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Abstract Pigeonpea is one of the most important pulse

crops in the semi-arid tropical region, which is prone to

several climatic uncertainties like unpredictable tempera-

ture, frequent drought and inconsistent rainfall. Addition-

ally, during crop cycle pigeonpea also encounters a wide

range of other biotic and abiotic constraints, ultimately

leading to its fluctuating production and stagnant produc-

tivity. However, recently developed CGMS system has

shown noteworthy impacts in enhancing pigeonpea pro-

ductivity through exploitation of hybrid vigour. At present,

A2-cytoplasm derived CGMS system has been well estab-

lished in pigeonpea. Nevertheless, the commercial success

of CGMS system relies largely on the continuous supply of

genetically pure seeds of hybrids and corresponding

parental lines. Traditionally, the genetic purity of seeds is

guaranteed through conducting grow out test (GoT). In this

context, DNA marker assays offer several advantages over

conventional GoT especially in terms of time, space and

money. Given its locus-specific and co-dominant nature,

SSR or microsatellite marker is particularly suited for

hybridity testing and purity assessment. Here we report a

set of robust SSR markers, which could act as reliable

molecular kit for ensuring the genetic purity of the CGMS-

hybrid ‘IPH 09-5’ and its parental lines ‘PA 163A’ (A-or

Male sterile-line) and ‘AK 261322’ (R- or Restorer-line).
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Introduction

Pigeonpea (Cajanus cajan (L.) Millspaugh) is a warm-

season grain legume grown primarily in tropical and semi-

tropical regions. Worldwide, it is cultivated in about

5.83 m ha area with an annual production and an average

productivity of 4.40 m t and 753 kg/ha, respectively [1].

With 4.42 m ha area and 2.86 m t production, pigeonpea

remains the second most important pulse crop in India after

chickpea [1]. The inherent properties like nitrogen fixation

and drought tolerance make pigeonpea an integral com-

ponent of rain-fed agro-ecosystem, thereby offering

potential means for generating livelihood for the small-

scale/marginal farmers along with ensuring nutritional

security to the people inhabiting these areas [2, 3].
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Concerted research efforts focusing on breeding and

selection have facilitated the development and commercial

cultivation of several pigeonpea varieties belonging to

different maturity groups i.e. short-, medium- and long-

duration [4]. Despite of meticulous attention paid towards

pigeonpea improvement, limited success has been achieved

in terms of productivity in pigeonpea [3].

Several impediments are responsible for its unstable

production including biotic and abiotic constraints coupled

with the cultivation of traditional less-responsive geno-

types or landraces [2]. Recently, cytoplasmic genetic male

sterility (CGMS)-based hybrid breeding system has

emerged as a potential alternative to address the problem of

yield stagnation that has been prevailing for several dec-

ades in pigeonpea [4]. To date, a total of seven different

sources of sterile cytoplasm viz. A1 (C. sericeus), A2 (C.

scarabaeoides), A3 (C. volubilis), A4 (C. cajanifolius), A5

(C. acutifolius), A6 (C. lineatus) and A7 (C. cajan) have

been reported in pigeonpea [4, 5]. The classification is

based on the wild progenitors acting as sources of cyto-

plasmic genetic male sterility [5]. Among all seven types,

only two viz. A2 and A4 have been proven of commercial

importance. Recently an A2-cytoplasm derived hybrid ‘IPH

09-5’ has been developed using lines ‘PA 163A’ (A-line)

and ‘AK 261322’ (R-line) at Indian Institute of Pulses

Research (IIPR) [6].

Commercial success of CGMS system largely depends

on the adequate supply of genetically pure seeds of hybrids

and its parental lines. Even a small fraction of impurity in

the hybrid seed lot may lead to substantial reductions in the

crop yield [7]. The genetic purity is tested conventionally

using grow out test (GoT), which comprises of growing the

crop in large fields in isolation followed by removal of the

off-type plants based on visual inspection of morphologi-

cal/floral characteristics [8]. Technically, the entire proce-

dure is extremely cumbersome as it requires extensive field

testing and most importantly, the test for fertility/sterility

cannot be performed before the commencement of flow-

ering [9]. Moreover, the morphological differences are

often subjected to the influence by the external environ-

ment. Given the context, DNA marker assays offer an

efficient and accurate system for assessing the genetic

purity at very early stages of plant development, therefore

considerably reducing the time, space and money invested

in conducting GoT [8, 9].

Among the different kinds of marker systems available,

simple sequence repeats (SSRs) are considered of great

value due to their abundance in genome, multi-allelic

nature, easily reproducible, user-friendly and co-dominant

character [8–10]. These peculiar features make SSRs as the

preferred class of DNA markers for estimating genetic

purity especially in concern of detection of heterozygosity.

With this view, here we have identified a robust set of SSR

markers, which could be used in purity estimation of the

CGMS based hybrid ‘IPH 09-5’ and its parental lines.

Materials and Methods

Plant Material and DNA Extraction

Hybrid and its parents were grown during Kharif 2012 at

Indian Institute of Pulses Research (IIPR), Kanpur, India.

Total genomic DNA was isolated from leaves of three-

week old seedlings following the modified CTAB method

[11]. Finally DNA samples were diluted to 10 ng/ll to

perform polymerase chain reaction (PCR).

PCR Analysis

A total of 66 informative SSR primers were considered for

the present investigation. PCR reactions were performed in

G-STORM GS4 thermal cycler (G-Storm, United King-

dom) with a 20 ll reaction volume containing 2 ll of

10 9 PCR buffer, 2 ll of 2 mM dNTPs (Bangalore Genei

Pvt. Ltd., Bengaluru, India), 0.5 U of Taq DNA polymer-

ase (Bangalore Genei Pvt. Ltd., Bengaluru, India) and

5 pM each of forward and reverse primers. A total of 4 ll

of genomic DNA (10 ng/ll) was used for PCR reaction. A

touch down PCR programme was chosen for SSR ampli-

fication. Following an initial denaturation for 5 min at

95 �C, five cycles were set as: denaturation for 20 s at

94 �C, annealing for 20 s at 56 �C (1 �C is reduced after

each cycle) and extension for 30 s at 72 �C. The next 35

cycles were performed with 20 s at 94 �C, 30 s at 51 �C

and 45 s at 72 �C and a final extension step for 20 min at

72 �C.

Gel Electrophoresis and Documentation

The PCR amplicons were resolved in 3 % agarose gel

(Bangalore Genei Pvt. Ltd., India). The allelic sizes of the

amplified fragments were determined using 100 bp DNA

ladder (Fermentas). Amplified fragments were recorded

and estimated with BioRad Gel Doc XR version 2.0.

Results and Discussion

In order to exploit heterosis or hybrid vigour, CGMS sys-

tem has been established in several crop species like rice

[12], sorghum [13], brassica [14], sunflower [9, 15] and so

forth. However, assessment and maintenance of genetic

purity is the most critical factor in the efficient utilization

of CGMS technology at commercial scale. In addition to

conventional GoT, PCR based DNA markers could be
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Table 1 List of SSR primers with their amplification, polymorphism and heterozygosity status

S. no. Primer name Amplification status Polymorphism status Heterozyogosity detected Reference

IPH 09-5 PA 163A AK 261322

1 CCttc001 A M - - - [23]

2 CCat002 A M - - - [23]

3 CCttc008 A M - - - [24]

4 CCtc013 A M - - - [24]

5 CCttc033 A M - - - [24]

6 CCac036 A M - - - [24]

7 CCB4 A M - - - [26]

8 CCB5 A M - - - [26]

9 CCB9 A P 1 - - [26]

10 CCB10 A M - - - [26]

11 CCttc002 A M - - - [27]

12 CCac003 A M - - - [27]

13 CCttc005 A M - - - [27]

14 CCttc007 A M - - - [27]

15 CCtc005 A M - - - [27]

16 CCtta006 A M - - - [27]

17 HASSR1 A M - - - [28]

18 HASSR2 A M - - - [28]

19 HASSR3 A P 1 - - [28]

20 HASSR4 A M - - - [28]

21 HASSR5 A M - - - [28]

22 HASSR6 A M - - - [28]

23 HASSR7 A M - - - [28]

24 HASSR8 A M - - - [28]

25 HASSR9 A P 1 - - [28]

26 HASSR10 A M - - - [28]

27 HASSR11 A M - - - [28]

28 HASSR12 A M - - - [28]

29 HASSR13 A M - - - [28]

30 HASSR14 A M - - - [28]

31 HASSR15 A M - - - [28]

32 HASSR16 A M - - - [28]

33 HASSR17 A M - - - [28]

34 HASSR18 A M - - - [28]

35 HASSR19 A M - - - [28]

36 HASSR20 A M - - - [28]

37 HASSR21 A M - - - [28]

38 HASSR22 A M - - - [28]

39 HASSR23 A P 1 - - [28]

40 HASSR24 A M - - - [28]

41 HASSR25 A M - - - [28]

42 HASSR26 A M - - - [28]

43 HASSR27 A M - - - [28]

44 HASSR28 A M - - - [28]

45 HASSR29 A M - - - [28]

46 HASSR30 A M - - - [28]

47 HASSR31 A M - - - [28]
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explored as potential tools to expedite the process of con-

firming the genetic purity of lines [8–10]. Various DNA

markers are reported in pigeonpea including restriction

fragment length polymorphisms (RFLPs) [16], random

amplified polymorphic DNAs (RAPDs) [17], amplified

fragment length polymorphisms (AFLPs) [18], SSRs [8,

10] and diversity arrays technologies (DArTs) [19]. In pi-

geonpea, these various marker assays were used for genetic

diversity estimation [16], genetic linkage mapping [10] and

quantitative trait loci (QTL) analysis [20]. However,

remarkably low level of polymorphism in primary gene

pool of pigeonpea was manifested by employing different

marker assays [16–20].

Owing to its co-dominant nature, reproducibility and

ease of scoring, SSR is the marker of choice for genetic

purity testing [8]. SSRs can be further classified into two

categories based on the entire length of repeat motif [21].

Class I includes SSRs with a total motif length of C20 bp

while Class II consists of SSRs having repeat lengths of

C12 \ 20 bp. Among the two categories of SSRs men-

tioned herewith Class I SSRs (with longer repeat length)

tend to be highly variable in plant species [21]. Besides, the

polymorphism information content (PIC) values also pro-

vide an insight about the informativeness of a particular

DNA marker that could be of immense importance [22],

while discriminating genotypes at molecular level [23, 24].

More importantly, genomic-SSRs usually exhibit higher

degree of polymorphism compared to genic- or expressed

sequence tag (EST)-derived SSRs [25].

Taken the above considerations into account, here

authors chose informative SSRs based on (i) the length of

SSR tracts and (ii) PIC values (as reported in earlier

studies). Consequently, a set of 66 genomic-SSRs was

chosen to perform the genetic purity analysis. The SSR

primer pairs were synthesized based on the primers infor-

mation available from Burns et al. [26], Saxena et al. [24],

Odeny et al. [23, 27] and Singh et al. [28]. Originally, these

various SSRs were derived from bacterial artificial chro-

mosome (BAC)-libraries [23–27] and through in silico

SSR-mining of the whole genome sequence [28] of

pigeonpea.

The parents (PA 163A and AK 261322) were screened

for detection of marker polymorphism (Table 1). As a

result, scorable amplicons with expected sizes were

obtained for all the 66 SSRs. However, of the total 66 SSRs

screened, 59 exhibited the similar SSR profiles between PA

163A and AK 261322, whereas the remaining seven SSRs

viz. CCB9, HASSR3, HASSR9, HASSR23, HASSR35,

HASSR37 and HASSR43 enabled the detection of poly-

morphic fragments (Table 1). All the seven polymorphic

SSRs were further used to confirm the true hybrid status of

the genotype IPH 09-5. Recovery of both paternal- and

Table 1 continued

S. no. Primer name Amplification status Polymorphism status Heterozyogosity detected Reference

IPH 09-5 PA 163A AK 261322

48 HASSR32 A M - - - [28]

49 HASSR33 A M - - - [28]

50 HASSR34 A M - - - [28]

51 HASSR35 A P 1 - - [28]

52 HASSR36 A M - - - [28]

53 HASSR37 A P 1 - - [28]

54 HASSR38 A M - - - [28]

55 HASSR39 A M - - - [28]

56 HASSR40 A M - - - [28]

57 HASSR41 A M - - - [28]

58 HASSR42 A M - - - [28]

59 HASSR43 A M 1 - - [28]

60 HASSR44 A M - - - [28]

61 HASSR45 A M - - - [28]

62 HASSR46 A M - - - [28]

63 HASSR47 A M - - - [28]

64 HASSR48 A M - - - [28]

65 HASSR49 A M - - - [28]

66 HASSR50 A M - - - [28]

A amplified, M monomorphic, P polymorphic, ‘?’ presence of heterozygosity for particular marker, ‘-’ absence of heterozygosity

16 A. Bohra et al.
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Fig. 1 SSR based molecular

profiles of A-line (PA 163A)

and R-line (AK 261322) and

hybrid (IPH 09-5). The name of

the each SSR marker has been

indicated on the top of each gel

image. A 100 bp DNA ladder

(on extreme left) was chosen as

standard

Utility of Informative SSR Markers 17
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maternal-specific fragments/alleles in the SSR profiles of

hybrid IPH 09-5 confirmed the true heterozygous nature of

the hybrid (Fig. 1). Moreover, no residual heterozygosity

was detected in the parental lines using these 66 SSRs

thereby confirming their true pure-line nature harboring

100 % homozygosity (Table 1). It is important to note that

absence of residual heterozygosity in the parental lines also

contributes to the sustainability of CGMS system [8]. SSR-

based molecular profiles of the hybrid and its parents have

been shown in Fig. 1.

Similar instances of SSR-based hybridity/genetic purity

testing were also reported for A4-cytolplasm derived

hybrids in pigeonpea. For example, SSR profiles were

constructed for hybrid ICPH 2438 and its parental lines

(ICPA 2039 and ICPR 2438) using genomic-SSR markers

[8]. Likewise, another hybrid ICPH 2671 and its parental

lines (ICPA 2043 and ICPR 2671) were characterized with

BAC-end sequence (BES) derived SSR markers (BES-

SSRs) [10]. Besides pigeonpea, SSR markers were

employed for DNA fingerprinting of CGMS based hybrids

in several other crops including rice [12], maize [29] and so

forth. In some instances, dominant markers such as RAPD

were also employed for testing hybridity, if adequate

number of paternal-specific fragments were available [30].

Nevertheless, meagre reproducibility and detection of

multiple fragments offer potential impediments while

dealing with marker systems like RAPD.

In summary, here authors report a set of seven robust

SSR markers, which would facilitate rapid and accurate

detection of the CGMS-hybrid and its parental lines.

Accordingly, the SSR markers would contribute signifi-

cantly to the commercial success of CGMS-hybrids in pi-

geonpea through avoiding any possibilities of

contamination from self-inbred or other seeds. Moreover,

mapping populations like F2 and Backcross are being

developed at IIPR derived from the cross PA 163A 9 AK

261322 and hence, these polymorphic SSR markers might

be of great use in future molecular tagging/mapping of

gene(s)/QTL(s) responsible for fertility restoration using

bulked segregants analysis (BSA) or quantitative trait loci

(QTL) approach.
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