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Abstract Being man–machine interaction, the use of

surface electromyogram (sEMG) is increasing day by day.

Generally, sEMG is a complex signal and is influenced by

several external factors/artifacts. As removing these arti-

facts is not easy, feature extraction to obtain useful infor-

mation hidden inside the signal becomes a different

process. This paper presents methods of analyzing sEMG

signals using discrete wavelet transform for extracting

accurate patterns of the sEMG signals. The results obtained

suggest having a good compromise between the percentage

root mean square differences, root mean square difference

value for the denoising and quality of reconstruction of the

sEMG signal. Further a one way separated factorial anal-

ysis was performed to find out the effectiveness of ana-

lyzed sEMG signal for discrimination among different

classes of groups Various possible types of wavelets with

high level parameters were tested for denoising and results

show that the best mother wavelets for tolerance of noise

are fifth order of symmlets and bior6.8 whereas for

reconstruction, wavelet functions bior5.5 and sym3 were

the best.

Keywords Wavelet function � Denoising �
Electromyography � Myoelectric control

1 Introduction

The electromyogram (EMG) is the recording of muscle

electrical activity and is measured by electrodes affixed to

the surface of the skin, above the muscle of interest so that

rich useful information can be obtained from the muscles.

Researchers can use such information in a wide class of

clinical and engineering applications. Currently, sEMG is

largely used to determine binary states, such as high/low

contraction strength or fatigued/not fatigued muscles.

In order to use the EMG signal as a diagnostic tool or a

control signal, its features are often extracted before pro-

ceeding to classification stage. Attempts are being made to

improve signal processing to obtain more information about

the underlying muscles from sEMG and for that various

processing techniques have been applied to surface elec-

tromyography (sEMG) [1]. In order to predict the effect of

sEMG corresponding to voluntary muscle contraction,

various models have been developed by researchers [2].

With computers and software becoming more and more

powerful tools to process complex algorithms on large data

at high speed, sEMG features can be computed in numer-

ical form from a finite length time interval which changes

as a function of time, i.e. a voltage or a frequency. They

can be computed in time domain, frequency domain, and

time frequency representations. However, frequency

domain features show better performance than other-do-

main features in case of assessing the muscle fatigue [3].

Fourier transform based spectral analysis is the dominant

analytical tool for frequency domain analysis. However,

Fourier transform cannot provide any information about

the spectrum changes with respect to time. To overcome

this deficiency, an alternative mathematical tool-wavelet

transform is selected to extract the relevant time–amplitude

information from a signal [4].
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The term denoising has been proposed for formal

interpretation and to show how wavelet transforms may be

used to optimally ‘‘de-noise’’ the interpretation of sEMG

signal [5]. Wavelet-based noise removal is preferred over

signal frequency domain filtering because it can maintain

signal characteristics even while reducing noise. This is

because a number of threshold strategies are available,

allowing reconstruction based on selected coefficients. The

aim of this study was to evaluate the wavelet denoising for

optimal motor unit action potential (MUAP) detection

through the wavelet decomposition and reconstruction. In

this study, all wavelet functions (WFs) of Symmlets

(symx)) and biorthogonal (Biorthogonal (biorx_x)), where

x indicates the order of the wavelet, families were explored

for the wavelet transform (WT). The root mean square [6]

differences (RMSD), and wavelet power, were calculated

to quantify the most effective WFs. Reconstruction quali-

ties were measured by signal to noise ratio (SNR) and

percentage root mean square difference (PRD). In this

paper, experiments and data acquisition are given in

Sect. 2. Section 3 presents a description of wavelet

denoising methods. Results and discussion are reported in

Sect. 4, and finally the conclusion is drawn in Sect. 5.

2 Experiment and Data Acquisition

2.1 Proposed sEMG Setup

The sEMG signal detection experimental setup consists of a

differential amplifier, non-inverting amplifier, and filter cir-

cuit. SEMG, a noninvasive technique for measuring the

electrical potentials of active motor units (MUs), is strongly

influenced by the characteristic of the electrodes such as

dimension, shape, materials, technology processes, distance

between the electrode surfaces, and location of the electrodes

on the surface of the muscles. So electrodes were placed

firmly on the skin to avoid unstable skin contact by using strap

wrapped around the arm. According to various researchers [7,

8], the membrane potential in the muscle is about -90 mV

with the range of measured sEMG potential lying between 0

and 10 mV (peak to peak) with frequency range of 2–10 kHz

having the most relevant information below 500 Hz. In the

next stage interfacing was done to connect the SEMG signal

amplifier circuit to the computer through data acquisition card

(DAQ). Labview based code was initialized for acquiring the

data. When recorded using bipolar surface electrodes, the

sEMG signal can be described by

EMG tð Þ ¼ EMG fA; tð Þ � EMG fB; tð Þ ð1Þ

where fA and fB are the location of electrodes. Three

healthy male volunteers, age 22–28 years, weight

55–90 kgs, height of 165–180 cm participated in the

complete part of this experiment. They were not informed

of what the experiment was about. The sEMG signal was

recorded from two upper-arm muscles, the biceps (A) and

triceps brachii (B) individually, both with three level of

force contraction i.e. low, medium and high with maximum

time of 3 s while the simple form of pre-gelled Ag/AgCl

passive electrodes with bipolar configuration were used for

signal acquisition. The signals picked up by the bipolar

electrodes were transmitted to amplifier with an amplitude

gain of 1000 and CMRR [90 dB. In the experiment, if

active and reference electrodes were placed very close to

each other, signals from both were almost same. Therefore,

in order to extract spectral components that contain

important information about the signal, electrodes place-

ment as far as possible from each other in transverse

direction was done [9]. The recorded sEMG signals were

processed and analyzed with LABVIEW Wavelet toolbox.

The diagram for whole system is shown above in Fig. 1.

The recorded raw sEMG signal waveform was filtered

through Band pass filter, incorporating high pass filtering

with cut off frequency of 10 Hz to attenuate movement

artifacts and noise, with low pass filtering with cut off

frequency of 500 Hz to remove high frequency compo-

nents to avoid signal aliasing. The amplification is neces-

sary to optimize the resolution of the digitizing equipment.

3 Methodology

Wavelet transforms being a mathematical function has

proved to be very powerful for signal compression, since it

analyzes the signal both in time and frequency domain.

Ini�aliza�on of so� scope

Placing & fixing of electrode pad at desired posi�on on AE 

Turning on amplifier power

Data acquisi�on & its storage in workspace 

Program for processing & plo�ng of:
1. Raw SEMG signal
2. Signal filtration by 10Hz – 500Hz Band-Pass filter
3. Feature extraction as RMS, PRD, SNR, RMSD

Denoising

Wavelet transforms approach

Reconstructed signal

Step wise 
Decomposi�on

Feature extrac�ons for op�mal performance

Fig. 1 Flow chart for complete system
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Discrete wavelet transform is a multi-resolution/multi-fre-

quency representation. The objective of wavelet denoising

algorithm is to discard the noise e(n) to recover the signal

of interest f(n). The model is basically of the following

form:

x nð Þ ¼ f nð Þ þ e nð Þ ð2Þ

The step wise refinement procedure of wavelet

denoising removes interference noise and is able to

analyze sEMG signal.

3.1 Wavelet Decomposition

The ability of the WT depends on the appropriate choice of

the mother WF. Even though there is no well-defined rule

for selecting a wavelet basis function in a particular

application or analysis, some properties of the wavelets

make a specific mother wavelet more suitable for a given

application and signal type [10]. The first step of wavelet

denoising procedure is selection of WF or mother wavelet

which helps in the perfect reconstruction of signal. Next

step is the selection of the number of decomposition levels

of signal. Previous research shows [6] the decomposition

levels that is suitable for EMG signals. Accordingly, four

levels of decomposition were considered in these papers.

According to Fig. 2, after the four levels of decompo-

sition, cD1 [n], cD2 [n], cD3 [n] and cD4 [n] detail coef-

ficients (high frequency component) and cA4

[n] approximation coefficients (low frequency component)

were the available coefficients of the transform. After that,

the threshold value (THR) is fixed and is applied to the cDs

coefficients. Finally, the denoised EMG signal is recon-

structed based on the modified detail (Ds) and the retained

approximation (As) coefficient [11].

3.1.1 Wavelet Reconstruction

Reconstruction of a signal is done by using the inverse

wavelet transform. Generally, the inverse transform is

performed by using the coefficients of all the components

of the final-level decomposition, that is the fourth-level

approximation and the first four levels of detail (cA4, cD1,

cD2, cD3, and cD4). Figure 3 gives the four levels of

wavelet reconstruction where the approximation coefficient

A4 [n] and detail coefficient D4 [n] are passed through the

low-pass and high-pass filters and then added accordingly,

the process continues until the denoised SEMG signal

s[n] is achieved.

3.2 Evaluation

RMS difference (RMSD): The RMS difference of the

contaminated signal x[n] compared with the signal of

interest f[n] is defined by

RMS difference ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x � fð Þ2
1þ x � fð Þ2
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� �

n

v

u

u

t
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where ‘x’ is the raw SEMG signal and ‘f’ is the signal of

interest, n is the total number of samples (length of data).

The RMS difference is calculated for various WFs.

According to equation, greater the value of RMS difference

better is the denoising performance of that WF.

Reconstruction [12] qualities were measured by SNR

and PRD. These criteria are defined as follow: PRD is the

most used quantity in scientific works and can be defined as

PRD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i Xorg n½ � � Srec n½ �ð Þ2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i Xorg n½ �ð Þ2
p � 100 ð4Þ

where xorg is the original and srec reconstructed signal. PRD

is linked to SNR by a negative logarithmic function:

SNR ¼ �20 log10 0:01 � PRDð Þ ð5Þ

The quality of reconstructed signal is good if the value

of percentage root mean square difference is less.

SNR calculation: The SNR is calculated using

SNR ¼ 10 log Xn=Xeð Þ ð6Þ

where Xn represents the raw signal and Xe denoised signal.

Higher the value of negative SNR (-dB), the better the

performance of the WF.
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ca3[n]
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ca4 [n]

Detail coefficient

Approxima�on 
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Fig. 2 Four levels of wavelet

decomposition tree
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In an order to understand the sEMG signal’s behavior,

the measurements were carried with different level of

muscular contractions i.e. with Low and High sEMG.

4 Results and Discussion

The critical point in wavelet denoising is the selection of

right WF which depends on the application and charac-

teristics of signal. The objective of this study was to

investigate the best wavelet denoising method being

applied to the sEMG signal at different force contraction

levels. In this experiment the appropriate WF was chosen

on the basis of the calculated RMS difference, variance and

SNR values of sEMG signals for different subjects. We

adopted twenty-one WFs including all WFs of Symmlets

(symx) and Biorthogonal families for decomposition pur-

pose. The root mean square values were computed for each

signal and force data file, as this is the parameter that more

completely reflects the physiological correlates of the MU

behavior during a muscle contraction and has been termed

as ‘gold’ standard for analyzing sEMG signal. The raw

EMG signals were used to calculate the RMS difference,

wavelet denoised power and signal to noise (SNR) values

for Bior (all family) and Symm (all family) with four levels

of decomposition WFs. Table 1 gives the results of the

average RMS at various muscle contraction positions and

Table 2 gives the total noise level values of chosen

functions.

According to the results, among two independent fam-

ilies, in Table 2, the WFs: bior6.8 and sym2 give good

results compared to the other families in regard of

denoising. Table 3 presents result for WF based signal

analysis, bior6.8 and sym2 functions are appropriate for

class separability. Table 4 gives the results for the average

RMS difference, PRD and SNR values using bior6.8 WF.

SEMG signals computed at different contraction levels for

wavelet sym2 and bior6.8 is shown in Figs. 4 and 5. Fig-

ure 6 gives the raw signal and reconstructed sEMG signal

at various wavelet coefficient subsets. Different WFs were

investigated to optimize wavelet denoising procedure.

In Fig. 6a, the signals obtained from the raw sEMG

through decomposition process (Step I) and the recon-

structed EMG signals at different multi-resolution (Step

III) levels are presented whereas the signals between the

decomposition level and the wavelet coefficient subsets

(Step II) at different multiresolution levels are presented in

Fig. 6b. Generally the low frequency components can be

d2 [n]
d1 [n]

Hp

a1 [n]
d3 [n]Detail 

coefficient

coefficient

x[n]Hp

Lo
Lp

Hp

a2 [n]d4 [n]
Hp

Lp

a3 [n]Lp

a4 [n]
Approximation 

Fig. 3 Four levels of wavelet

reconstruction tree

Table 1 RMS value (V) with various denoising wavelet function of

subject 1

Feature name Contraction level

Low Medium High Average

bior1.3 0.0441 0.069 0.117 0.0768

bior1.5 0.0443 0.070 0.129 0.0815

bior2.2 0.0438 0.064 0.108 0.0724

bior2.6 0.0432 0.063 0.105 0.0707

bior2.8 0.0433 0.063 0.105 0.0705

bior3.1 0.0644 0.115 0.348 0.1760

bior3.3 0.0450 0.067 0.183 0.0985

bior4.4 0.0438 0.063 0.104 0.0705

bior5.5 0.0432 0.063 0.103 0.0700

bior6.8 0.0433 0.062 0.102 0.0697

sym2 0.0433 0.064 0.102 0.0700

sym3 0.0435 0.064 0.104 0.0708

sym4 0.0433 0.063 0.105 0.0706

sym5 0.0433 0.062 0.104 0.0700

sym6 0.0432 0.063 0.103 0.0701

sym7 0.0433 0.063 0.103 0.0701
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considered as the identity of its signal, whereas high fre-

quency components as the noises. However, from Fig. 6a,

b the low frequency component contains irrelevant low

indirect correspondence and contains the resolution back-

ground whereas the signals at the first and the second

decomposition levels (cD1 and cD2) and reconstruction

levels (D1 and D2) are similar [13] to the original signal

(S). So the signals (cD1, cD2, D1, and D2) are the effective

sEMG information part.

In order to obtain the estimated signal from approxi-

mation coefficient subset only, the reconstructed EMG

signal (A4) is inversed by using the coefficients of the

fourth-level approximation (cA4) only. Therefore, we

obtain the reconstructed EMG signals, namely A4, D4, D3,

D2, and D1 that are reconstructed from cA4, cD4, cD3,

cD2, and cD1, respectively.

Since WF bior6.8 and sym2 show better performance

compared to others, can be considered for sEMG signal

denoising process. Results for different force contraction

levels are presented in Table 5 in respect of feature

extraction for two cases: the sEMG signal (a) with wavelet

denoising; (b) without wavelet denoising. The denoising

method is used for filtering the noise and by performing the

filtration, the presence of noise in the signal is even less

(Fig. 7).

4.1 Data Statistical Method

Here one is interested in refining the experiment to increase

its sensitivity for detecting differences in the dependent

variables. An effective step to achieve better performance

for the classification of signal recorded at different volun-

tary contractions is the extraction of feature from the raw

data before performing the multiple activities. The analysis

of extracted features further helps to identify the signifi-

cance of the sEMG based muscular -force relationship

existing in between them for the voluntary contractions.

As the electrical activity of muscles being measured by

sEMG exhibits nonlinearity, it was thought that the sta-

tistical theory may be a better approach than traditional

linear methods in characterizing the intrinsic nature of

signal. This type of characterization can contribute to the

understanding of the signal dynamics and underlying

muscles processes. Therefore, statistical techniques were

implemented for the interpretation of arm operations in

order to identify the best sEMG signal amplitude for dif-

ferent motions with different muscle positions. The

Table 2 Signal noise (in terms of RMS, V) level for various

denoising wavelet function of subject 1

Feature name Contraction level

Low Medium High Average

bior1.3 0.00186 0.0045 0.0167 0.0077

bior1.5 0.00191 0.0049 0.0193 0.0087

bior2.2 0.00183 0.0042 0.0140 0.0066

bior2.4 0.00178 0.0040 0.0128 0.0062

bior2.6 0.00178 0.0041 0.0128 0.0062

bior3.1 0.00363 0.0118 0.1425 0.0526

bior3.3 0.00193 0.0044 0.0299 0.0121

bior4.4 0.00179 0.0040 0.0127 0.0062

bior5.5 0.00179 0.0041 0.0126 0.0061

bior6.8 0.00180 0.0040 0.0125 0.0061

sym2 0.00180 0.0042 0.0116 0.0058

sym3 0.00181 0.0041 0.0132 0.0063

sym6 0.00178 0.0041 0.0127 0.0061

sym7 0.00180 0.0040 0.0132 0.0063

sym8 0.00179 0.0040 0.0125 0.0061

Table 3 Denoised power (J/s) value with wavelet function of subject

1

Feature name Contraction level

Low Medium High Average

bior1.3 27.284 23.394 17.762 22.813

bior1.5 27.171 23.073 17.130 22.458

bior2.2 27.363 23.752 18.532 23.215

bior2.4 27.472 23.889 18.926 23.429

bior2.6 27.481 23.859 18.895 23.411

bior3.1 24.396 19.269 8.461 17.375

bior3.3 27.135 23.543 15.230 21.969

bior4.4 27.468 23.875 18.951 23.431

bior5.5 27.464 23.863 18.980 23.435

bior6.8 27.445 23.885 19.008 23.446

sym2 27.447 23.751 19.336 23.511

sym3 27.399 23.855 18.771 23.341

sym4 27.456 23.891 18.868 23.405

sym5 27.434 23.932 18.878 23.414

sym6 27.478 23.862 18.961 23.433

sym7 27.440 23.911 18.763 23.371

sym8 27.452 23.874 19.014 23.446

Table 4 Average RMS difference, PRD and SNR values for bior6.8

(from three subjects)

Feature name Contraction level

Low Medium High Average

RMS differ 0.0604 0.2345 0.4353 0.2434

SNR 79.83 72.90 67.00 73.243

PRD (%) 17.37 24.54 21.45 21.12
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analysis of variance (ANOVA) results with three inde-

pendent groups for for raw, bior6.8 wavelet coefficients is

shown in Tables 6 and 7.

A significant F-ratio indicates that the population means

are probably not all equal. Since the estimate of data for

sum of square between the group (SSB, 0.270, 0.212) is

large compared to data for within the group (SSW, 0.011,

0.008) for raw (RMS) and denoised (RMSD) data, so it is

concluded the test statistic is significant at this level. The

mean square error of sEMG signal helps to evaluate the

quality of robustness function. The performance of algo-

rithms is the best when mean square error has the smallest

value, here the mean square error (MSE) value between the

group and within the group is 0.135, 0.106 and 0.001, 0.001

respectively for raw and denoised data with biceps muscle,

means the sEMG signal contains useful information and

undesirable part of the signals are removed at hardware and

software implementation.

The F-ratio is the statistic used to test the hypothesis that

the effects are real: in other words, that the means are

significantly different from one another. There is a signif-

icant difference in amplitude gain across different motions,

F(2, 6) = 73.63 and F(2, 6) = 72.81 with raw RMS and

RMSD data respectively for bicep muscle with three

independent voluntary contractions groups. From the

Tables, since F ratio is greater than critical value (fc) for

both cases, so means are significantly different and it is

concluded that there is significant difference between the

groups (SSB) than within groups (SSW). On experimental

data, analysis of variance revealed the continuous

Fig. 4 Raw and denoised sEMG signal at various voluntary contractions for subject 1 using sym2 at fourth levels of decomposition: a low,

b medium, c high contraction level
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significant differences over time, which means this tech-

nique is useful for revealing differences in the shape and

magnitude of sEMG signals for independent motions. Thus

analysis of variance found statistical differences between

electrode positions (p\ 0.05), surface electrode condi-

tions, and the interaction between all groups.

The analysis of variance based system has been shown

to be very accurate in discriminating three independent

classes (G1–G3) of motion. The development of this

technique is as important as classification accuracy in terms

of usability. The steady-state data in the experiment

comprises of different contractions that are of almost the

same intensity for both analytical cases; although all the

subjects were not asked to maintain a constant level of

force efforts.

5 Conclusion

Denoising of sEMG signal by wavelets was attempted, and

it has found that this approach as a feature extraction

algorithm clearly brings out important information inherent

Fig. 5 Raw and denoised sEMG signal at various voluntary contractions for subject 1 using bior6.8 at fourth levels of decomposition: a low,

b medium, c high contraction level
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inside sEMG signal. The study was motivated by the fact

that there is no universal mother wavelet suitable for all

types of sEMG signals [10]. Noise contaminated in the

sEMG signals is the main problem in the analysis of the

sEMG signal in engineering applications. The objective of

this paper was to make use of wavelet transform algorithm

in pre-processing stage of sEMG signal analysis, particu-

larly for the noise reduction. Hence, numerous wavelet

denoising techniques have been employed during the study.

According to reported results during this study, following

conclusions can be drawn:

1. In Step I extraction, the best WFs are bior6.8 and sym5

(based on RMS difference value). However, bior5.5

and sym2 provide marginally better performance and

are appropriate for signal denoising.

2. In Step II extraction, robustness and class separability

were considered, bior6.8 and sym2 are appropriate for

wavelet based signal analysis (calculating the wavelet

power). However, bior5.5 and sym6 provides margin-

ally better performance and can be used.

3. In Step III extraction, bior5.5 and sym3 provide the

best reconstruction for sEMG signal (based on per-

centage root mean square difference (PRD).

So the main benefit of the wavelet transform is the

generation of useful subset of the frequency components

from the signal. In this study, from effective wavelet

components, we have investigated the best correlation of

sEMG signal suitable for multifunction myoelectric control

system.

In summary, the reconstructed sEMG signals from the

first level and the second level of the wavelet’s detail

coefficients are most suitable for the extraction of sEMG

features and are recommended for SEMG studies, whereas

other wavelet components contain noisy parts and are fails

to improve classification ability. The process decreases the

computational time and complexity, by reducing the signal

in sub-signals and hence wavelet proves as powerful

Table 6 ANOVA using raw RMS data for biceps muscle (p\ 0.05)

Source of variation Sum of square dof Mean square F ratio p value Critical value (fc)

Sum of square b/t group (SSB) 0.270 2 0.135 73.63 0.0001 5.14

Sum of square within/group (SSW) 0.011 6 0.001

Total sum of square (SST) 0.281 8

Table 7 ANOVA using RMSD (bior6.8) data for biceps muscle (p\ 0.05)

Source of variation Sum of squares dof Mean square Fisher ratio (F) p value Critical value (fc)

Sum of square b/t group (SSB) 0.212 2 0.106 72.81 0.0001 5.14

Sum of square within/group (SSW) 0.008 6 0.001

Total sum of square (SST) 0.221 8

Table 5 Parameters for comparison

Feature name Low Medium High

(a) After filtration

RMS 0.09 0.296 0.5233

VAR 0.00926 0.0877 0.27716

SD 0.09057 0.29591 0.52396

IEMG (*1000) 0.2156316 0.680706 1.317793

E (*1000) 0.0278027 0.263091 0.907666

MAV 0.0718 0.2269 0.4007

(b) After wavelet denoising

RMS 0.053 0.116 0.23

VAR 0.00073 0.01085 0.05324

SD 0.02639 0.10285 0.22734

IEMG (*1000) 0.135332 0.219354 0.370018

E (*1000) 0.0079156 0.0413236 0.175674

MAV 0.04504 0.07314 0.1125

bFig. 6 Example of the sEMG signal using wavelet multi-resolution

analysis with bior6.8 wavelet with 4 level decomposition and

reconstruction. a Raw EMG signal and the reconstructed EMG

signals (D1–D4, A4). b Raw signal and the wavelet coefficient

subsets (cD1–cD4, cA4) of subject 1

(a)

(b)
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Fig. 7 a, b Plots comparing Table 5 parameters
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complement tool for noise removal. Finally, experimental

results show that WFs bior1.5, bior3.1and bior3.3 are not

recommended to use in any refinement process.
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