

Influence of the Edge Removal, Edge Addition and Edge Subdivision on the Double Vertex–Edge Domination Number of a Graph

B. Krishnakumari¹ · Y. B. Venkatakrishnan¹

Received: 7 January 2016 / Revised: 29 January 2016 / Accepted: 20 June 2018 / Published online: 24 September 2018 - The National Academy of Sciences, India 2018

Abstract A vertex v of a graph $G = (V, E)$ is said to vedominate every edge incident to v , as well as every edge adjacent to these incident edges. A set $S \subseteq V$ is a vertexedge dominating set (double vertex–edge dominating set, respectively) if every edge of E is ve-dominated by at least one vertex (at least two vertices) of S. The minimum cardinality of a vertex–edge dominating set (double vertex– edge dominating set, respectively) of G is the vertex–edge domination number $\gamma_{ve}(G)$ (the double vertex–edge domination number $\gamma_{\text{dve}}(G)$, respectively). The influence of edge removal, edge addition and edge subdivision on the double vertex–edge domination number of a graph are investigated in this paper.

Keywords Vertex–edge dominating set \cdot Double vertex-edge dominating set \cdot Edge removal \cdot Edge addition \cdot Edge subdivision

Mathematics Subject Classification 05C69

Let $G = (V, E)$ be a simple graph. The *open neighborhood* of a vertex $v \in V$ is $N(v) = \{u \in V \mid uv \in E\}$ and the closed neighborhood is $N[v] = N(v) \cup \{v\}$. The degree of a vertex v is the cardinality of its open neighborhood, denoted $d_G(v) = |N(v)|$. A vertex of degree one is called a

 \boxtimes Y. B. Venkatakrishnan ybvenkatakrishnan2@gmail.com

> B. Krishnakumari krishnakumari@maths.sastra.edu

¹ Department of Mathematics, SASTRA University, Thanjavur, Tamilnadu 613401, India

leaf and its neighbor is called a *support vertex*. An edge incident with a leaf is called a pendant edge.

A subset $D \subseteq V(G)$ is a dominating set of G if every vertex of $V(G)\ D$ has a neighbor in D. The domination number of a graph G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. For a comprehensive survey of domination in graphs, refer $[1, 2]$ $[1, 2]$ $[1, 2]$ $[1, 2]$.

In a graph G , a vertex dominates itself and its neighbors. A subset $S \subset V(G)$ is a double dominating set of G, abbreviated as DDS, if every vertex in $V - S$ has at least two neighbors in S and every vertex of S has a neighbor in S. The double domination number $\gamma_2(G)$ is the minimum cardinality of a double dominating set of G. A double domination set of G with minimum cardinality is called a $\gamma_2(G)$ -set. Double domination was introduced by Harary and Haynes [\[3](#page-2-0)] and was further studied for a class of graphs by Chellali [[4\]](#page-2-0).

A vertex v *ve-dominates* every edge uv incident to v , as well as every edge adjacent to these incident edges, that is, a vertex v ve-dominates every edge incident to a vertex in $N[v]$. A set $S \subseteq V$ is a vertex–edge dominating set (or a ve*dominating set*) if for every edge $e \in E$, there exists a vertex $v \in S$ such that v ve-dominates e. The minimum cardinality of a ve-dominating set of G is called the vertexedge domination number $\gamma_{ve}(G)$. The concept of vertex– edge domination was introduced by Peters [[5\]](#page-2-0) in 1986 and studied further in [\[6–8](#page-2-0)].

A set $D \subseteq V$ is a *double vertex–edge dominating set* (or simply, a *double ve-dominating set*) of G, abbreviated as DVEDS, if every edge of E is ve -dominated by at least two vertices of D. The double vertex–edge domination number of G, denoted by $\gamma_{\text{dve}}(G)$, is the minimum cardinality of a double ve-dominating set of G. A double ve-dominating set of G of minimum cardinality is called a $\gamma_{dve}(G)$ -set.

It is well known that the removal of an edge does not decrease the domination number γ and increases it by at most one. That is, for any edge e of G , $\gamma(G) \leq \gamma(G - e) \leq \gamma(G) + 1$. Here we present similar inequalities for a double vertex–edge domination number γ_{dve} on edge removal, edge addition and edge subdivision.

Theorem 1.1 For every graph G and any edge e of G we have $\gamma_{dve}(G) - 1 \leq \gamma_{dve}(G - e) \leq \gamma_{dve}(G) + 2$.

Proof We first prove that $\gamma_{\text{dw}}(G - e) \leq \gamma_{\text{dw}}(G) + 2$ for any edge $e = uv$. Let D be a minimum DVEDS of G. We consider three cases.

Case 1 Assume that $u, v \notin D$. Then D is a DVEDS of the graph $G - e$ and $\gamma_{dve}(G - e) \leq |D| \leq \gamma_{dve}(G) < \gamma_{dve}(G) + 2$.

Case 2 Now let $|\{u, v\} \cap D| = 1$. Without loss of generality assume that $u \in D$. Thus $D \cup \{v\}$ is a DVEDS of the graph $G - e$. We have $\gamma_{\text{dve}}(G - e) \leq |D| + 1 \leq$ $\gamma_{dve}(G) + 1 < \gamma_{dve}(G) + 2.$

Case 3 Now let $u, v \in D$. The vertex u dominates the edges incident at v and the vertex v dominates the edges incident at u. In the graph $G - e$, the set $D \cup \{a, b\}$ where $a \in N(u) \setminus \{v\}$ and $b \in N(v) \setminus \{u\}$ is a DVEDS. Thus $\gamma_{dve}(G - e) \leq |D| + 2 \leq \gamma_{dve}(G) + 2$. Moreover the set $N(u)\setminus \{v\}$ and $N(v)\setminus \{u\}$ are not simultaneously empty. For in that case $G = K_2$ and $G - e = 2K_1$. Without loss of generality assume $N(u)\setminus \{v\}$ is non empty. Then $(D \cup$ $\{a\}\setminus \{v\}$ is a DVEDS of the graph $G - e$. We have $\gamma_{dve}(G - e) \leq |D| - 1 + 1 = |D| \leq \gamma_{dve}(G) < \gamma_{dve}(G) + 2.$

We now prove that $\gamma_{dve}(G) - 1 \leq \gamma_{dve}(G - e)$. Let D' be a minimum DVEDS of the graph $G - e$, where $e = uv$ is an edge of G. Let us first assume that both $u, v \in D'$. Then D' is a DVEDS of the graph G. Thus $\gamma_{dve}(G) - 1 \leq |D'| 1 \leq \gamma_{\text{dyc}}(G - e) - 1 < \gamma_{\text{dyc}}(G - e).$

Now assume that $|\{u, v\} \cap D'| = 1$. Without loss of generality assume $u \in D'$. To dominate the edges incident with v in G, the vertex $v \in D'$. Thus $D' \cup \{v\}$ is a DVEDS of the graph G. Thus $\gamma_{dve}(G) \leq |D'| + 1 \leq \gamma_{dve}(G - e) + 1$. We have $\gamma_{dve}(G) - 1 \leq \gamma_{dve}(G - e)$.

Assume that both $u, v \notin D'$. If u is a pendant vertex in $G - e$, then the support vertex adjacent to $u \in D'$. Thus $D' \cup \{u\}$ is a DVEDS of the graph G. We have $\gamma_{dve}(G) \leq |D'| + 1 \leq \gamma_{dve}(G - e) + 1$. This gives $\gamma_{dve}(G) 1 \leq \gamma_{dve}(G - e) - 1 + 1 \leq \gamma_{dve}(G - e)$. Now assume that u is not a pendant vertex in $G - e$. To dominate the edges incident with u and v twice, a neighbor of u and v , say a, b should be in D' . These two vertices a and b dominate the edge e in G. Hence D' is a DVEDS of the graph G. We get $\gamma_{dve}(G) \leq |D'| \leq \gamma_{dve}(G - e)$. This gives $\gamma_{dve}(G) 1 \leq \gamma_{dve}(G - e) - 1 < \gamma_{dve}(G - e)$. Thus $\gamma_{dve}(G) - 1 \leq$ $\gamma_{dve}(G - e) \leq \gamma_{dve}(G) + 2.$

Let $e \in E(\overline{G})$. Then $G + e$ denotes the graph obtained by adding the edge e.

Theorem 1.2 For every graph G and any edge $e \in E(\overline{G})$ we have $\gamma_{dve}(G) - 1 \leq \gamma_{dve}(G + e) \leq \gamma_{dve}(G)$.

Proof We first prove that $\gamma_{\text{dve}}(G + e) \leq \gamma_{\text{dve}}(G)$ for any edge $e = uv \in E(\overline{G})$. Let D be a minimum DVEDS of G. We consider the following cases.

Case 1 Assume that $u, v \in D$. Then D is a DVEDS of the graph $G + e$ as the vertices u and v together dominates the edge *e*. Thus $\gamma_{dve}(G + e) \leq |D| \leq \gamma_{dve}(G)$.

Case 2 Now let $|\{u, v\} \cap D| = 1$. Without loss of generality assume that $u \in D$. Then the vertex u dominates the edges incident to it. Suppose that to dominate the edges incident with v, a neighbor of v, say a is in D. Thus D is also a DVEDS of the graph $G + e$ as the vertex a dominates the edge uv in $G+e$. We get $\gamma_{dve}(G+e) \leq$ $|D| \leq \gamma_{dve}(G)$.

Case 3 Now assume that both $u, v \notin D$. If the neighbor of u and v, say a, b are in D, then D is a DVEDS of the graph $G + e$. Thus $\gamma_{dve}(G + e) \leq |D| \leq \gamma_{dve}(G)$.

We now prove that $\gamma_{\text{dec}}(G) - 1 \leq \gamma_{\text{dec}}(G + e)$. Let D' be a minimum DVEDS of the graph $G+e$, where $e = uv \in E(\overline{G})$. Let us first assume that both $u, v \in D'$. Then D' is a DVEDS of the graph G. Thus $\gamma_{dve}(G) - 1 \leq |D'| - 1 \leq \gamma_{dve}(G + e) - 1 < \gamma_{dve}(G + e).$

Now assume that $|\{u, v\} \cap D'| = 1$. Without loss of generality assume $u \in D'$. To dominate the edge uv, a neighbor of v, say $a \in D'$. Thus $D' \cup \{a\}$ is a DVEDS of the graph G. Thus $\gamma_{dve}(G) \leq |D'| + 1 \leq \gamma_{dve}(G + e) + 1$. We have $\gamma_{dve}(G) - 1 \leq \gamma_{dve}(G + e) - 1 + 1 \leq \gamma_{dve}(G + e)$.

Now when both $u, v \notin D'$ then it is obvious that D' is itself a DVEDS of the graph G. We get $\gamma_{\text{dw}}(G)$ $1 \leq |D'| - 1 \leq \gamma_{dve}(G + e) - 1 < \gamma_{dve}(G + e).$

The subdivision of some edge $e = uv$ in a graph G yields a graph containing one new vertex w , and with an edge set replacing e by two new edges with endpoints uw and wv.

Let us denote by $G_{uv} \oplus w$ the graph obtained from a graph G by subdivision of an edge uv in a graph G .

Theorem 1.3 For every graph G and any edge $e = uv$ of G we have $\gamma_{dve}(G) \leq \gamma_{dve}(G_{uv} \oplus w) \leq \gamma_{dve}(G) + 1$.

Proof We first prove that $\gamma_{dve}(G_{uv} \oplus w) \leq \gamma_{dve}(G) + 1$ for any edge $e = uv$ which is subdivided by a new vertex w with the edge set $\{uw, wv\}$ replacing e. Let D be a minimum DVEDS of G. We consider three cases.

Case 1 Assume that $u, v \in D$. Then D is a DVEDS of the graph $G_{uv} \oplus w$, since u and v dominates the edges incident to them and also the edges incident to a vertex adjacent to them. Thus the edges uw and wv of $G_{uv} \oplus w$ are dominated

by the vertices u, v. We get $\gamma_{dve}(G_{uv} \oplus w) \leq |D| \leq \gamma_{dve}(G)$ $\langle \gamma_{dve}(G)+1.$

Case 2 Now let $|\{u, v\} \cap D| = 1$. Without loss of generality assume that $u \in D$. Then u dominates the edges uw, wv in $G_{uv} \oplus w$. To dominate the edges incident with v, the neighbor of v other than u , say a is in D . It is clear that $D \cup \{v\}$ is a DVEDS of the graph $G_{uv} \oplus w$. We get $\gamma_{dve}(G_{uv} \oplus w) \leq |D| + 1 \leq \gamma_{dve}(G) + 1.$

Case 3 Now let both $u, v \notin D$. The edges incident with u are dominated by a neighbor of u , say a other than v and the edges incident with v are dominated by a neighbor of v , say b other than u. It is clear that $D \cup \{u\}$ is a DVEDS of the graph $G_{uv} \oplus w$. Thus $\gamma_{dw}(G_{uv} \oplus w) \leq |D| + 1 \leq$ $\gamma_{dve}(G)+1.$

We now prove that $\gamma_{dve}(G) \leq \gamma_{dve}(G_u \oplus w)$. Let D' be a minimum DVEDS of the graph $G_{uv} \oplus w$. Let us first assume that both $u, v \in D'$. Then D' is a DVEDS of the graph G as u , v dominates the edge uv of G. We have $\gamma_{dve}(G) \leq |D'| \leq \gamma_{dve}(G_{uv} \oplus w).$

Now assume that $|\{u, v\} \cap D'| = 1$. Without loss of generality assume $u \in D'$. To dominate the edges incident with v other than wv, a neighbor of v, say a, other than w is in D' . It is clear that D' is a DVEDS of the graph G. We have $\gamma_{dve}(G) \leq |D'| \leq \gamma_{dve}(G_{uv} \oplus w)$.

Now assume that both $u, v \notin D'$. To dominate the edges incident with u, a neighbor of u, say a, other than w is in D' and to dominate the edges incident with v , a neighbor of v , say b , other than w is in D' . To dominate the edges incident with u and v twice, the vertex $w \in D'$. It is clear that $D'\setminus\{w\}$ is a DVEDS of the graph G. We get $\gamma_{dve}(G) \leq |D'| - 1 \leq \gamma_{dve}(G_{uv} \oplus w) - 1 < \gamma_{dve}(G_{uv} \oplus w).$

References

- 1. Haynes TW, Hedetniemi ST, Slater PJ (1998) Fundamentals of domination in graphs. Marcel Dekker, New York
- 2. Haynes TW, Hedetniemi ST, Slater PJ (eds) (1998) Domination in graphs: advanced topics. Marcel Dekker, New York
- 3. Harary F, Haynes TW (2000) Double domination in graphs. Ars Comb 55:201–213
- 4. Chellali M (2006) A note on the double domination in trees. AKCE J Graphs Comb 3(2):147–150
- 5. Peters J W (1986) Theoretical and algorithmic results on domination and connectivity. Ph.D. Thesis, Clemson University
- 6. Boutrig R, Chellali M, Haynes TW, Hedetniemi ST (2016) Vertex edge domination in graphs. Aequat Math 90:355–366
- 7. Krishnakumari B, Venkatakrishnan YB, Krzywkowski M (2014) Bounds on the vertex–edge domination number of a tree. C R Acad Sci Paris Ser I 352:363–366
- 8. Lewis JR, Hedetniemi ST, Haynes TW, Fricke GH (2010) Vertex– edge domination. Util Math 81:193–213