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Abstract The fisheries industry of Malaysia is known as

the strategic sector that can help the country raise domestic

food production and supply. This research proposed

machine learning (ML) based prediction of marine fish

landings to project fish supply and compare those projec-

tions with the observed data. Three ML models, i.e., linear

regression (LR), decision tree (DT), and random forest

(RF) regression, are applied to the dataset that contains

18 years of climatic variables and the marine fish landings

(tonnes) information of 5 major states of Malaysia. The

results suggest that the developed LR model shows an R2

value of 0.60 and 0.64 in the validation and testing phases.

The DT and RF model indicates a significant improvement

as the R2 values are 0.88 and 0.89 in the validation data and

0.89 and 0.86 in the testing data. Finally, we calculated the

Nash–Sutcliffe efficiency (NSE) values, and the results

indicated that RF based ML model has the highest NSE

value of 0.86, which turns out to be the best fit for pre-

diction. The developed ML models have utilized for the

first time to predict the marine fish landing using envi-

ronmental inputs collected from 5 different states of

Malaysia.
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Malaysia is highly vulnerable to the effects of climate

change [1]. The selection of climatic variable indicators for

regional analysis was fraught with constraints, assump-

tions, and availability of datasets. The previous studies

demonstrated rainfall and temperature impacts on fish

landings in the focus country [2, 3]. Similarly, sea surface

temperature (SST) was an essential indicator for coastal

upwelling events influencing fish production reported for

the region [4]. Prior studies demonstrated that relative

humidity was a significant climatic factor in fisheries

studies because of its indirect impact on some environ-

mental stressors [5, 6]. Therefore, the use of climatic

variables such as rainfall and SST on Malaysia’s marine

fish landings must be investigated. Forecasting marine fish

landings is highly dependent on the analysis of previous

and current behaviors [6]. Autoregressive integrated mov-

ing averages (ARIMAs), seasonal ARIMAs, vector

autoregression, neural networks, nonlinear autoregressive

networks, and wavelets are a few well-known approaches

that researchers have used to forecast short-term fish cat-

ches [6, 7]. However, these statistical models will not

produce satisfactory results if the time series data have

nonlinear components [8]. Machine learning (ML) models

use only historical data to learn the stochastic dependency

between the past and the future [9, 10]. Previous studies

have used ecological variables in Malaysia to estimate

marine fish catches [11, 12]. However, none of them
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implemented ML models. Researchers typically use the

ML-based linear regression (LR) technique for the pre-

diction of time-series data. This modeling approach is

excellent if we have a correlated dataset because the

algorithm can accurately predict values. However, algo-

rithms such as the decision tree (DT)-based regression

technique can handle data with different measurement

scales. DT-based algorithms do not influence outliers and

missing values to a fair degree and simplify the building of

rules for predictions about individual cases and complex

relationships [13]. Moreover, the random forest (RF)

algorithm can be used instead of a single DT to reduce

overfitting, resulting in better results than with a single

optimized DT [14].

In this research, we considered different ML-based

predictive models to demonstrate the impact of climatic

variables on marine fish landings in Malaysia’s five central

states: Kedah, Pahang, Perak, Selangor, and Terengganu.

Two error objective functions, the coefficient of determi-

nation (R2) and the Nash–Sutcliffe efficiency (NSE), were

used to determine the performance of the ML model.

We considered the maximum and minimum air tem-

perature, SST, and humidity to build models using ML. We

collected data from 18 consecutive years (2000–2017); we

obtained the temperature, rainfall, and humidity data from

the Department of Statistics Malaysia and the SST data

from the Malaysian Meteorological Department. Marine

fish landing data were collected from the Department of

Fisheries, Malaysia. For the interpretation of the ML

model, individual states were combined into one dataset by

mapping the states to numbers, where Selangor is 1,

Terengganu is 2, Pahang is 3, Kedah is 4, and Perak is 5.

We used the first 16 years (2000–2015) of data to validate

the training of the model and the latest 2 years

(2016–2017) of data to test the ML models. We used 65

random data points for training and 15 random data points

for validation, and the data points were fragmented by the

stratifying method so that all of the states exist in both

datasets. We implemented the LR, DT and RF algorithms

to generate predictions. For the DT and RF algorithms, the

maximum depth was set to 7 to reduce data overfitting [15].

We used Python scikit-learn to implement the model and

measured the R2 and NSE values to determine the pre-

dictive accuracy [16]. Both of these error objective func-

tions expressed values between 0 and 1, and a value closer

to 1 indicated a more accurate prediction. The NSE was the

best objective function for evaluating the overall fit

between the predictive and observed values [17]. Figure 1

shows the graph comparing 15 data points after imple-

menting the 3 ML algorithms. Three values (years) from

each state were plotted on the x-axis, and the observed

values and those predicted by the 3 ML models were

plotted on the y-axis. The RF and DT-based ML regression

models produced values closer to the observed values, and

they had better R2 (0.88 and 0.89, respectively) and NSE

(0.7 and 0.8, respectively) values than the LR model

(R2 = 0.6 and NSE = 0.3).

Table 1 shows the predicted and observed results for the

test dataset (2016–2017) as well as the error matrices. We

found that the RF model output most closely resembles the

observed dataset. Table 1 indicates that the LR model has a

high bias, whereas DT and RF have comparatively

improved prediction results with low bias. The results of

the analysis of the 2017 data showed that LR resulted in

negative values, indicating that the LR model has low

predictive accuracy (R2 = 0.64 and NSE = 0.082). We also

found that in 2016 and 2017, the DT model predicted the

same values for different states, which is one of the

drawbacks of employing a single DT (R2 = 0.89 and

NSE = 0.84). Similar or identical inputs yielded a

Fig. 1 Three ML-based outputs

for marine fish landings

prediction using the validation

dataset
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particular predicted value. Therefore, the RF model was

used to average multiple DTs to improve the accuracy and

reduce data overfitting. The R2 and NSE values of the RF

model were 0.86 and 0.86, respectively, which were better

than those of the other ML models with the testing dataset.

Thus, according to this research, the RF regression model

is suitable for predicting marine fish landings (tonnes) in

the abovementioned Malaysian states.

Here, the NSE value for the RF model was 0.86, indi-

cating a good fit [18]. The dataset contained all five major

states in both the validation and testing phases. Thus, this

research successfully predicted marine fish landings in five

central states of Malaysia. Decision-makers in the fishery

industry typically plan based on the fishing market’s

resource requirements, which are highly dependent on

accurate 1- to 2-year forecasts of fish landings [19].

Therefore, this predictive model can be a valuable com-

ponent included in the construction of decision support

systems for Malaysia’s fisheries sector.
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