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Abstract A temperature-thickness coupling problem of

non-homogeneous rectangular plate is analyzed. Here

authors considered bi-parabolic variation in temperature

i.e. parabolic in x-direction and parabolic in y-direction

while variation in plate’s thickness is assumed bi-linear i.e.

linear in x-direction and linear in y-direction. To charac-

terize the non-homogeneity present in plate’s material,

authors considered that poisson ratio and density of the

plate’s material vary exponentially and linearly in one

direction respectively. Along with, material of the plate is

considered isotropic and visco-elastic. Rayleigh Ritz

approach has been applied to find the time period and

deflection for first two modes of vibration for diverse

values of non-homogeneity constant, taper constant, den-

sity parameter, aspect ratio and thermal gradient. Results

for both modes of vibration are shown in tabular form.

Keywords Visco-elastic � Thermal gradient �
Taper constant � Aspect ratio �
Non-homogeneity constant � Deflection �
Density parameter

Mathematics Subject Classification 74-K-20

List of symbols

x, y Coordinates in the plane of plate

Mx;My Bending moments

Mxy Twisting moment

q Mass density per unit volume of the plate

material

h Thickness of the plate at the point (x, y)

w(x, y, t) Deflection of plate i.e. amplitude

t time
~D Visco-elastic operator

D1 Flexural rigidity

m Poisson ratio

W(x, y) Deflection function

T(t) Time function

a Length of rectangular plate

b Breath of rectangular plate

s Temperature excess above the reference

temperature at any point on the plate

s0 Temperature excess above the reference

temperature at x ¼ y ¼ 0

E Young’s modulus

K Time period

g Visco-elastic constant

G Shear modulas

1 Introduction

In-depth knowledge of the plate’s behaviour under vibra-

tion helps to see their potential in several areas i.e. machine

designs, acoustical components, naval structures etc. The

consideration of non-homogeneous plate’s material toge-

ther with variation in thickness of the structural
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components not only ensures the reduction in weight and

size but also meet the desirability of high strength in var-

ious technological situation of aerospace industry, ocean

engineering and optical equipments.

In the available literature, appreciable work has been

done on thermally induced vibrations of homogeneous

rectangular plate of variable thickness as compared to non-

homogeneous plate. Therefore authors investigated the

vibrational behaviour of tapered non-homogeneous rect-

angular plate in which non homogeneity occurs in varying

poisson ratio and density of the plate’s material.

In this paper, our endeavor is to provide a mathematical

model for analyzing the vibrational behaviour of visco-elastic

non-homogeneous isotropic rectangular plate with bi-linearly

varying thickness and bi-parabolic temperature variation.

Rayleigh Ritz method is used to calculate time period and

deflection for first two modes of vibration at various values of

density parameter, taper constant, thermal gradient, aspect

ratio and non-homogeneity constant. It is also assumed that

rectangular plate is clamped on all the four edges. All the

material constants used in numerical calculation have been

taken for ‘DURALIUM’, an alloy of aluminium. Findings of

the present paper are given in tabular form.

2 Literature Survey

A collection of research papers published in journals,

monographs, books etc. in last six decades is presented as

follows:

Abu et al. [1] discussed two dimensional transient wave

propagation in visco-elastic layered media. Avalos and

Laura [2] reported about the transverse vibrations of a

simply supported plate of generalized anisotropy with an

oblique cut out. Bambill et al. [3] carried out an experiment

on transverse vibrations of an orthotropic rectangular plate

of linearly varying thickness with free edges. Chyanbin

et al. [4] gave results on vibration suppression of composite

sandwich beams. Gutirrez et al. [5] investigated vibrations

of rectangular plates of bi-linearly varying thickness with

general boundary conditions. Gupta and Singhal [6] pre-

sented an investigation on free vibration of non-homoge-

neous orthotropic visco-elastic rectangular plate having

parabolic thickness variation. Here, authors discussed lin-

ear temperature variation as well as linear density varia-

tion. Gupta et al. [7] studied the vibrations of non-

homogeneous rectangular plate with bi-directional thick-

ness variation and linear density variation along with linear

temperature variation. Recently, Khanna and Kaur [8]

obtained first two modes of frequencies of non-homoge-

neous rectangular plate with exponential thickness and

temperature variation. Lal et al. [9] used boundary char-

acteristic orthogonal polynomials to analyze transverse

vibrations of non-homogeneous rectangular plates with

uniform thickness. Lal and Kumar [10] used characteristic

orthogonal polynomials in the study of transverse vibra-

tions of nonhomogeneous rectangular orthotropic plates

with bi-linear thickness variation. Liessa [11] discussed

vibrations of rectangular plate with general elastic bound-

ary supports. Leissa [12] provided excellent data for

vibration of plates of different shapes with different

boundary conditions in his monograph. Patel et al. [13]

discussed the inflence of stiffeners on natural frequencies

of rectangular plate with simply supported edges. Sharma

et al. [14] observed the effect of pasternak foundation on

axisymmetric vibration of polar orthotropic annular plates

of varying thickness. Wang and Chen [15] discussed the

axisymmetric vibration and damping analysis of rotating

annular plates with constrained damping layer treatments.

3 Materials and Methods

3.1 Fourth Order Differential Equation of Motion

Differential equation of an isotropic visco-elastic rectan-

gular plate is [16]:

Mx;xx þ 2Mxy;xy þMy;yy ¼ qhw;tt ð1Þ

where

Mx ¼ � ~DD1½w;xx þ mw;yy�
My ¼ � ~DD1½w;yy þ mw;xx� and

Mxy ¼ � ~DD1ð1 � mÞw;xy

ð2Þ

A comma in the suffix denotes partial differentiation of that

variable with respect to suffix variable. On using Eq. (2) in

Eq. (1), one obtains:

~D D1ðw;xxxx þ 2w;xxyy þ w;yyyyÞ þ 2D1;xðw;xxx þ w;xyyÞ
�

þ 2D1;yðw;yyy þ w;yxxÞ þ D1;xxðw;xx þ mw;yyÞ
þD1;yyðw;yy þ mw;xxÞ þ 2ð1 � mÞD1;xyw;xy

�
þ qhw;tt ¼ 0

ð3Þ

Solution of Eq. (3) can be taken in the form of the product

of two functions by using seperation of variables method

[16]:

wðx; y; tÞ ¼ Wðx; yÞTðtÞ ð4Þ

After using Eq. (4) in Eq. (3), one gets

D1ðW;xxxx þ 2W;xxyy þW;yyyyÞ
�

þ 2D1;xðW;xxx þW;xyyÞ þ 2D1;yðW;yyy þW;yxxÞ
þ D1;xxðW;xx þ mW;yyÞ þ D1;yyðW;yy þ mW;xxÞ

þ2ð1 � mÞD1;xyW;xy

�
=qhW ¼ �

€T
~DT

ð5Þ
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Here dot denotes differentiation with respect to t.

Equation (5) will exist iff both of its sides are equal to a

positive constant, say x2. Therefore one can obtain :

D1ðW;xxxx þ 2W;xxyy þW;yyyyÞ
�

þ 2D1;xðW;xxx þW;xyyÞ þ 2D1;yðW;yyy þW;yxxÞ
þ D1;xxðW;xx þ mW;yyÞ þ D1;yyðW;yy þ mW;xxÞ
þ2ð1 � mÞD1;xyW;xy

�
� qx2hW ¼ 0

ð6Þ

and

€T þ x2 ~DT ¼ 0 ð7Þ

Equations (6) and (7) represent the differential equations of

motion and time function for non-homogeneous rectangular

plate respectively. Here, D1 is flexural rigidity of

rectangular plate i.e.

D1 ¼ Eh3

12ð1 � m2Þ
ð8Þ

3.2 Formulation of Frequency Equation

Rayleigh Ritz technique is applied to solve the frequency

equation. This method is completely depends upon the law

of conservation of energy according to which maximum

strain energy ðEsÞ must be equal to the maximum kinetic

energy ðEkÞ. So it is necessary for the problem under

consideration that [17]:

dðEs � EkÞ ¼ 0 ð9Þ

where,

Ek ¼
1

2
qx2

Z a

0

Z b

0

hW2dydx ð10Þ

and

Es ¼
1

2

Z a

0

Z b

0

D1 ðW;xxÞ2 þ ðW;yyÞ2
n

2mW;xxW;yy þ 2ð1 � mÞðW;xyÞ2
o
dydx

ð11Þ

3.3 Assumptions Required

3.3.1 Temperature Variation

Since most of machines or mechanical structures work

under the influence of high temperature variations, it

becomes necessary to investigate the effect of variation in

temperature on vibrational behaviour of the structure or

system. In present study, authors assumed bi-parabolic

temperature variation as:

s ¼ s0 1 � x2

a2

� �
1 � y2

b2

� �
ð12Þ

For most of the engineering materials, the temperature

dependence on the modulus of elasticity can be expressed

as [18]:

E ¼ E0ð1 � csÞ ð13Þ

where E0 is the value of the Young’s modulus at reference

temperature i.e. s ¼ 0 and c is the slope of the variation of

E with s. After using Eq. (12) in Eq. (13), one gets

E ¼ E0 1 � a 1 � x2

a2

� �
1 � y2

b2

� �� �
ð14Þ

where a ¼ cs0ð0� a\1Þ is thermal gradient.

3.3.2 Thickness Variation

Since plates of variable thickness are vigorously used in

mechanical structures and designs, it becomes the need of

the hour to investigate that how varying thickness affects

the vibration of any structure or design. Hence authors

studied bi-linear variation in thickness as:

h ¼ h0 1 þ b
x

a
þ y

b

� 	� 	
ð15Þ

where h0 is thickness of the plate at x ¼ y ¼ 0 and

bð0� b\1Þ is taper constant.

3.3.3 Variation in poisson ratio and density

Non-homogeneous plates have wide applications in engi-

neering designs and structures and also, non-homogeneity

directly affects the physical properties of the material.

Here authors emphasized to study the non-homogeneity of

the material by taking exponential variation in poisson

ratio along with linear variation in density of the material

as:

m ¼ m0e
a1x=a ð16Þ

where m0 denotes poisson ratio at reference temperature i.e.

s ¼ 0 and a1ð0� a1\1) is non-homogeneity constant.

and

q ¼ q0 1 þ a2

x

a

� 	
ð17Þ

where q0 is density at x ¼ 0 and a2(0� a2 � 1) is density

parameter.

After using Eq. (14), Eq. (15) and Eq. (16) in Eq. (8),

one obtains:

D1 ¼
E0 1 � a 1 � x2

a2

� 	
1 � y2

b2

� 	n o
h0 1 þ bðx

a
þ y

b
Þ


 �� 3

12 1 � m0
2e

2a1x

a

� 	

ð18Þ
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3.3.4 Boundary Conditions

Rectangular plate is assumed clamped at the boundary. A

set of algebric and partial differential equations for

clamped boundary condition is given as follows:

W ¼ W;x ¼ 0; x ¼ 0; a

W ¼ W;y ¼ 0; y ¼ 0; b

)

ð19Þ

To satisfy Eq. (19), the corresponding two-term deflection

function is taken as [9]:

W ¼ x

a

� 	 y

b

� 	
1 � x

a

� 	
1 � y

b

� 	h i2

F1 þ F2

x

a

� 	 y

b

� 	
1 � x

a

� 	
1 � y

b

� 	h i ð20Þ

where F1 and F2 are two arbitrary constants.

3.4 Solution of Frequency Equation

To simplify and parameterize the present problem, non-

dimensionalization is introduced as:

X ¼ x

a
; Y ¼ y

a
ð21Þ

With the help of Eq. (21); Eqs. (10) and (11) become:

Ek
� ¼ 1

2
q0x

2a2h0

Z 1

0

Z b=a

0

ð1 þ bðX þ a

b
YÞÞ

ð1 þ a2XÞW2dYdX

ð22Þ

and

Es
� ¼ /

Z 1

0

Z b=a

0

1 � að1 � X2Þ 1 � a2

b2 Y
2

� 	� 	
1 þ bðX þ a

b
YÞ


 �3

1 � m0
2e2a1Xð Þ

8
<

:

9
=

;

fðW;XXÞ2 þ ðW;YYÞ2 þ 2m0e
a1XW;XXW;YY

þ 2ð1 � m0e
a1XÞðW;XYÞ2gdYdX

ð23Þ

where / ¼ E0h
3
0

24a2.

After substituting E�
k and E�

s from Eqs. (22) and (23) in

Eq. (9), one obtains

dðEs
� � k2Ek

�Þ ¼ 0 ð24Þ

Here k2 ¼ 12q0x
2a4

E0h0
2 is frequency parameter.

Equation (24) consists two unknown constants i.e. F1

and F2. These two constants are to be determined as

follows

dðEs
� � k2Ek

�Þ
dFn

¼ 0; n ¼ 1; 2 ð25Þ

From Eq. (25), one obtains

Qn1
F1 þ Qn2

F2 ¼ 0; n ¼ 1; 2 ð26Þ

On assuming F1 ¼ 1, one can get F2 from Eq. (26) as

ð�Q11

Q12
Þ for n ¼ 1.

For a non-trivial solution, the determinant of the coef-

ficient of Eq. (26) must be zero. Therefore one gets

Q11 Q12

Q21 Q22

����

���� ¼ 0 ð27Þ

Equation (27) gives a quadratic equation in k2 which can

provide desired values of k2 .

On using F1 and F2 in Eq. (20), one gets:

W ¼ XY
a

b

� 	
ð1 � XÞ 1 � aY

b

� �� �� �2

1 þ �Q11

Q12

� �
XY

a

b

� 	
ð1 � XÞ 1 � aY

b

� �� �� � ð28Þ

Time period of the vibration of visco-elastic plate is given

by

K ¼ 2 � p
x

ð29Þ

3.5 Solution of Differential Equation for Time

Function

For Kelvin’s model, visco-elastic operator ~D is defined as

[18]:

~D � 1 þ g
G

� 	 d

dt

� �� �
ð30Þ

Using Eq. (30) in Eq. (7), one get

€T þ x2 g
G

� 	
_T þ x2T ¼ 0 ð31Þ

Solution of Eq. (31) comes out as:

TðtÞ ¼ ea1t½B1 cos b1t þ B2 sin b1t� ð32Þ

where

a1 ¼ �x2g
2G

ð33Þ

and

b1 ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � xg
2G

� 	2
r

ð34Þ

where B1 and B2 are constants which can be determined

easily from initial conditions of the plate.

Let us consider the initial conditions of the plate as

follows:

T ¼ 1 and _T ¼ 0 at t ¼ 0 ð35Þ

On using Eq. (35) in Eq. (32), one obtains

B1 ¼ 1 and B2 ¼
x2g
G

2b1

¼ �a1

b1

ð36Þ
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Using Eq. (36) in Eq. (32), one obtains

TðtÞ ¼ ea1t cos b1t þ � a1

b1

� �
sin b1t

� �
ð37Þ

After using Eqs. (37) and (28) in Eq. (4), deflection w can

be expressed as

w ¼ XY
a

b

� 	
ð1 � XÞ 1 � aY

b

� �� �� �2

� 1 þ �Q11

Q12

� �
XY

a

b

� 	
ð1 � XÞ 1 � aY

b

� �� �� �

� ea1t cos b1t þ
�a1

b1

� �
sin b1t

� �� �
ð38Þ

4 Results and Discussion

In calculation, the following parameters are used for

duralium [6] i.e.

E ¼ 7:08 � 1010 N

M2
;

G ¼ 2:632 � 1010 N

M2
;

g ¼ 14:612 � 105 Ns

M2
;

q0 ¼ 2:80 � 103 Kg

M3
;

m0 ¼ 0:345; h0 ¼ 0:01M:

First two modes of time period at fixed aspect ratio ða=b ¼
1:5Þ with increasing values of density parameter ða2Þ are

tabulated in Table 1 for the following cases:

(i) a ¼ a1 ¼ b ¼ 0:0, (ii) a ¼ a1 ¼ b ¼ 0:2, (iii)

a ¼ a1 ¼ b ¼ 0:6.

A continuous increment in time period for both modes

of vibration is found as a2 increases from 0.0 to 1.0 for case

(i) to case (iii). Also authors noticed that time period for

both modes of vibration decreases as combined values of

a; a1 and b increase from case (i) to case (iii) for all values

of a2.

In Table 2; time period for first two modes of vibration

with increasing values of aspect ratio ða
b
Þ are given at fixed

b ¼ a ¼ 0:2 for the following cases:

(iv) a1 ¼ a2 ¼ 0:0, (v) a1 ¼ a2 ¼ 0:2, (vi)

a1 ¼ a2 ¼ 0:6

From Table 2; it is found that as aspect ratio increases

from 0.25 to 1.5, time period for both modes of vibration

decreases continuously for case (iv) to case (vi). Also time

period increases as combined values of a1 and a2 increase

from case (iv) to case (vi) for all values of aspect ratio.

Authors calculated first two modes of deflection for

various values of plate parameters at T ¼ 0 K and 5K in

Tables 3, 4, 5, 6, and 7. Further expression of W i.e.

W(X, Y) is symmetrical about X in its domain (0,1) i.e.

WðX; Y ; tÞ ¼ Wð1 � X; Y ; tÞ for all X; Y
in the domain of plate

Authors tabulated deflection for both modes of vibration at

Y ¼ 0:2 and Y ¼ 0:6 in Tables 3, 4, 5 and 6. In Table 7,

authors tabulated deflection for both modes of vibration at

Y ¼ 0:2 only.

Different combinations and values of plate parameters in

Tables 3, 4, 5, 6 and 7 are summaried as follows:

Table 3: a ¼ b ¼ a2 ¼ 0:0; a
b
¼ 1:5; a1 ¼ 0:0; 0:4; 0:8

Table 4: a ¼ b ¼ a1 ¼ 0:2; a
b
¼ 1:5; a2 ¼ 0:0; 0:4; 0:8

Table 5: b ¼ a1 ¼ a2 ¼ 0:0; a
b
¼ 1:5; a ¼ 0:0; 0:4; 0:8

Table 6: a ¼ a1 ¼ a2 ¼ 0:0; a
b
¼ 1:5; b ¼ 0:0; 0:4; 0:8

Table 7: a ¼ b ¼ a1 ¼ a2 ¼ 0:2; a
b
¼ 0:5; 1:0; 1:5

In Tables 3, 4, 5 and 6; at Y ¼ 0:2; first mode of deflection

increases from 0 up to a maximum value and then

decreases to 0 as X increases from 0.0 to 1.0 for T ¼ 0 K

and T ¼ 5 K. But second mode of deflection increases from

0 and then starts decreasing up to a minimum value and

further increases and finally decreases to 0 as X increases

from 0.0 to 1.0 for T ¼ 0 K and T ¼ 5 K.

At Y ¼ 0:6, deflection for both modes of vibration first

increases from 0 up to maximum value and then decreases

to 0 with increasing values of X for T ¼ 0 K and T ¼ 5 K.

Table 1 Time period ð�10�5Þ versus density parameter for fixed

aspect ratio (a/b = 1.5)

a2 b ¼ a ¼ a1 ¼ 0:0 b ¼ a ¼ a1 ¼ 0:2 b ¼ a ¼ a1 ¼ 0:6

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

0.0 668.23 169.09 569.09 143.85 431.26 107.69

0.2 700.84 177.34 597.07 150.98 452.64 113.13

0.4 732.01 185.22 623.80 157.79 473.06 118.32

0.6 761.90 192.79 649.42 164.31 492.63 123.30

0.8 790.66 200.07 674.08 170.59 511.45 128.08

1.0 818.41 207.09 697.86 176.64 529.60 132.68

Table 2 Time period ð�10�5Þ versus aspect ratio for fixed taper

constant ðb ¼ 0:2Þ and thermal gradient ða ¼ 0:2Þ
a
b

a1 ¼ a2 ¼ 0:0 a1 ¼ a2 ¼ 0:2 a1 ¼ a2 ¼ 0:6

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

0.25 1539.61 377.352 1586.86 388.86 1622.51 396.37

0.5 1427.35 356.48 1471.92 367.51 1509.15 375.52

0.75 1223.57 310.83 1262.76 320.69 1300.55 329.243

1.0 976.46 249.45 1008.48 257.56 1043.45 265.846

1.25 752.13 191.47 777.14 197.82 806.65 204.98

1.5 577.73 146.09 597.07 150.98 620.80 156.82
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Here, variations in deflection for both modes of vibra-

tion with respect to corresponding plate parameters in

Tables 3, 4, 5 and 6 are analyzed for all values of X and

Y as follows:

Table 3: At T ¼ 0 K, deflection for both the modes of

vibration increases continuously as a1 increases from 0.0 to

0.8.

At T ¼ 5 K, first mode of deflection decreases while

second mode of deflection increases as a1 increases from

0.0 to 0.8.

Table 4: At T ¼ 0 K, an acute decrement is noticed in

deflection for both modes of vibration as a2 increases from

0.0 to 0.8.

At T ¼ 5 K, first mode of deflection increases rapidly

while second mode of deflection decreases as a2 increases

from 0.0 to 0.8.

Table 5: It is interesting to note that deflection for both

modes of vibration continuously increases as a increases

from 0.0 to 0.8 at T ¼ 0 K and T ¼ 5 K.

Table 6: At T ¼ 0 K, values of deflection for both

modes of vibration increase very slowly with increasing

values of b from 0.0 to 0.8.

At T ¼ 5 K, first mode of deflection decreases while

second mode of deflection increases very rapidly as b
increases from 0.0 to 0.8.

In Table 7, deflection for both the modes of vibration

first increases from 0 up to a maximum value and then

decreases to 0 as X increases from 0.0 to 1.0 at a
b
¼

0:5; 1:0 for T ¼ 0 K and T ¼ 5 K. For a
b
¼ 1:5, variation

in first mode of deflection remains same but second

mode starts from 0 and increases up to a certain value

after that decreases and again increases and finally

Table 3 Deflection ð�10�5Þ versus non-homogeneity constant for a ¼ b ¼ a2 ¼ 0:0; a
b
¼ 1:5 at T = 0 K and T = 5 K

X !! a1 # 0.0 0.2 0.4 0.6 0.8 1.0

Y # Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

0.2 0 0 0 117.1660 39.5749 268.4280 6.5571 268.4280 6.5571 117.1660 39.5749 0 0

{0} {0} {47.4256} {1.9441} {108.6250} {0.3221} {108.6250} {0.3221} {47.4256} {1.9441} {0} {0}

0.4 0 0 117.5780 39.5862 269.8170 6.5953 269.8170 6.5953 117.5780 39.5862 0 0

{0} {0} {46.0991} {2.2139} {105.7880} {0.3688} {105.7880} {0.3688} {46.0991} {2.2139} {0} {0}

0.8 0 0 119.1520 39.6282 275.1290 6.7373 275.1290 6.7373 119.1520 39.6282 0 0

{0} {0} {44.1303} {3.1979} {101.9000} {0.5436} {101.9000} {0.5436} {44.1303} {3.1979} {0} {0}

0.6 0 0 0 21.0721 14.9644 47.7905 27.1767 47.7905 27.1767 21.0721 14.9644 0 0

{0} {0} {8.5294} {0.7351} {19.3443} {1.3350} {19.3443} {1.3350} {8.5294} {0.7351} {0} {0}

0.4 0 0 21.1045 14.9653 47.8998 27.1797 47.8998 27.1797 21.1045 14.9653 0 0

{0} {0} {8.2745} {0.8369} {18.7802} {1.5200} {18.7802} {1.5200} {8.2745} {0.8369} {0} {0}

0.8 0 0 21.2284 14.9686 48.3180 27.1909 48.3180 27.1909 21.2284 14.9686 0 0

{0} {0} {7.8623} {1.2079} {17.8955} {2.1942} {17.8955} {2.1942} {7.8623} {1.2079} {0} {0}

All the values written in bold and {} brackets show deflection for both the modes of vibration for T ¼ 5 K

Table 4 Deflection ð�10�5Þversus density parameter for a ¼ b ¼ a1 ¼ 0:2; a
b
¼ 1:5 at T = 0 K and T = 5 K

X !! a2 # 0.0 0.2 0.4 0.6 0.8 1.0

Y # Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

0.2 0 0 0 117.3130 39.5866 268.9250 6.5968 268.9250 6.5968 117.3130 39.5866 0 0

{0} {0} {44.7676} {2.5633} {102.6240} {0.4271} {102.6240} {0.4271} {44.7676} {2.5633} {0} {0}

0.4 0 0 117.2760 39.5716 268.8000 6.5462 268.8000 6.5462 117.2760 39.5716 0 0

{0} {0} {48.7032} {1.8303} {111.6290} {0.3027} {111.6290} {0.3027} {48.7032} {1.8303} {0} {0}

0.8 0 0 117.2570 39.5609 268.7360 6.5101 268.7360 6.5101 117.2570 39.5609 0 0

{0} {0} {51.9973} {1.8285} {119.1700} {0.3009} {119.1700} {0.3009} {51.9973} {1.8285} {0} {0}

0.6 0 0 0 21.0837 14.9653 47.8296 27.1799 47.8296 27.1799 21.0837 14.9653 0 0

{0} {0} {8.0457} {0.9690} {18.2521} {1.7599} {18.2521} {1.7599} {8.0457} {0.9690} {0} {0}

0.4 0 0 21.0808 14.9641 47.8197 27.1759 47.8197 27.1759 21.0808 14.9641 0 0

{0} {0} {8.7545} {0.6921} {19.8588} {1.2570} {19.8588} {1.2570} {8.7545} {0.6921} {0} {0}

0.8 0 0 21.0793 14.9633 47.8147 27.1730 47.8147 27.1730 21.0793 14.9633 0 0

{0} {0} {9.3475} {0.6916} {21.2032} {1.2559} {21.2032} {1.2559} {9.3475} {0.6916} {0} {0}

All the values written in bold and {} brackets show deflection for both the modes of vibration for T ¼ 5 K
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Table 5 Deflection ð�10�5Þ versus thermal gradient for b ¼ a1 ¼ a2 ¼ 0:0; a
b
¼ 1:5 at T = 0 K and T = 5 K

X !! a # 0.0 0.2 0.4 0.6 0.8 1.0

Y # Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

0.2 0 0 0 114.6210 39.5098 259.8370 6.3376 259.8370 6.3376 114.6210 39.5098 0 0

{0} {0} {50.4673} {1.9404} {114.4060} {0.3097} {114.4060} {0.3097} {50.4673} {1.9404} {0} {0}

0.4 0 0 117.5290 39.5926 269.6520 6.6169 269.6520 6.6169 117.5290 39.5926 0 0

{0} {0} {56.0127} {2.1731} {128.5130} {0.3631} {128.5130} {0.3631} {56.0127} {2.1731} {0} {0}

0.8 0 0 122.6000 39.7224 286.7670 7.0550 286.7670 7.0550 122.6000 39.7224 0 0

{0} {0} {63.9010} {2.9849} {149.4670} {0.5301} {149.4670} {0.5301} {63.9010} {2.9849} {0} {0}

0.6 0 0 0 20.8718 14.9592 47.1142 27.1595 47.1142 27.1595 20.8718 14.9592 0 0

{0} {0} {9.1897} {0.7348} {20.7443} {1.3340} {20.7443} {1.3340} {9.1897} {0.7348} {0} {0}

0.4 0 0 21.1007 14.9658 47.8868 27.1814 47.8868 27.1814 21.1007 14.9658 0 0

{0} {0} {10.0563} {0.8214} {22.8222} {1.4919} {22.8222} {1.4919} {10.0563} {0.8214} {0} {0}

0.8 0 0 21.4999 14.9760 49.2340 27.2159 49.2340 27.2159 21.4999 14.9760 0 0

{0} {0} {11.2061} {1.12536} {25.6615} {2.0451} {25.6615} {2.0451} {11.2061} {1.12536} {0} {0}

All the values written in bold and {} brackets show deflection for both the modes of vibration for T ¼ 5 K

Table 6 Deflection ð�10�5Þ versus taper constant for a ¼ a1 ¼ a2 ¼ 0:0; a
b
¼ 1:5 at T = 0 K and T = 5 K

X !! b # 0.0 0.2 0.4 0.6 0.8 1.0

Y # Mode

1

Mode

2

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode

1

Mode

2

0.2 0 0 0 114.6210 39.5098 259.8370 6.3376 259.8370 6.3376 114.6210 39.5098 0 0

{0} {0} {50.4673} {1.9404} {114.4060} {0.3097} {114.4060} {0.3097} {50.4673} {1.9404} {0} {0}

0.4 0 0 116.5470 39.5653 266.3400 6.5248 266.3400 6.5248 116.5470 39.5653 0 0

{0} {0} {36.2133} {13.2574} {82.7564} {2.1863} {82.7564} {2.1863} {36.2133} {13.2574} {0} {0}

0.8 0 0 119.2010 39.6376 275.2950 6.7689 275.2950 6.7689 119.2010 39.6376 0 0

{0} {0} {25.5811} {197.048} {59.0798} {33.6501} {59.0798} {33.6501} {25.5811} {197.048} {0} {0}

0.6 0 0 0 20.8718 14.9592 47.1142 27.1595 47.1142 27.1595 20.8718 14.9592 0 0

{0} {0} {9.1897} {0.7348} {20.7443} {1.3340} {20.7443} {1.3340} {9.1897} {0.7348} {0} {0}

0.4 0 0 21.0234 14.9636 47.6261 27.1742 47.6261 27.1742 21.0234 14.9636 0 0

{0} {0} {6.5323} {5.0139} {14.7983} {9.1054} {14.7983} {9.1054} {6.5323} {5.0139} {0} {0}

0.8 0 0 21.2323 14.9693 48.3310 27.1934 48.3310 27.1934 21.2323 14.9693 0 0

{0} {0} {4.5565} {74.4159} {10.3721} {135.1850} {10.3721} {135.1850} {4.5565} {74.4159} {0} {0}

All the values written in bold and {} brackets show deflection for both the modes of vibration for T ¼ 5 K

Table 7 Deflection ð�10�5Þ versus aspect ratio for a ¼ b ¼ a1 ¼ a2 ¼ 0:2; at T = 0 K and T = 5 K

X !! a=b # 0.0 0.2 0.4 0.6 0.8 1.0

Y # Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

0.2 0.5 0 0 21.3193 14.9709 48.6245 27.1989 48.6245 27.1989 21.3193 14.9709 0 0

{0} {0} {14.6924} {3.3632} {33.5100} {6.1103} {33.5100} {6.1103} {14.6924} {3.3632} {0} {0}

1.0 0 0 66.5565 33.0827 150.9000 37.9261 150.9000 37.9261 66.5565 33.0827 0 0

{0} {0} {38.6536} {3.9153} {87.6373} {4.4885} {87.6373} {4.4885} {38.6536} {3.9153} {0} {0}

1.5 0 0 117.2960 39.5784 268.8650 6.5692 268.8650 6.5692 117.2960 39.5784 0 0

{0} {0} {46.8304} {2.0411} {107.3450} {0.3387} {107.3450} {0.3387} {46.8304} {2.0411} {0} {0}

All the values written in bold and {} brackets show deflection for both the modes of vibration for T ¼ 5 K
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decreases to 0 as X varies from 0.0 to 1.0 for T ¼ 0 K

and T ¼ 5 K.

5 Conclusions

In Table 8, authors compared the frequency for first two

modes of vibration of present paper with [8] at a1 ¼
0:8; a2 ¼ 0:0; a

b
¼ 1:5 for various values of a and b. Here

authors found that frequency for both modes of vibration in

this paper is greater than [8] at corresponding values of

plate’s parameters. Therefore, authors conclude the

following:

1. Consideration of varying poisson ratio due to non-

homogeneous nature of plate’s material affects the

vibrational characteristics of the plate.

2. Frequency, in case of bi-parabolic temperature varia-

tions i.e. present paper, is more than as linear

temperature variation i.e. [8].

3. By appropriate tapering and considering suitable values

of plate’s parameters, desired values of time period

and deflection can be obtained.
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Table 8 Comparison of the frequencies of present problem with [8]*

at a1 ¼ 0:8 , a2 ¼ 0:0, a
b
¼ 1:5

b a ¼ 0:0 a ¼ 0:4

Mode 1 Mode 2 Mode 1 Mode 2

0.0 70.8714 280.5470 64.1226 254.4560

{51.4268} {203.2357} {45.9976} {181.7795}

0.2 85.8357 340.2490 78.5117 312.4010

{56.3921} {221.4931} {50.6863} {198.7425}

0.4 101.4640 402.8140 93.4477 372.8820

{61.2186} {237.7992} {55.5664} {213.3797}

0.6 117.4790 467.1070 108.693 434.8740

{65.9809} {253.2183} {59.5664} {226.9172}

0.8 133.732 532.5100 124.127 497.8280

{70.7255} {268.3562} {63.9015} {240.0542}

Values from [8] are given in bold and {} brackets in above table
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