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Abstract Aiming at taking full advantage of facial infor-

mation both in low-frequency and high-frequency regions

and further improving face recognition rate, this paper

constructs a robust nonsubsampled contourlet transform

local binary patterns (NSCTLBP) feature and proposes a

face recognition method fusing NSCTLBP and Gabor

features. Firstly, face image is decomposed by NSCT, and

the LBP values of NSCT high-frequency subbands are

computed to construct NSCTLBP features. Meanwhile,

convolution of 2D-Gabor wavelet with face image is per-

formed to extract Gabor texture feature in low-frequency.

Secondly, Euclidean distance and eigenvalue-weighted

cosine (EWC) distance are adopted to explore the simi-

larity measurement of NSCTLBP and Gabor features

respectively. Finally, the face images are matched

according to the weighted similarity of NSCTLBP feature

and Gabor feature collaboratively. Experimental results on

Yale and ORL databases show that the proposed method

has better performances than that based on NSCT feature,

NSCTLBP feature and Gabor feature separately against

illumination, expression, and angle variations and glasses

occlusion.

Keywords Eigenvalue-weighted cosine distance �
Face recognition � Gabor wavelet � Local binary patterns �
Nonsubsampled contourlet transform

1 Introduction

Face recognition technology has been widely used in many

fields. However, in reality, the captured face images may

suffer from variations due to uncontrolled acquisition such

as illumination, expression, angle variations and glasses

occlusion, which affects the efficiency of face recognition

system.

Researchers have spared no efforts to obtain some

robust and effective face recognition methods. Texture

feature based face recognition methods have attracted more

attention. Texture information of face image can be utilized

to measure intensity distribution (i.e. gray values of gray

image) in different situations (i.e. wrinkles, bumps and

dents). Eleyan and Demire used grey level co-occurrence

matrix (GLCM) operator to describe image texture infor-

mation about intensity distribution and relative position of

neighborhood pixels [1]. Yu et al. [2] enhanced the method

by combining GLCM and weighted Euclidean distance.

Local binary pattern (LBP) operator [3] has been widely

used to extract texture details of face image [4, 5], but

when the resolution of image changes, the calculated tex-

tures are not accurate. Zhang et al. [6] proposed high-order

local derivative patterns (LDP) descriptor by encoding

distinctive spatial relationship in given regions rather than

the relationship between the central point and its neighbors

in LBP. This method is claimed to be more effective than

LBP, but the size of extracted features is large. Methta

et al. [7] extracted directional and textural feature by
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applying modified LBP operator to optimized directional

faces. LBP mostly focuses on describing texture details,

which leads to poor characterization of shape over a

broader range of scale. Wavelet transform was widely used

to extract texture information in local area for its property

of spatial-frequency localization, multi-scale and multi-

orientation [8]. Gabor function which meets the uncertainty

principle limit of time–frequency domain is considered as

wavelet basis function in 2D-wavelet transform, so it is

easier for 2D-Gabor wavelet transform to achieve the best

resolution in time–frequency domain [9]. 2D-Gabor with

properties of multi-scale and multi-orientation had been

widely used for face recognition [10–23]. Since both

magnitude and phase of Gabor feature contain rich infor-

mation, some related approaches and fusion methods have

been proposed [11, 13, 14, 16, 17, 20, 22, 24]. Yu et al. [19]

had combined Gabor magnitude-based and Gabor phase-

based texture representations to construct Gabor magni-

tude-based and phase-based texture representation for high

utilization of Gabor feature. Xia et al. [16] applied block

Gabor directed derivative layer local radii-changed binary

patterns (BG2D2LRP) to capture static texture differences

and dynamic contour trends, more information insensitive

to expression interferences can be extracted from

BG2D2LRP feature. However, Gabor feature performs

poorly in describing appearance details in high-frequency

regions.

It is worth noting that most of the approaches, such as

local Gabor binary patterns [13], learned local Gabor pat-

terns [21] and histogram of Gabor phase patterns [14, 23],

combine Gabor wavelet with other texture descriptors (i.e.

LBP) to improve efficiency [13, 14, 16, 18, 20–23]. Gabor

feature and LBP feature were fused to gain better perfor-

mance than either alone [18]. The methods mentioned

above can be divided into two categories, one is to fuse

Gabor feature and local patterns feature and the other is to

utilize local patterns to encode Gabor filtered face image.

The former captures most facial information to a certain

extent while the latter improves representation capability of

local patterns at multiple scales and orientations.

NSCT has the characteristics of shift-invariant, multi-

scale, multi-orientation and better directional frequency

localization [25]. Therefore, it has favorable performance

in capturing contour structure information of signal.

Compared with wavelet transform, the support interval of

NSCT basis function has an elongated structure which can

change the aspect ratio when scale changes. NSCT is

anisotropic and it can be adopted to represent texture

information with less coefficients. Xu et al. [26] applied

NSCT to capture facial contour information of face image

and used support vector machine (SVM) to learn and

classify NSCT features. The effectiveness was verified by

Wang [27]. Xie et al. [28] introduced logarithm transform

into NSCT and then proposed logarithm nonsubsampled

contourlet transform. The approach firstly performed log-

arithm transform on face image, then applied NSCT

decomposition on logarithm transformed face image to

obtain the low-frequency and high-frequency subbands.

Finally illumination invariance was obtained by applying

inverse NSCT on the high-frequency subbands processed

with Bayes shrink. The extraction of illumination invariant

used by Cheng et al. [29, 30] is similar to that used by [28].

The difference is that Xie et al. [28] processes high-fre-

quency subbands with adaptive normal shrink to obtain

illumination invariant. However, both the approaches

mentioned above only consider the high-frequency sub-

bands, whereas the low-frequency subbands of face image

still contain useful facial information. Fan et al. [31]

applied histogram equalization to the low-frequency sub-

bands, then performed inverse NSCT on the processed

high-frequency subbands and modified low-frequency

subbands to obtain more facial information from the

extracted illumination invariant. But the multi-orientation

analysis of the low-frequency domain is not completed by

histogram equalization.

Even though NSCT feature extracted in [26, 28–31] is

multi-scale, multi-orientation and shift-invariant, it is not

rotation-invariant. The rotation of textures in face image

will change the coefficient distribution of subbands of

NSCT and reduce recognition rate. To improve the stability

of NSCT subband coefficients, a novel feature named

NSCTLBP which is invariant to rotation is constructed in

this paper. The recognition method in [28–30] utilized

high-frequency subbands of NSCT to depict facial textures.

Whereas there is still some benefit facial information in

low-frequency regions. Studies show that Gabor transform

can extract almost all the information in low-frequency

regions and NSCT takes the advantage of tree structured

filter to perform frequency decomposition of image and

extracts rich texture information in high-frequency regions

properly. Thus we use NSCTLBP feature to enhance the

performance of the method in case of interferences.

Moreover, to further improve the utilization of facial

information, a weighted measure rule combining Euclidean

distance and EWC distance is proposed to fuse NSCTLBP

and Gabor features. The proposed method integrates the

good high-frequency characterization of NSCTLBP feature

and favorable low-frequency performance of Gabor

wavelet transform to increase recognition rate. Experi-

mental results on Yale and ORL databases show that the

proposed method has better performances than that based

on NSCT feature, NSCTLBP feature and Gabor feature

alone in case of illumination, expression and angle varia-

tions and glasses occlusion.

In later sections we will firstly describe the construction

of NSCTLBP feature, and the extraction of the Gabor
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feature. Then we will introduce the proposed face recog-

nition method fusing NSCTLBP feature and Gabor feature.

Finally, the performance of the proposed method is verified

by experiments.

2 Feature Construction and Extraction

2.1 Construction and Extraction of NSCTLBP

Feature

Contourlet transform(CT) [32] is an image representation

scheme with multi-scale and multi-orientation. It is com-

posed of Laplacian pyramid (LP) and directional filter bank

(DFB). CT is not shift-invariant and suffers frequency

aliasing due to downsamplers and upsamplers presented in

both LP and DFB. NSCT is the shift-invariant version of

CT. It consists of nonsubsampled pyramid (NSP) and

nonsubsampled directional filter bank (NSDFB). Shift-in-

variant is adopted to overcome a wide range of changes on

subband coefficient distribution caused by image shift. NSP

filter ensures NSCT with multi-resolution analysis ability to

effectively extract facial information at different scales.

While NSDFB guarantees the multi-orientation of NSCT.

NSCT decomposition is shown in Fig. 1. Figure 1a displays

an overview of NSCT, where NSP filter performs scale

decomposition on the original image signals to obtain

lowpass image signal and differential bandpass image sig-

nals. NSDFB performs tree-structured directional decom-

position on the obtained bandpass image signals to get

directional subbands. The lowpass image signal obtained

previously is continually decomposed into lowpass image

signal and differential bandpass image signal of next scale.

Repeating the decomposition above, the multi-scale and

multi-orientation decomposition of original image is

implemented. NSDFB in Fig. 1a splitting bandpass subband

into directional subbands is illustrated in Fig. 1b.

NSCT is adopted to decompose the face image with size

M 9 N into one low-frequency subband coefficient C0 and

high-frequency subband coefficient set

fC1;1;C1;2; . . .;Cu;1; . . .;Cu;vg with the same size as face

image. Cu;v describes facial information in the u-th orien-

tation subband of the v-th scale. LBP calculation is intro-

duced to advance the representation capacity of Cu;v and

construct NSCTLBP feature with properties of multi-scale,

multi-orientation, shift-invariant, rotation-invariant.

According to LBP prototype, NSCTLBP feature calcula-

tion can be given by [3]

Cu;v�LBP xc; ycð Þ ¼
X7

k¼0

s gk � gcð Þ2k�1 ð1Þ

s xð Þ ¼ 1; x� 0

0; x\0

�

where LBP value of Cu;v at point (xc, yc) is obtained

through binary coding of the coefficients in a neighborhood

of 3 9 3 pixels with center pixel at point (xc, yc). gc is the

value of center coefficient Cu;v xc; ycð Þ and gk is the value of

k-th neighborhood coefficient of Cu;v xc; ycð Þ in clockwise.

LBP value (i.e. Cri
u;v�LBP) can be calculated as [3]

Cri
u;v�LBP ¼ min ROR Cu;v�LBP; k

� �
k ¼ 0; 1; . . .; 7j

� �
ð2Þ

where ROR Cu;v�LBP; k
� �

performs a circular bit-wise right

shift on the 8-bit number Cu;v�LBP k times to the right.

Finally, the NSCTLBP feature extracted from face image is

computed as

fnsctlbp ¼ Cri
1;1�LBP;C

ri
1;2�LBP; . . .;C

ri
u;1�LBP; . . .;C

ri
u;v�LBP

h i
:

ð3Þ

As the value at point (xc, yc) in each feature vector

Cu;v�LBP is a minimal circular coding sum of the coefficients

in the neighborhood of (xc, yc), the value is stable with the

rotation of local textures in face image. Thus NSCTLBP is

robust to image rotation. fnsctlbp obtained on the basis of high-

Input
image

Direc�onal 
subband

NSP scale
decomposition

Lowpass 
subband

Bandpass 
subband

NSDFB directional
decomposition

(a) (b)

Fig. 1 Nonsubsampled

contourlet transform.

a Nonsubsampled filter bank

structure that implements

NSCT. b Idealized frequency

partitioning obtained by NSCT
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frequency subband coefficients does not contain low-

frequency facial information.

2.2 Extraction of Gabor Wavelet Feature

2D Gabor wavelet is often applied to capture local structure

information corresponding to spatial localization, spatial

frequency selectivity and orientation selectivity [10]. It

enables 2D Gabor wavelet to be widely used for facial

textures extraction. 2D Gabor wavelet kernel function is

defined by [33]

Wu;v zð Þ ¼
ku;v
�� ��2

r2
exp �

ku;v
�� ��2 zk k2

2r2

 !
exp iku;vz
� �

� exp � r2

2

� 	
 �

ð4Þ

ku;v ¼
kv cos/u

kv sin/u

� 	
; kv ¼

kmax

f v
; /u ¼

pu
8

where
ku;vk k2

r2 is used to compensate for energy spectrum

attenuation determined by frequency in natural images.

Gaussian envelope function exp � ku;vk k2
zk k2

2r2

� 	
is a window

function to make Wu,v(z) be locally valid. exp(iku,vz) is a

complex plane wave, where real part is cosine plane wave

while imaginary part is sine plane wave. exp � r2
2

� 

is

adopted to eliminate the effect of DC component of image to

Gabor wavelet and ensures Wu,v(z) to be insensitive to illu-

mination variations. z = (x, y) denotes the position of pixel,

ku,v signifies the filter center frequency, kv and /u describe

the multi-scale and multi-orientation capability of Gabor

filter respectively. By choosing different scales v and ori-

entations u, and appropriate value of kmax, r, f, we will obtain
a series of Gabor kernels. From the equation of ku,v, the

coverage of frequency distribution of 2D Gabor filter is a

circular area with radius of kv. Although 2D Gabor filter is

proper in covering the horizontal and vertical high-frequency

regions, it performs weak coverage on diagonal high-fre-

quency region of spatial frequency regions of face image.

Gabor feature representation of an image I x; yð Þ is derived
by convolving the image with the 2D Gabor wavelet kernel

function at different scales and orientations [34].

Wu;v x; yð Þ ¼ I x; yð Þ �Wu;v x; yð Þ ð5Þ

where Wu;v x; yð Þ denotes the output of the convolution of

the image I x; yð Þ with Wu,v(x, y) at scale v and orientation

u. The adoption of FFT and IFFT to Eq. (5) can speed up

the calculation.

Wu;v x; yð Þ ¼ F�1 F I x; yð Þð Þ � F Wu;v x; yð Þ
� �� �

ð6Þ

where Wu;v contains the response of real part and

imaginary part of Gabor kernel. The amplitude of Wu;v

contains local energy variations of image, thus it can be

calculated as image feature. Gabor feature of I x; yð Þ is

generated by combining all the calculated features Wu;v:

fGabor ¼ W1;1;W1;2; . . .;Wu;1; . . .;Wu;v

� �
ð7Þ

3 Fusion of NSCTLBP Feature and Gabor
Feature

Gabor features and the NSCT features are observed to be

complementary to each other to some extent, since Gabor

feature mainly extracted from the low frequency region

while NSCT feature extracted from the high frequency

region of face image. LBP is a fine scale descriptor that

captures small texture details and resistant to illumination

variations. The combination of NSCT and LBP will be a

good choice for coding fine details of facial appearance and

texture. Thereby, the complementary nature of Gabor and

NSCTLBP makes them be good candidates for fusion. The

fusion method can not only achieve complete characteri-

zation of high-frequency detail textures, but also ensure the

analysis in low-frequency regions. In view of the varying

importance of the feature vector, EWC distance assigns

each element of a vector with different weight, which

makes the low frequency components more discriminative

[34]. Euclidean distance is one of the most widely used

similarity measurement approaches for face recognition. In

this paper, Euclidean distance is directly used for

NSCTLBP features and EWC distance is chosen for Gabor

features, a weighted measure rule is applied in the pro-

posed method to integrate the advantages of NSCTLBP

and Gabor features. The procedure is briefly described in

Fig. 2.

Euclidean distance is explored to compute NSCTLBP

feature distance.

Input Image 

Extract NSCTLBP Features Extract Gabor Features

Obtain matching score 
using Euclidean Distance

Obtain matching score
using EWC Distance

Fusion of the two similarity scores

Output

Fig. 2 Flow chart depicting the procedure involved in fusion of the

NSCTLBP and Gabor features
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Dnsctlbp fnsctlbp; f
�
nsctlbp

� 

¼

Xu�v

p¼1

fnsctlbp;p � f �nsctlbp;p

� 
2
 !1

2

ð8Þ

where fnsctlbp and f �nsctlbp are NSCTLBP features of two face

images to be matched respectively. fnsctlbp,p and f �nsctlbp;p
indicate the p-th components of fnsctlbp, f

�
nsctlbp separately.

According to EWC distance [35], Gabor feature distance

is given by

DGabor fGabor; f
�
Gabor

� �
¼

Pu�v
p¼1 WpW

�
p

� 

=k2p

� 


Pu�v
p¼1 Wp=kp
� �2Pu�v

p¼1 W�
p=kp

� 
2� 	1
2

ð9Þ

where fGabor and f �nsctlbp are Gabor features of two face

images to be matched respectively. Wp andW
�
p indicate the

p-th components of fGabor and f �nsctlbp separately. The

eigenvalue denoted by kp can be calculated as follows.

Firstly, let g ¼ fGabor;q
� �Q

q¼1
denote a set of Q Gabor

feature vectors extracted from Q training faces for one

person in face database. The length of each feature vector

is u 9 v. The average facial feature of set g is computed by

f Gabor ¼
1

Q

XQ

q¼1

fGabor ð10Þ

Secondly, calculate the covariance matrix of training

faces n ¼ GGT , where GT is matrix transpose of G.

G ¼ fGabor;1 � f Gabor; fGabor;2 � f Gabor; . . .; fGabor;Q � f Gabor
� �

ð11Þ

kp is the p-th eigenvalue of n.

Research shows that the measure principles of Euclidean

distance and EWC distance are different. A lower Dnsctlbp

indicates high similarity of two features to be matched,

especiallyDnsctlbp ¼ 0 denotes that they are identical. But the

range of DGabor is in the interval [-1, 1]. DGabor = 1 indi-

cates that the training face and the test face are identical.

Before fusion, normalization is required to map the

matching scores obtained from multiple frameworks to a

common range so that they can be easily combined.

Thereafter, these individual matching distances are com-

bined by using the sum rule to generate a single scalar

score which is then used to make the final decision. Gabor

feature matching score can be computed by

eDGabor ¼ DGabor � 1ð Þ=2 ð12Þ

where eDGabor is in the interval �1; 0½ �; eDGabor ¼ 0 indicates

that the training face and the test face are identical.

Therefore on the basis of NSCTLBP feature matching

score and Gabor feature matching score, a weighted

measure rule is proposed to measure the fusion of eDnsctlbp

and eDGabor.

D ¼ xeDnsctlbp þ 1� xð Þ �eDGabor

� �

¼ xeDnsctlbp � 1� xð ÞeDGabor

ð13Þ

where eDnsctlbp is NSCTLBP feature matching score, it is the

normalized Dnsctlbp to avoid the variations of large value of

Dnsctlbp. x is a weighted parameter ranging from 0 to 1.

D is the matching score of the test face and training face.

The smaller the value of D, the greater the similarity of the

two faces, especially D = 0 denotes that they are identical.

4 Experimental Results and Analyses

4.1 Face Databases Explanation

In this paper typical Yale and ORL databases are adopted

to verify the validity of the proposed method.

Table 1 gives the details about Yale and ORL databases.

Figures 3 and 4 show the sample images for one person in

each database. Both databases are divided into test subset

and training subset. ORL-test subset consists of 200 images

(5 images per person) and ORL-training subset contains the

remaining 200 images. Yale-test subset contains 75 images

(5 images per person), Yale-training subset contains the

remaining 90 images(6 images per person).

4.2 Experiment Results and Analysis

In this paper, the ‘maxflat’ filter and ‘dmaxflat7’ filter are

selected as NSP and NSDFB respectively in NSCT

decomposition. We repeated 20 trails for random training

and testing sets. Each face image is decomposed into three

scales and each scale with eight orientations. Gabor feature

extraction also complies in three different scales and

samples in eight orientations for each scale, in addition,

Gabor kernel parameters are set as follows: r = 2p,
kmax = p/2, f ¼

ffiffiffi
2

p
.

(1) Comparison on average face recognition rate of the

methods based on different features

The proposed method in this paper fuses NSCTLBP

feature and Gabor feature to measure the similarity

between the test images and the training images. From

Eq. (13), x = 0 indicates that only Gabor feature is con-

sidered for identification, while x = 1 means only

NSCTLBP feature is considered. To illustrate the effec-

tiveness of the proposed method, we make an average

recognition rates comparison of the proposed method with

the methods based on NSCTLBP feature, NSCT feature

and Gabor feature separately on Yale and ORL databases.
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Table 2 shows that the proposed method with x = 0.4

is more effective than other three methods. The proposed

method can extract facial information properly from both

low-frequency region and high-frequency region, which

agrees with the above theoretical analysis.

(2) Anti-interference ability

For further research on the anti-interference perfor-

mance of the proposed method, the test face subsets of

Yale and ORL databases are classified in accordance with

the interferences such as angle, expression, illumination

variations and glasses occlusion. The average face recog-

nition rates of different methods under different interfer-

ences are listed in Tables 3 and 4.

(a) Comparison on performance between NSCTLBP

feature and NSCT feature

NSCT and NSCTLBP features have equivalent perfor-

mance on Yale database under illumination variations and

glasses occlusion on ORL database, but in general,

NSCTLBP feature is more robust than NSCT feature on

both Yale and ORL database, the reason is that LBP could

capture some small texture details of face images. As

expression and angle variations will cause partial rotation

or translation of local facial textures, NSCTLBP feature

with shift-invariant and rotation-invariant property would

effectively adapt to these variations.

(b) Comparison on anti-interference between the pro-

posed method and others

Recognition rates in Tables 3 and 4 indicate that the

proposed method performs better than the other methods in

the case of illumination, expression and angle variations. In

addition to the rotation and translation of the facial tex-

tures, expression and angle variations will affect the dis-

tribution of both low-frequency region and high-frequency

region of face image. Hence, the fusion texture feature is

robust to expression and angle variations. Illumination

variations primarily affects low-frequency region of face

image. The fusion texture feature is superior to NSCTLBP

feature and Gabor feature in describing high-frequency

details alone. In the case of glasses occlusion, the proposed

method contributes slightly to the recognition performance.

That’s because the glasses occlusion in the face images can

severely obstruct the feature extraction in the eye area.

(3) The role of NSCTLBP and Gabor features in facial

feature representation

Table 1 Description of ORL and Yale face databases

Yale database ORL database

Number of

person

15 40

Number of

images for

one person

11 10

Size of

database

15 9 11 40 9 10

Resolution 135 9 165 92 9 112

Interference Expression and

illumination variations,

glasses occlusion

Expression and angle

variations, glasses

occlusion

Size of test

subset

15 9 5 40 9 5

Size of training

subset

15 9 6 40 9 5

Fig. 3 Sample images for one person from Yale face database

Fig. 4 Sample images for one person from ORL face database

Table 2 Average recognition rates of the methods based on different features

Face database Methods based on different features

NSCT-feature (%) NSCTLBP-feature (%) Gabor-feature (%) fusion feature (x = 0.4) (%)

Yale face 61.33 65.33 73.33 84.00

ORL face 59.50 75.00 77.50 86.50
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Considering the role of NSCTLBP and Gabor features in

facial feature representation, we take Yale database for

example and make the following experiments by [36].

The vertical coordinate represents the matching score

between the training image and the test images.

In this experiment, three test images with illumination,

expression variations and glasses occlusion separately are

selected from the same person to extract NSTPLBP and

Gabor features. Figure 5 shows one of the examples of the

training image and the test images with different interfer-

ences. Note that, Fig. 6 presents the average results of ten

different persons from Yale database.

From Fig. 6, the matching score of Gabor feature(i.e.

�eDGabor) and NSCTLBP feature (i.e. eDnsctlbp) between

training image and test images with illumination variations

are larger than that with expression variations and glasses

occlusion, which demonstrates that Gabor feature and

NSCTLBP feature are more sensitive to illumination

variations. The matching score of NSCTLBP feature is

lower than that of Gabor feature, that is to say NSCTLBP

feature is much robust to illumination variations than that

of Gabor feature. In other words, in case of illumination

variations the contribution of NSCTLBP feature is larger

than that of Gabor feature. The same analyses are appli-

cable to NSCTLBP and Gabor features in facial feature

representation in case of glasses occlusion and expression

variations. We can conclude that in case of expression

variations the contribution of Gabor feature is larger and

the contribution of NSCTLBP feature is larger in case of

glasses occlusion.

(4) Performance of the proposed method with fewer

training images for each person

In order to verify the effectiveness and adaptability of

the proposed method with fewer training images,

experiments are performed on ORL and Yale databases by

taking different number of training images randomly. The

average recognition rates over 20 different runs of training

and test sets are presented in Tables 5, 6 and 7.

As the constructed NSCTLBP feature is invariant to

rotation, and Gabor transform can extract almost all the

desired features in high frequency and low frequency

regions, the proposed method is especially robust to angle

Table 3 Average recognition rates of the methods under different interferences on Yale face database

Interference Methods based on different features

NSCT-feature (%) NSCTLBP-feature (%) Gabor-feature (%) fusion feature (x = 0.4) (%)

Illumination 53.33 53.33 40.00 60.00

Expression 68.89 71.11 80.00 91.11

Glasses 46.67 60.00 86.67 86.67

Table 4 Average recognition rates of the methods under different interferences on ORL face database

Interference Methods based on different features

NSCT-feature (%) NSCTLBP-feature (%) Gabor-feature (%) Fusion feature (x = 0.4) (%)

Angle 51.25 70.00 76.25 85.00

Expression 64.10 78.21 76.92 89.74

Glasses 72.22 72.22 77.78 77.78

Fig. 5 Example of the training image and the test images with

different interferences. a Training image. b Test image with glasses

occlusion. c Test image with expression variations. d Test image with

illumination variations

fusion method NSCTLBP feature Gabor feature
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 = 0.3ω

m
at

ch
in

g 
sc

or
e

iiumination

glasses
expression

Fig. 6 Demonstration of different roles of NSCTLBP and Gabor

features in face representation
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and expression variations, thus the average recognition rate

of the proposed method on ORL database is higher than

that on Yale database. From the data obtained, it is

observed that the recognition rates decline with fewer

training images, because less desired features can be

extracted with the decrease of training images. Addition-

ally, illumination variations can affect distribution of the

gray value of original face image. The average recognition

rate of the proposed method with different training images

in Table 6 also confirms the conclusion. With the varia-

tions of the training images of each person, exhaustive

experiments testify the proposed method to be reasonable

and robustness.

(5) Impact on recognition performance by x

In order to examine the effect of the weighted parameter

x on the proposed method, experiments on ORL and Yale

databases are implemented by ranging x from 0 to 1.

Figure 7 illustrates the results on Yale and ORL databases,

where x is taken as abscissa and recognition rate as vertical

coordinate. Distribution of face recognition rate also

reveals the recognition performance of the proposed

method. Additionally, it can be seen from Fig. 7 that the

method has a good recognition rate when x ranges from

0.1 to 0.3, and the recognition rate can reach 88.89 % on

ORL database and 93.33 % on Yale database when

x = 0.2. When x is out of the range, the recognition rate

will decline. The reason is that Gabor feature plays a

growing role in the proposed method as x decreases, which

leads to poor description of facial information in high-

frequency region. While NSCTLBP feature plays a grow-

ing role in the proposed method as x increases, which leads

to less facial information in low-frequency region. We can

conclude that the proposed method has the best

performance by offering a good tradeoff between the

constructed NSCTLBP feature and Gabor feature when x
ranges from 0.1 to 0.3.

5 Conclusions

A face recognition method fusing texture features is pro-

posed and experiments on Yale and ORL databases are

carried out to verify its recognition performance. Experi-

mental results show that NSCTLBP feature constructed in

this paper is invariant to rotation, and it is more robust than

NSCT feature. Meanwhile the proposed method has better

recognition performances than the methods based on

NSCTLBP feature or Gabor feature. The proposed method

not only retains the multi-scale and multi-orientation

analysis capability of NSCT and Gabor transform but also

takes advantage of NSCTLBP feature to compensate Gabor

feature for the lack of facial information in high-frequency

regions. Hence, it is robust to illumination, expression,

angle variations and glasses occlusion.
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