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Abstract Fish in a tropical country like India are fre-

quently exposed to different duration of hypoxia. The ef-

fect of hypoxia on the physiology of fish, air-breathing

catfish Clarias batrachus were exposed to different dura-

tion of hypoxia and its effect on activities of lactate de-

hydrogenase (LDH) and malate dehydrogenase (MDH)

were studied in four tissues (heart, liver, brain and muscle).

The specific activity of LDH increases in all tissues, which

reflects towards onset of anaerobic respiration and decrease

in energy demand in all these tissues. In contrast, MDH

specific activities were decreased significantly in heart,

suggesting involvement of strong aerobic respiration in

heart during hypoxia. The present investigation revealed

that during hypoxia enzyme activities responded in a tis-

sue-specific manner in the fish C. batrachus reflecting the

balance of energetic demands, metabolic role and oxygen

supply of particular tissues.
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Hypoxia is an environmental stressor, caused by normally

large temporal and spatial variations in oxygen content of

water [1]. Animals are known to adopt different mechan-

isms to tolerate hypoxia. Many of these responses are be-

havioural, including surface breathing, reduced activity,

and/or increased ventilation rate [2]. Maintenance of low

levels of activity is fuelled by anaerobic metabolism and

decrease in metabolism accomplished by decreasing en-

zyme activity and consuming processes [3, 4]. In addition

to these responses, some species have evolved additional

physiological or molecular mechanisms and the capacity to

undergo sustained metabolic depression or to up-regulate

anaerobic glycolysis [5].

Lactate dehydrogenase (LDH, lactate; NAD-oxidore-

ductase, EC 1.1.1.27) and malate dehydrogenase (MDH,

L-malate: NADH oxidoreductase, EC 1.1.1.37) are among

the most extensively studied enzymes [6–17]. LDH is a

glycolytic enzyme [6–12] whereas MDH is an enzyme

involved in gluconeogenesis and lipogenesis and in the

malate–aspartate shuttle during aerobic glycolysis [13–17].

With an aim to investigate the effect of hypoxia on the

metabolism of LDH, an enzyme of anaerobic respiration

and MDH, an enzyme of oxidative respiration was under-

taken on an air-breathing catfish Clarias batrachus.

Experiments were set for determination of enzyme ac-

tivity at different duration of hypoxia on normal healthy

specimens of C. batrachus. Each fish (52.00 ± 2.3 g,

19.2 ± 0.2 cm) was introduced in 5 l glass jar and the lid

was then sealed with melted wax. Fish were allowed to stay

in the jar undisturbed and constantly observed for be-

haviour pattern. The fish were taken out at 24, 48 and 72 h

of hypoxia and were dissected quickly to take out muscle,

heart, brain and liver from it and processed for different

observation specifically.

LDH activity in cell free extracts of muscle, liver, heart

and brain was measured by a NADH linked optical assay

following the method of Horecker and Kornberg [18].

MDH activity was determined by conversion of oxaloac-

etate to malate. Enzyme activity was expressed in lmole

min-1 mg protein-1. The molar extinction coefficient of
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NADH at 340 nm (6.22 9 103 M-1 cm-1) was used to

calculate the enzyme activity.

The data were expressed as mean ± SE values and

analyzed using one-way ANOVA followed by Tukey’s

post hoc test to determine homogenous subsets. In all

cases, a level of 5 % (p B 0.05) was selected to signify

differences.

Experiments performed on specimens of C. batrachus

exposed to hypoxia showed significant differences in en-

zyme activity from the fishes in normoxia at 25 �C. A

marked pattern of behaviour was observed in accordance

with the physiological changes observed during different

periods of hypoxia. Another significant observation from

present investigation has been the recording of tissue

specific response to hypoxia.

LDH activity was observed to be increased in the heart

after 24 h and was recorded to go down up to nearly nor-

mal condition after 48 h of hypoxia. No pronounced

change was observed in LDH activity in liver and brain

during different periods of hypoxia. In muscle, activities

were almost 50 % higher than in heart. Significant changes

in LDH activities were observed between normoxia and

72 h of hypoxia in muscle and heart when the fish were

found in moribund condition (Fig. 1).

After 24 h of hypoxia MDH activity was observed to be

decreased in heart and liver while it remained unchanged in

brain and muscle. It was observed to be increased slightly

as compared to normal condition in heart and liver after

48 h exposure of hypoxia. Further decrease was observed

in MDH activity between 72 h of hypoxia and normoxia in

heart and liver. The enzyme activities remained unaffected

in brain and muscle tissues at this stage also (Fig. 2).

In the present investigation undertaken on catfish C.

batrachus significant changes in the activities of two se-

lected enzymes LDH and MDH were observed in response

to experimentally provoked hypoxia. The level of LDH, a

glycolytic enzyme showed increase in muscles at the initial

stages of hypoxia. This fluctuation seems to be related with

the onset of anaerobic pathways. It may also be correlated

with up and down movement of fish in experiment at the

onset of hypoxia. The high LDH accumulation in the

muscle is in accordance with the behavioural response

observed after which the fish resumes ‘‘surfacing be-

haviour’’ utilising the residual air present at the surface.

Specific activities of glycolytic enzyme in muscle have

been correlated with the burst swimming activity of fish in

response to various stresses in Atlantic Cod Gadus morhua

[17, 19]. Close to normal levels of LDH recorded in brain,

liver and heart indicated towards tendencies of these

aerobic tissues to avoid anaerobic respiration [16]. These

tissues are known to regulate LDH level according to

available environmental oxygen, so that less of lactate

accumulates in these tissues.

Higher levels of MDH have been recorded in heart and

liver in C. batrachus. The role of this enzyme in the

metabolism is to supply intermediary metabolites (ox-

aloacetate) for the Kreb’s cycle used as source of carbon in

oxidative metabolism [20]. Thus, the higher levels of MDH

observed in heart reflects the role of this enzyme for car-

diac tissues after 48 h of hypoxia. This pattern is similar

for liver which shows role of MDH in gluconeogenesis

[13, 20].

Present investigations clearly support the earlier obser-

vation undertaken on other teleosts [6–16] and air-breath-

ing fish C. batrachus [21]. C. batrachus was observed to

undergo a series of coordinated metabolic adjustments

which aims at balancing an overall suppression of systemal

ATP demand along with proportionate increase in fractions

of remaining metabolism that is supported by anaerobic

glycolysis alone [6, 10]. One of the major responses to
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Fig. 1 Mean specific activity of lactate dehydrogenase enzyme (U/mg

protein) in heart, liver, brain and muscle of Clarias batrachus exposed

to hypoxia for 24, 48 and 72 h. (U, lmole substrate/min; Values are

mean ± SD, n = 6). Asterisk (*) represents significant differences

(p \ 0.05) between normoxia and 72 h of hypoxia
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Fig. 2 Mean specific activity of malate dehydrogenase enzyme (U/mg

protein) in heart, liver, brain and muscle of Clarias batrachus exposed

to hypoxia for 24, 48 and 72 h. U, lmole substrate/min; Values are

mean ± SD, n = 6. Asterisk (*) represents significant differences

(p \ 0.05) between normoxia and 72 h of hypoxia
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hypoxia has been recorded to be an increase in anaerobic

ATP production via glycolysis [17, 19]. Number of ob-

servations are on record which revealed that exposure to

hypoxia increase the activities of glycolytic enzymes that

presumably augment the capacity of fish tissues for anae-

robic energy production [9, 20]. Although there is an ex-

tensive background of work in general and specific

properties of LDH [6, 9] a single answer for enzyme re-

sponses has not been reached [10, 12] which needs to be

addressed with more in depth targeted investigations.
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