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Abstract In this short communication, the recent differ-

ential transform method is proposed to compute Laplace

transforms in an innovative manner. Unlike the common

method of finding Laplace transforms, the method is free of

integration and hence is of computational interest. A

number of illustrative examples are given to show the

efficiency and simplicity of the new technique.
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Since its inception, the differential transform method

(DTM) has established a good reputation for providing

convenient solutions to differential equations, both linear

and nonlinear. The DTM converges to analytical solutions

in form of polynomial series rapidly and does not require

any discretization, linearization or perturbation [1, 2]. The

mathematical literature abounds with applications of the

DTM in various fields of science and engineering; e.g. see

[3–7]. In a recent effort, Babolian et al. have ingeniously

exploited the Adomian decomposition method to compute

Laplace transforms [8]. In a similar theme, Abbasbandy

has adopted He’s homopoty perturbation method to derive

Laplace transforms [9]. Our objective in this short note is

to propose an alternative way to compute Laplace trans-

forms by means of the DTM. This scheme eliminates the

inherent need for integration, which sometimes is not

analytically tractable, to obtain Laplace transforms.

The differential transform of a given univariate function

u(x) is given by the following formula:

U kð Þ ¼ 1

k!

dku xð Þ
dxk

� �
x¼0

; ð1Þ

where U(k) is the transformed function.

Also, the relevant differential inverse transform for

function U(k) is defined as.

u xð Þ ¼
X1
k¼0

U kð Þxk
� �

: ð2Þ

For brevity, authors do not discuss the n-dimensional dif-

ferential transform and refer the interested reader to [3].

Some basic operations of the one-dimensional differential

transform are listed in Table 1. Proofs of the given oper-

ations in Table 1 can be extracted from [2, 3].

According to the proposed method, in order to have the

DTM provide Laplace transform of a desired function, say

Q, it is necessary to devise a differential equation whose

solution is related to L{Q}. Let us consider the very fun-

damental first-ordered ODE:
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u0 xð Þ ¼ su xð Þ þ Q xð Þ;
u 0ð Þ ¼ 0;

�
ð3Þ

where s is a positive constant. Through the use of the

integrating factor, the analytical solution to (3) is given by

ue�sx ¼
Z

Qe�sxdx: ð4Þ

The left hand-side of Eq. (4) equates Laplace transform of

function Q, if the integration is considered from zero to

infinity. That is

L Qf g ¼ e�sxu½ �jx¼þ1x¼0 : ð5Þ

Thus, in order to obtain L{Q}, we first employ the DTM to

solve Eq. (3) and simply substitute the solution into

Eq. (5).

In what follows, we give some examples, which illus-

trate how our approach yields Laplace transform of a

desired function. For better reference, we will name Eq. (3)

as the ‘‘generator equation’’, henceforth.

Example 1 Let us determine L{eax}.

As explained above, we build the generator equation as

u0 ¼ suþ eax;
u 0ð Þ ¼ 0;

�
ð6Þ

and its transformed pair yields

U k þ 1ð Þ ¼ s
kþ1

U kð Þ þ ak

kþ1ð Þ! ;

U 0ð Þ ¼ 0:

�
ð7Þ

Through Eq. (7), we calculate

U 1ð Þ ¼ 1; U 2ð Þ ¼ s

2
þ a

2!
; U 3ð Þ ¼ s2

3!
þ sa

3!
þ a2

3!
;

U 4ð Þ ¼ s3

4!
þ s2a

4!
þ sa2

4!
þ a3

4!
;

U 5ð Þ ¼ s4

5!
þ s3a

5!
þ s2a2

5!
þ sa3

5!
þ a4

5!
; � � � :

8>>>>>><
>>>>>>:

ð8Þ

So, we easily revert U(k) to

u ¼ 1

s
sxþ sxð Þ2

2!
þ sxð Þ3

3!
þ � � �

 !

þ a

s2

sxð Þ2

2!
þ sxð Þ3

3!
þ sxð Þ4

4!
þ � � �

 !

þ a2

s3

sxð Þ3

3!
þ sxð Þ4

4!
þ sxð Þ5

5!
þ � � �

 !

þ a3

s4

sxð Þ4

4!
þ sxð Þ5

5!
þ sxð Þ6

6!
þ � � �

 !
þ � � � ;

ð9Þ

or equivalently,

u ¼ 1

s
esx � 1ð Þ þ a

s2
esx � 1� sxð Þ

þ a2

s3
esx � 1� sx� sxð Þ2

2!

 !

þ a3

s4
esx � 1� sx� sxð Þ2

2!
� sxð Þ3

3!

 !
þ � � � :

ð10Þ

Hence,

L eaxf g ¼ e�sxu½ �jx¼þ1x¼0 ¼
1

s
þ a

s2
þ a2

s3
þ a3

s4
þ � � � : ð11Þ

One can readily identify that the sequence in Eq. (11) is a

geometric progression with 1/s and a as its common ratio

and scale factor, respectively. Thus, by increasing the

number of components toward infinity, we can calculate

the result of the infinite series in (11) as

L eaxf g ¼ lim
n!þ1

1

s

1� a
s

� �nþ1
	 


1� a
s

¼
1
s

1� a
s

¼ 1

s� a
;

s [ aj j: h

ð12Þ

Example 2 Calculate L
sin xð Þ

x

n o
.

The transformed equivalent of the generator equation for

this problem is

U k þ 1ð Þ ¼ sU kð Þ
kþ1
þ

�1ð Þ
k
2

kþ1ð Þ kþ1ð Þ! ; k is even

0; k is odd

(

U 0ð Þ ¼ 0:

8><
>: ð13Þ

Recursively, it follows from Eq. (13) that

Table 1 A list of operations for the one-dimensional differential

transform

Original function Transformed function

u(x) ± v(x) U(K) ± V(k)

au (x) aU (k)
dmu xð Þ

dxm

kþmð Þ!
k! U k þ mð Þ

xm d k � mð Þ ¼
1; k ¼ m

0; k 6¼ m

(

eax ak

k!

sin (ax) ak

k! sin kp
2

� �
¼

0; k is even

ak �1ð Þ
k�1

2

k!
; k is odd

8><
>:

cos (ax) ak

k! cos kp
2

� �
¼

ak �1ð Þ
k
2

k!
; k is even

0; k is odd

8><
>:

f xð Þ ¼
Rx
x0

u tð Þdt F kð Þ ¼ U k�1ð Þ
k

; k� 1; F 0ð Þ ¼ 0

m is a non-negative integer and d represents the Kronecker delta

function
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U 1ð Þ ¼ 1; U 2ð Þ ¼ s

2!
; U 3ð Þ ¼ s2

3!
� 1

3� 3!
;

U 4ð Þ ¼ s3

4!
� s

3� 4!
;U 5ð Þ ¼ s4

5!
� s2

3� 5!
þ 1

5� 5!
;

U 6ð Þ ¼ s5

6!
� s3

3� 6!
þ s

5� 6!
;

U 7ð Þ ¼ s6

7!
� s4

3� 7!
þ s2

5� 7!
� 1

7� 7!
;

U 8ð Þ ¼ s7

8!
� s5

3� 8!
þ s3

5� 8!
� s

7� 8!
; � � � :

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð14Þ

Therefore,

u ¼ 1

s
esx � 1ð Þ � 1

3s3
esx � 1� sx� sxð Þ2

2!

 !

þ 1

5s5
esx � 1� sx� sxð Þ2

2!
� sxð Þ3

3!
� sxð Þ4

4!

 !

� 1

7s7
esx � 1� sx� sxð Þ2

2!
� sxð Þ3

3!
� sxð Þ4

4!
� sxð Þ5

5!
� sxð Þ6

6!

 !

þ � � � :
ð15Þ

Thus,

L
sin xð Þ

x

� �
¼ e�sxu½ �jx¼þ1x¼0 ¼

1

s
� 1

3s3
þ 1

5s5
� 1

7s7
þ � � � :

ð16Þ

Knowing that

arctan xð Þ ¼
Zx

0

dn

1þ n2

¼
Zx

0

dn�
Zx

0

n2dnþ
Zx

0

n4dn�
Zx

0

n6dn

þ � � � ; 0� x\1; ð17Þ

it follows that

arctan
1

s

� 

¼ 1

s
� 1

3s3
þ 1

5s5
� 1

7s7
þ � � � ; 0� 1

s
\1: ð18Þ

In view of Eqs. (16) and (18), we conclude

L
sin xð Þ

x

� �
¼ arctan

1

s

� 

; 0� 1

s
\1: h ð19Þ

Example 3 Calculate L{J0(x)}, where J0 denotes the

Bessel function of first kind of zero order.

Similar to the previous examples, we calculate the

following differential transform series components by the

correct choice of the generator equation:

U 0ð Þ ¼ 0; U 1ð Þ ¼ 1; U 2ð Þ ¼ s

2
; U 3ð Þ ¼ s2

6
� 1

12
;

U 4ð Þ ¼ s3

24
� s

48
; U 5ð Þ ¼ s4

120
� s2

240
þ 1

320
;

U 6ð Þ ¼ s5

720
� s3

1440
þ s

1920
;

U 7ð Þ ¼ s6

5040
� s4

10080
þ s2

13440
� 1

16128
; � � � :

8>>>>>>>>>>><
>>>>>>>>>>>:

ð20Þ

Now, from definition (2), it follows that

u ¼ 1

s
esx � 1ð Þ � 1

2s3
esx � 1� sx� sxð Þ2

2!

 !

þ 3

8s5
esx � 1� sx� sxð Þ2

2!
� sxð Þ3

3!
� sxð Þ4

4!

 !

� 5

16s7
esx � 1� sx� sxð Þ2

2!
� sxð Þ3

3!
� sxð Þ4

4!

 

� sxð Þ5

5!
þ sxð Þ6

6!

!
þ � � � :

ð21Þ

Therefore,

L J0 xð Þf g ¼ e�sxu½ �jx¼þ1x¼0 ¼
1

s
� 1

2s3
þ 3

8s5
� 5

16s7
þ � � � : h

ð22Þ

By virtue of the MacLaurin expansion series, we find the

closed form for the previous sequence as 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ 1ð Þ
p

.

To conclude, unlike the classic routine that imposes

integration, our scheme only requires simple algebraic

operations plus differentiation for the derivation of Laplace

transforms.
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