�2

if 36� x\42

0:8 if x ¼ 42

0:8

�
46� x

6

�2

if 42� x\46

0 otherwise

8
>>>>>><

>>>>>>:

The membership values corresponding to the perimeter of

the rectangle are summarized graphically in Fig. 5 which

shows that the level of uncertainties in the form of support

are less as compared to the linear membership functions.

Thus the results corresponding to parabolic membership

functions are beneficial for system analyst for making more

sound decision based on these results. Also, it has been

concluded from the figure that there is a 80 % probability

of getting the perimeter of rectangular 42 cm. On the other

hand, there is an increase in their perimeter with a non-

linear increasing rate ð0:8
18
Þðx� 36Þ when x 2 ½36; 42� while

decreasing with a rate of ð0:8
18
Þð48� xÞ when x 2 ½42; 46�.

Their corresponding defuzzified values are 41.3518 and

41.5433 cm respectively, for linear and parabolic mem-

bership functions.

5 Conclusion

In this paper, we have worked on the generalized parabolic

fuzzy numbers and introduced their corresponding fuzzy

arithmetic operations such as addition, subtraction, multi-

plication, inverse, division etc., based on their distribution

and their complementary distribution functions. This

method is an alternative and useful for finding the mem-

bership functions because the standard method, a-cut, does
not always yield results. The variations of the membership

functions has been plotted and compared with the linear

membership functions and traditional (crisp) methodology.

From the analysis it has been concluded that there is less

range of uncertainties in the form of support during the

analysis and hence proposed one is beneficial for system

analyst. The defuzzified values corresponding to linear and

parabolic membership functions has been computed by

COG method and found that for increasing the perfor-

mance, the maintenance should be based on the defuzzified

values rather than crisp values, as a safe interval is

inspected before reaching to the crisp value. The validity of

the method has been evaluated by solving some problems

of mensuration using generalized parabolic fuzzy numbers

and compared their results with the triangular membership

functions with the existing method. Further, the proposed

approach can be applied to the uncertainty analysis and

engineering and mathematical science problems which can

be taken for further research.
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Fig. 5 Membership functions of perimeter of rectangle
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