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Abstract In this paper, we propose a scheme for con-

trolling chaotic Lorenz like system to a periodic system via

nonlinear control. Our method is based on Lyapunov sta-

bility theory. We have presented the numerical simulation

results to show the efficiency of our method.
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Introduction

Chaos has been observed in many nonlinear systems

([1, 2]). Experimental observations have pointed out that

chaotic systems are common in nature but still unpredict-

able due to its sensitive dependence on initial conditions.

Chaos is found in meteorology, the solar system, heart and

brain of living organisms and so on [3]. Experimental

realization of chaos synchronization and control have been

achieved with a magnetoelastic ribbon, a heart, a thermal

convection loop, a diode oscillator, an optical multimode

chaotic solid-state laser, a Belousov-Zhabotinski reaction

diffusion chemical system and many other experiments.

Everyday examples of chaotic systems include weather and

climate. Lorenz and Poincare ([1, 2]) were early pioneers

of chaos theory. Chaotic system has a dense set of unstable

periodic orbits. Control of chaos is the stabilization, by

means of small system perturbations, of one of these

unstable periodic orbits.

Chaos control and synchronization of non linear

dynamics have been possible [4, 5]. Hunt [6] has studied

high-period orbits in a chaotic system. Pyrages [7] has

discussed continuous control of chaos by self-controlling

feedback. Fuh and Tung [8] have studied controlling chaos

using differential geometric method. Huang [9] has ana-

lysed controlling chaos through growth rate adjustment.

Sinha [10] has introduced threshold mechanism for con-

trolling chaos. Using backstepping design method Umut

[11] has studied controlling chaos in nuclear spin generator

system.

Several different regimes of chaos synchronization [12,

13], e.g. generalized synchronization [14, 15], phase syn-

chronization [16] and lag synchronizations [17, 18], anti-

synchronization [19, 20], adaptive synchronization [21]

and a coupled n-dimensional time-delay system [22] of

chaotic oscillators have been theoretically investigated and

experimentally observed.

Control of chaotic system to a periodic system has many

application in biology and engineering which motivated us

to study this problem. In this paper, we have taken the

modified chaotic Lorenz model proposed by Das [23] and

introduce a scheme for obtaining periodic behaviour from

chaotic system. Numerical simulation results are presented

to show the efficiency of our method.

Synchronization via nonlinear control

Das [23] obtained the following Lorenz like model for a

large Prandtl number convection problem
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_x1 ¼ rð�x1 þ y1Þ þ sx2;

_x2 ¼ rð�x2 þ y2Þ þ sx1;

_y1 ¼ �y1 þ ðr � zÞx1 þ tx2;

_y2 ¼ � y2 þ ðr � zÞx2 þ tx1;

_s ¼ � 10
3

rsþ 3
5
rt � 3

10
x1x2;

_t ¼ � 10
3

t þ rs� 1
4
ðx1y2 þ x2y1Þ;

_z ¼ � bzþ x1y1 þ x2y2;

9
>>>>>>>>>>>=

>>>>>>>>>>>;

ð1Þ

where x1; x2 represent the vertical velocity and y1; y2

represent the temperature field, s and t represent the

coupling between two sets of mutually perpendicular rolls

and z denotes the heat flux across the fluid layer. This

system has chaotic dynamics for r ¼ 7; r ¼ 16 and b ¼ 8
3
.

Our aim is to synchronize the dynamical system (1) to the

following periodic system (where u1; u2; u3; u4; u5; u6 have

periodic behavior with time)

_u1 ¼ u2;

_u2 ¼ �u1;

_u3 ¼ u4;

_u4 ¼ �u3;

_u5 ¼ u6;

_u6 ¼ �u5;

_u7 ¼ �u7:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

ð2Þ

The dynamical systems (1) and (2) are uncoupled, therefore

to synchronize the system (1) to the system (2) we have to

couple the systems by suitable coupling functions wi. Here

wi may be functions of x1; x2; y1; y2; s; t; z and u1; u2; u3;

u4; u5; u6; u7. We coupled the systems (1) and (2) in the

following manner

_x1 ¼ rð�x1 þ y1Þ þ sx2 þ w1;

_x2 ¼ rð�x2 þ y2Þ þ sx1 þ w2;

_y1 ¼ �y1 þ ðr � zÞx1 þ tx2 þ w3;

_y2 ¼ �y2 þ ðr � zÞx2 þ tx1 þ w4;

_s ¼ � 10
3

rsþ 3
5
rt � 3

10
x1x2 þ w5;

_t ¼ � 10
3

t þ rs� 1
4
ðx1y2 þ x2y1Þ þ w6;

_z ¼ �bzþ x1y1 þ x2y2 þ w7;

9
>>>>>>>>>>>=

>>>>>>>>>>>;

ð3Þ

and

_u1 ¼ u2;

_u2 ¼ �u1;

_u3 ¼ u4;

_u4 ¼ �u3;

_u5 ¼ u6;

_u6 ¼ �u5;

_u7 ¼ �u7:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

ð4Þ

Let us define the synchronization error between the system

(3) and (4) as e1 ¼ x1 � u1; e2 ¼ x2 � u2; e3 ¼ y1 � u3;

e4 ¼ y2 � u4; e5 ¼ s� u5; e6 ¼ t � u6; e7 ¼ z� u7; then

dynamical system of the synchronization error will

follow the following differential equations

_e1 ¼ �re1 þ rðy1 � u1Þ þ sx2 � u2 þ w1;

_e2 ¼ �re2 þ rðy2 � u2Þ þ sx1 þ u1 þ w2;

_e3 ¼ �e3 � u3 þ ðr � zÞx1 þ tx2 � u4 þ w3;

_e4 ¼ �e4 � u4 þ ðr � zÞx2 þ tx1 þ u3 þ w4;

_e5 ¼ � 10
3

rðe5 þ u5Þ þ 3
5
rt � 3

10
x1x2 � u6 þ w5;

_e6 ¼ � 10
3
ðe6 þ u6Þ þ rs� 1

4
ðx1y2 þ x2y1Þ þ u5 þ w6;

_e7 ¼ �bðe7 þ u7Þ þ x1y1 þ x2y2 þ w7:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

ð5Þ

Now our aim is to find suitable controllers W ¼
ðw1;w2;w3;w4;w5;w6;w7ÞT such that the fixed point

ð0; 0; 0; 0; 0; 0; 0Þ of the error system become globally

asymptotically stable. If limt!1ei ¼ 0; i ¼ 1; 2; 3; 4; 5; 6; 7,

then the system (3) and (4) will synchronize identically.

Now we choose controllers as

w1 ¼ �rðy1 � u1Þ � sx2 þ u2;

w2 ¼ �rðy2 � u2Þ � sx1 � u1;

w3 ¼ u3 � ðr � zÞx1 � tx2 þ u4;

w4 ¼ u4 � ðr � zÞx2 � tx1 � u3;

w5 ¼ 10
3

ru5 � 3
5
rt þ 3

10
x1x2 þ u6;

w6 ¼ 10
3

u6 � rsþ 1
4
ðx1y2 þ x2y1Þ � u5;

w7 ¼ bu7 � x1y1 � x2y2:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

ð6Þ

Now we choose Lyapunov function for the error system as

L ¼ 1
2
ðe2

1 þ e2
2 þ e2

3 þ e2
4 þ e2

5 þ e2
6 þ e2

7Þ then dL
dt
¼ ðe1 _e1 þ

e2 _e2 þ e3 _e3 þ e4 _e4 þ e5 _e5 þ e6 _e6 þ e7 _e7Þ ¼ �re2
1 � re2

2 �
e2

3 � e2
4 � 10

3
re2

5 � 10
3

re2
6 � be2

7\0 since r[ 0; b [ 0:

Therefore, by Lyapunov stability theory error system is

asymptotically stable at the origin.

Then the controlled Lorenz like system and periodic

system obey the following dynamical system

_x1 ¼ rðu1 � x1Þ þ u2;

_x2 ¼ rðu2 � x2Þ � u1;

_y1 ¼ �y1 þ u3 þ u4;

_y2 ¼ �y2 þ u4 � u3;

_s ¼ � 10
3

rs� 10
3

ru5 þ u6;

_t ¼ � 10
3

t þ 10
3

u6 � u5;

_z ¼ �bzþ bu7;

_u1 ¼ u2;

_u2 ¼ �u1;

_u3 ¼ u4;

_u4 ¼ �u3;

_u5 ¼ u6;

_u6 ¼ �u5;

_u7 ¼ �u7:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð7Þ
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It is observed after numerical simulation with the above

choice of controller the Lorenz like dynamical system

synchronized to a periodic system.

Results and Discussions

To show that feasibility and effectiveness of this method,

numerical simulations are carried out by fourth order

Runge-Kutta method. Time step is taken as 0.005. Values

of the parameters are taken as r ¼ 7:0; r ¼ 16:0; b ¼ 8=3 .

We have chosen the initial conditions as x1ð0Þ ¼
0:01; x2ð0Þ ¼ 0:01; y1ð0Þ ¼ 0:01; y2ð0Þ ¼ 0:20; sð0Þ ¼
0:30; tð0Þ ¼ 0:25; zð0Þ ¼ 0:20 and u1ð0Þ ¼ u2ð0Þ ¼
u3ð0Þ ¼ u4ð0Þ ¼ u5ð0Þ ¼ u6ð0Þ ¼ u7ð0Þ ¼ 0:01 for cou-

pled system and x1ð0Þ ¼ 0:01; x2ð0Þ ¼ 0:01; y1ð0Þ ¼
0:01; y2ð0Þ ¼ 0:20; sð0Þ ¼ 0:30; tð0Þ ¼ 0:25; zð0Þ ¼ 0:20

for uncoupled system. From our scheme it is clear that

except the variable z of the coupled Lorenz system all the

variables synchronized to a periodic system under control.

Here we draw figures for some of the variables. In Figs. 1

and 2 the time evolution of x1 is plotted for the uncoupled

system and the coupled system with control respectively.

Figs. 3 and 4 show that the time evaluation of s in the

uncoupled system and the coupled system with control

respectively. It is clear from the figures that the controlled

trajectories are periodic. The phase diagrams of x2 vs. s are

shown in the uncoupled system and coupled system with

control respectively in Figs. 5 and 6. Figures 7 and 8 show

the phase diagram of y2 vs. s in the uncoupled system and

coupled system with control respectively. Figures of phase

diagram prove that the controlled system is periodic.

Therefore we have successfully controlled a chaotic system

to a periodic system via nonlinear control.
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Fig. 1 Time evolution of x1 in the uncoupled system for the parameters r ¼ 7:0; r ¼ 16:0 and b ¼ 8=3 with same initial conditions
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Fig. 2 Time evolution of x1 in the coupled system with control for the parameters r ¼ 7:0; r ¼ 16:0 and b ¼ 8=3 with same initial conditions
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Fig. 5 Phase diagram x2 versus s without control for the parameters r ¼ 7:0; r ¼ 16:0 and b ¼ 8=3 with same initial conditions
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Fig. 3 Time evolution of s in the uncoupled system for the parameters r ¼ 7:0; r ¼ 16:0 and b ¼ 8=3 with same initial conditions
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Fig. 4 Time evolution of s in the coupled system with control for the parameters r ¼ 7:0; r ¼ 16:0 and b ¼ 8=3 with same initial conditions
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Fig. 7 Phase diagram y2 versus s without control for the parameters r ¼ 7:0; r ¼ 16:0 and b ¼ 8=3 with same initial conditions
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Fig. 8 Phase diagram y2 versus s with control for the parameters r ¼ 7:0; r ¼ 16:0 and b ¼ 8=3 with same initial conditions
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Fig. 6 Phase diagram x2 versus s with control for the parameters r ¼ 7:0; r ¼ 16:0 and b ¼ 8=3 with same initial conditions
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