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Abstract Amylases are widely distributed and are one of

the most studied enzymes. Such enzymes hydrolyze the

starch molecules into polymers composed of glucose units.

Amylases have potential application in a wide number of

industrial processes such as food, fermentation and phar-

maceutical industries. Amylases can be obtained from

plants, animals and microorganisms. However, enzymes

from fungal and bacterial sources have dominated appli-

cations in industrial sectors. The microbial source of

amylase is preferred to other sources because of its plas-

ticity and vast availability. The production of a-amylase is

essential for conversion of starches into oligosaccharides.

Starch is an important constituent of the human diet and is

a major storage product of many economically important

crops such as wheat, rice, maize, tapioca, and potato. The

properties of each a-amylase such as thermostability, pH

profile, pH stability, and Ca-independency are important in

the development of fermentation process. This review

focuses on the isolation, substrates of a-amylases, pro-

duction of bacterial and fungal a-amylases, properties of

a-amylases, and the use of these enzymes in industrial

applications.
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Introduction

a-Amylases (E.C.3.2.1.1) are starch degrading enzymes

that catalyses the hydrolysis of internal a-1,4 and a-1,6-

glycosidic linkages in starch in low molecular weight

products, such as glucose, maltose and maltotriose units.

Amylases are among the most important enzymes and are

of great significance for biotechnology, constituting a class

of industrial enzymes. Amylases can be obtained from

several sources such as plants, animals and microbes [1].

The microbial source of amylase is preferred to other

sources because of its plasticity and vast availability.

Today a large number of microbial amylases are available

commercially and they have almost completely replaced

chemical hydrolysis of starch in starch processing industry.

The amylases of microorganisms have a broad spectrum of

industrial applications as they are more stable as compared

to plant and animal a-amylases.

Starch degrading amylolytic enzymes is of great

importance in biotechnological application ranging from

food, fermentation, and textile to paper industries etc. Most

amylases used in industry are from microbial source due to

several factors, for example, the great microbial genetic

diversity present in the environment, high enzymatic

activity in a wide range of conditions (extreme pH, tem-

perature, osmolarity, pressure, etc.), and simple and cost

effective production. a-Amylase is a key enzyme in

metabolism of spacious diversity of living organisms which

utilize starch as carbon and energy sources. Microbial

amylase has almost surpassed the synthetic sources in
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different industries [2]. These enzymes account for about

30 % of the world’s enzyme production market [3]. Based

on the mode of actions enzymes that hydrolyze starch can

be divided into endoamylases (a-amylase), exoamylases

(b-amylase, glucoamylase, and a-glucosidase) and de-

branching enzymes [4, 5]. Amylases are important in

starch-processing industries; endoamylases initiate starch

degradation (liquefaction process) to produce maltodext-

rins, and exoamylases are usually used to further degrade

maltodextrins into glucose and maltose (saccharification

process) [6].

The a-amylase family can roughly be divided into two

groups: the starch hydrolyzing enzymes and the starch

modifying, or transglycosylating enzymes. The enzymatic

hydrolysis is preferred to acid hydrolysis in starch pro-

cessing industry due to a number of advantages such as

specificity of the reaction, stability of the generated prod-

ucts, lower energy requirements and elimination of neu-

tralization steps. This review illustrates an overview of

microbial a-amylases.

Endoamylases

Endoamylase randomly cleave a-1,4-D-glycosidic linkage

between adjoining glucose units in the product chain

retaining the anomeric carbon configuration in the product

[7]. a-Amylases are well known as endoamylases, cleavage

of internal a-1,4 bonds result in a-anomeric products [8].

Majority of a-amylases are extracellular, however a few

others were found to be intracellular.

Exoamylases

Exaoamylases act at the non-reducing ends of polysac-

charides and produce low molecular weight products, e.g.,

glucose and maltose. These enzymes exclusively either

cleave a-1,4-glycosidic bonds as b-amylase or cleave both

a-1,4 and a-1,6-glycosidic bonds like glucoamylase and a-

glycosidase [8]. The starch hydrolysates are also different:

glucoamylase and a-glucosidase produce only glucose,

whereas b-amylase results in maltose and b-limit dextrin.

b-Amylase and glucoamylase also convert anomeric con-

figuration of the liberated product from a to b [2].

Debranching Enzymes

The branch points containing a-1,6-glycosidic linkages

present in starch and glycogen are resistant to attack by a-

and b-amylase resulting in a a/b limit dextrins respectively.

Pullulanase, first discovered in 1961 attracted interest

because of its specific action on pullulan, a linear D-glucose

polymer with maltotriosyl units joined by a-1,6 bonds.

Pullulanase is produced by mesophillic organisms such as

Klebsiella aerogenes and Aureobasidium pullulans and are

capable of specifically attacking a-1,6 linkages present in

starch and glycogen [5]. Glucoamylase can also attack

a-1,6 linkages but the reaction proceeds at relatively slow

rate compared to pullulanase action.

Isolation of a-Amylases

Various a-amylases are produced by plants, animals, and

microorganisms. Microorganisms have become increas-

ingly important as producer of industrial enzymes. Due to

their biochemical diversity and the ease with which

enzyme concentrations may be increased by environmental

and genetic manipulation, attempts are now being made to

replace enzymes, which traditionally have been isolated

from complex eukaryotes [9]. Starch degrading amylolytic

enzymes are most important in the biotechnology indus-

tries with huge application in food, fermentation, textile

and paper [2]. Among the microbial origin, amylases of

fungal origin were found to be more stable than the bac-

terial enzymes on a commercial scale. Thus the attempts

have been made to optimize the culture conditions for

suitable strains of fungi [10]. On the other hand, as bac-

terial a-amylase has generally been produced from the

strains belonging to genus Bacillus [11, 12], several

attempts have been made at their purification and charac-

terization from both mesophilic and thermophilic strains

[1, 2].

Attempts have been made to isolate amylase from dif-

ferent sources [11–14]. Amylases have been isolated from

mangrove associated fungi Pestalotiopsis microspora and

Aspergillus oryzae [13]. Haloalkalophillic amylases have

been isolated from bacterium Bacillus agaradhaerens

which was quiet tolerant to a range of organic solvents such

as alkanes and alcohol [14]. Production of haloalkalophillic

amylases has a great importance in starch liquefaction,

pulp processing and detergent making industries [15–17].

Irrespective of the wide range of applications one major

limitation of the amylases is their ineffectiveness in the

detergent industry [18]. Earlier research have shown that

alkaliphilic amylases can be good source for detergent

industry. Alkaliphiles are the extremophiles that occupy

extreme pH environments [19]. The first alkaline amylase

of an alkaliphilic Bacillus strain was reported by Horikoshi

[20]. The main reasons for selecting enzymes from alka-

liphiles are their long term stability in detergent products,

energy cost saving by lowering the washing temperature,

quicker and more reliable product, reduced effluent prob-

lem during the process and stability in the presence of
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detergent additives such as bleach activators, softeners and

perfumes. Attempts have been made to isolate alkaline

amylases from various Bacillus species [21]. Similarly

Yang et al. [22] reported that the recombinant alkaline a-

amylase from Bacillus alcalophilus and Bacillus subtilis

was stable at pH from 7.0 to 11.0 with an optimum pH of

9.5. For the optimization of production protocol to reduce

cost of production at industrial level, efforts have been

made to isolate amylase from Penicillium camemberti

using orange waste as substrate [23]. Vasant [24] isolated a

thermostable amylase form Acremonium sporosulcatum

which was able to withstand high temperature variations

dissipated during production processes in industries.

Substrates for Amylase Production

To meet the growing demands in the industry it is neces-

sary to improve the performance of the system and thus

increase the yield without increasing the cost of production

[23]. Natural sources could serve as economical and readily

available raw material for the production of valuable

enzymes. Wheat bran and rice flakes were used as cheap

and efficient carbon source for the production of amylases

[21]. Similarly waste potato starch in liquid medium is

used for the enhanced production of a-amylases [11]. Use

of soybean meal as a substrate for amylase production has

been optimized for the production of amylases from

B. subtilis [22]. Use of different carbon and nitrogen

sources as substrate has been studied [25]. They induced

the a-amylase production with soybean meal, wheat bran,

corn protein, hazelnut cake and whey as natural substrates

by B. amyloliquefaciens, after the studies it has been

observed that medium containing soybean meal is best for

the amylase production.

Production of a-Amylases

Both solid state fermentation (SSF) and submerged fer-

mentation (SmF) could be used for the production of

amylases, although traditionally these have been obtained

from submerged cultures because of ease of handling and

greater control of environmental factors such as tempera-

ture and pH. Mostly synthetic media have been used for the

production of bacterial amylase through SmF [26, 27].

However, SSF is generally defined as the growth of

microorganisms on moist solid substrates with negligible

free water [28]. The solid substrate may provide only

support or both support and nutrition. SSF constitutes an

interesting alternative since the metabolites so produced

are concentrated and purification procedures are less costly

[2, 8, 29–32]. The expenditure of enzyme production in

SmF is high, thus creating the need to develop a system

which lessens the cost by substitute methods. To reduce the

cost of production and enhance efficient commercialization

technique, a-amylase production in solid-state fermenta-

tion with wheat bran and rice husk as substrates have been

reported [33]. Ikram-ul-Haq et al. [34] has illustrated the

selection of an appropriate low cost fermentation medium

for the production of a-amylase by using agricultural by-

products. The optimization of fermentation parameters for

a-amylase production has been carried out to study the

purification and characterization of amylase from Gano-

derma tsugae through the process of solid-state fermenta-

tion [35, 36].

SSF technique is generally confined to the processes

involving fungi. However, successful bacterial growth in

SSF is known in many natural fermentations [9, 37]. The

production of a-amylase by SSF is limited to the genus

Bacillus. B. subtilis, B. polymyxa, B. mesentericus, B.

vulgaris, B. coagulans, B. megaterium and B. licheniformis

have been used for a-amylase production in SSF [38].

Production of a-amylase in fungi is known to depend on

both morphological and metabolic state of the culture.

Growth of mycelium is crucial for extracellular enzymes

like a-amylase [39]. Various physical and chemical factors

have been known to affect the production of a-amylase

such as temperature, pH, period of incubation, carbon

sources acting as inducers, surfactants, nitrogen sources,

phosphate, different metal ions, moisture and agitation with

regards to SSF and SmF, respectively. Interactions of these

parameters are reported to have a significant influence on

the production of the enzyme.

Properties of a-Amylase Affecting Its Production

and Application

a-Amylase probably has the most widespread use in

enzyme industry. Besides their use in the saccharification

or liquefaction of starch, these enzymes are also used for

the preparation of viscous stable starch solutions used for

the warp sizing of textile fibers, the clarification of haze

formed in beer or fruit juices, or for the pretreatment of

animal feed to improve the digestibility [3]. An important

area of application of a-amylases is in the fields of laundry

and dish-washing detergents. A modern trend among con-

sumers is to use colder temperatures for doing the laundry

or dishwashing. At these lower temperatures, the removal

of starch from cloth and porcelain becomes more prob-

lematic. Detergents with a-amylases optimally working at

moderate temperatures and alkaline pH can help solve this

problem. In addition to this several patents exist describing

the potential use of branching enzyme in bread as an anti-

staling agent [40], or for the production of low-viscosity,
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high molecular weight starch for, e.g. the coating of paper

[41] or warp sizing of textile fibers, thus making the fibers

stronger [42]. However the applications of branching

enzymes are limited by the lack of commercially available

enzymes that are sufficiently thermostable or alkalistable.

Continuously, growing area of industrial application is

pressurizing the demand to discover the enzymes with a

broad spectrum of activity. The various factors which

affect the enzyme production and its application are as

follows.

pH Optima and pH Stability of a-Amylases

Starch gelatinization is the process carried out at low pH of

about 4.5. The extreme conditions required for such pre-

treatment necessitate the use of an enzyme that is resistant

to high temperatures and low pH. Acid hydrolysis of

peptide bonds at low pH has been reported to occur most

often at the C-terminal side of Asp residues, with the Asp–

Pro bond being the most susceptible. This may be due to

the facts that the nitrogen of proline is more basic than that

of other residues, and Asp has an increased propensity for

a-b isomerization when linked on the N side of a proline

[43]. Peptide bond hydrolysis never occurs in the helical

and beta structures. Thus, it appears that Asp residues, or

Asp–Pro bonds, occurring in regions except helical and

beta structures are susceptible to hydrolysis at low pH.

However, amylases have been isolated with a pH optima

varying from 2 to 12 [44]. a-Amylases from most bacteria

and fungi have pH optima in the acidic to neutral range [2].

a-Amylase from Alicyclobacillus acidocaldarius showed

an acidic pH optima of 3 [45, 46] in contrast to the alkaline

amylase with optima of pH 9–10.5 reported from an

alkalophilic Bacillus sp. [4, 22]. Extremely alkalophilic

a-amylase with pH optima of 11–12 has been reported

from Bacillus sp. GM8901 [47]. Studies have also shown

an influence of polyols indicated that stability towards high

temperature and proteolytic digestion of enzymes was

markedly enhanced in the presence of additives such as

sorbitol, glycerol and trehalose. Moreover, enzymes were

resistant to acidic digestion [48].

Temperature Stability and Temperature Optima

of Amylases

Temperature is one of the most important parameter that

affect the rate of enzyme hydrolysis. It is desirable that

a-amylases should be active at high temperatures of

gelatinization (100–110 �C) and liquefaction (80–90 �C)

to economize the process; therefore, there has been a

need and continual search for more thermophilic and

thermostable a-amylase [49]. The Ca2? is found to be

necessary for enzyme folding and enzyme stability. The

temperature optimum for the activity of a-amylase is

related to the growth of the microorganism [44]. The

lowest temperature optimum is reported to be 25–30 �C for

Fusarium oxysporum amylase [50] and the highest of 100

and 130 �C from archaebacteria, Pyrococcus furiosus and

Pyrococcus woesei, respectively [51]. Thermophilic amy-

lases has also been isolated from B. subtilis and B. firmus

[11, 52]. Isolation of amylases with temperature optima of

55 �C has been reported from actinomycetes [53]. Tem-

perature optima of enzymes from Micrococcus varians are

calcium dependent [54] and that from H. meridiana is

sodium chloride dependent [55].

Effect of Inhibitors on Amylase Activity

Many metal cations, especially heavy metal ions, sul-

phydryl group reagents, N-bromosuccinimide, phydroxyl

mercuribenzoic acid, iodoacetate, BSA, EDTA and EGTA

inhibit a-amylases. In amylases, Ca2? is loosely bound to

enzyme and can be removed by treating with metal che-

lators such as EDTA, EGTA, etc. [56].

Calcium and Stability of a-Amylases

a-Amylase is a metalloenzyme, which contains at least one

Ca2? ion [57, 58]. The affinity of Ca2? ions to a-amylase is

much stronger than that of other ions. The amount of bound

calcium varies from one to ten. Ca2? ions add to the stability

of the enzyme, however, they can be removed from amy-

lases by dialysis against EDTA or by electrodialysis. The

stabilizing effect of Ca2? on thermostability of the enzyme

can be explained due to the salting out of hydrophobic

residues by Ca2? in the protein, thus, causing the adoption of

a compact structure [59]. Calcium free enzymes can be

reactivated by adding Ca2? ions. Some studies have been

carried out on the ability of other ions to replace Ca2? as

Sr2? in B. caldolyticus amylase [60]. In the presence of

Ca2?, a-amylases are much more thermostable than without

it [61]. There are also reports where Ca2? did not have any

effect on the enzyme [62]. Calcium independent amylases

have also been reported the presence of a thermostable a-

amylase from B. thermooleovorans NP54, which did not

require calcium ions for its activity or production [46, 63].

Effect of Different Substrates on Amylase Activity

a-Amylase is an inducible enzyme and is generally induced

in the presence of starch or its hydrolytic product, maltose.

12 N. Rana et al.
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Amylases show substrate specificity. The substrate speci-

ficity of the a-amylase was evaluated on soluble starch,

amylose, amylopectin, glycogen, maltodextrins, and a- and

b-cyclodextrins. Natural starches such as maize starch [29],

raw sago starch [64], corn starch [65, 66] and wheat starch

[33] increased a-amylase activities.

The carbon sources as glucose and maltose have been

utilised for the production of a-amylase. However, the use

of starch remains promising and ubiquitous. A number of

other non-conventional substrates as lactose, casitone, fruc-

tose, oilseed cakes, sugarcane bagasse [30, 31], dairy efflu-

ent [67], industrial waste [68], date waste [69], fermented

cassava waste water [70], starch processing waste water and

bread waste [36] have also been used for the production of

a-amylase while the agro-processing byproduct, wheat bran

has been used for the economic production of a-amylase by

SSF [29]. The use of wheat bran in liquid state fermentation

(LSF) for the production of a-amylase from Aspergillus

fumigatus and from Calvatia gigantea, respectively, has also

been reported [71]. Use of low molecular weight dextran in

combination with either Tween 80 or Triton X-100 for a-

amylase production in the thermophilic fungus Thermomy-

ces lanuginosus (ATCC 200065) has also been reported

[72]. Triton X-100 had no effect, whereas Tween 80

increases the a-amylase activity by 27-fold.

Industrial Applications of Amylases

Production of Bioethanol

Bioethanol production from starch has increased rapidly as

the demand for renewable sources of fuel escalates. In

industry, bioethanol is generated from sugars through the

fermentation process, which is carried out by microor-

ganisms, mainly Saccharomyces cerevisiae. S. cerevisiae is

unable to directly utilize starch for cell growth and fer-

mentation but rather requires starch to be pre-treated to

release the glucose residues. Traditionally, the industrial

process involves the cooking of starch granules at high

temperatures in order to solubilize the starch molecules,

which is followed by the addition of starch-degrading

enzymes. However, high temperature cooking greatly

contributes to the energy consumption of the fermentation

process, thus reducing the total energy output of a bio-

ethanol producing plant [73, 74]. Thus, a genetically

engineered yeast strain that can express a raw starch-

hydrolyzing enzyme would greatly reduce the cost of

bioethanol production using a cold starch hydrolysis pro-

cess. Liao et al. [75] engineered barley a-amylase in

S. cerevisiae for the conversion of starch to bioethanol

which lead to a considerable lowering in the cost of pro-

duction of bioethanol at industrial level.

Starch Conversion

One of the most widespread applications of a-amylases is in

the starch industry, which is used for starch hydrolysis.

Starch liquefaction process converts starch into fructose and

glucose syrups [76]. The enzymatic conversion of all starch

includes: gelatinization, liquefaction and saccharification

processes. Gelatinization involves the dissolution of starch

granules, thereby forming a viscous suspension. Liquefac-

tion, involves with the partial hydrolysis and loss in viscosity

of syrup and saccharification, involving the production of

glucose and maltose via further hydrolysis [6, 77]. Initially,

a-amylase of B. amyloliquefaciens was used but it has been

replaced by the a-amylase of B. stearothermophilus or

B. licheniformis [3]. The enzymes from the fungal origin and

Bacillus species are of special interest for large scale bio-

technological processes due to their remarkable thermosta-

bility and because efficient expression systems are available

for these enzymes [77].

Detergent Industry

The use of enzymes in detergents formulations enhances the

detergents ability to remove tough stains and making the

detergent environmentally safe. Amylases are used in

detergents for laundry and automatic dishwashing to degrade

the residues of starchy foods such as potatoes, gravies,

custard, chocolate etc. to dextrins and other smaller oligo-

saccharides [78, 79]. Detergent industries are the primary

consumers of enzymes, in terms of both volume and value.

Amylases are the second type of enzymes used in the for-

mulation of enzymatic detergent, and 90 % of all liquid

detergents contain these enzymes [6, 80, 81]. Amylases have

activity at lower temperatures and alkaline pH, maintaining

the necessary stability under detergent conditions and the

oxidative stability of amylases is one of the most important

criteria for their use in detergents where the washing envi-

ronment is very oxidizing [82]. Removal of starch from

surfaces is also important in providing a whiteness benefit,

since starch can be an attractant for many types of particu-

late soils. Examples of amylases used in the detergent

industry are derived from Bacillus or Aspergillus [81].

Textile Industry

Starch is a very attractive size in textile industries, because it

is cheap, easily available in most regions of the world, and it

can be removed quite easily. Amylases are used in textile

industry for desizing process. Desizing involves the removal

of starch from the fabric which serves as the strengthening

agent to prevent breaking of the warp thread during the

weaving process. Sizing agents like starch are applied to

yarn before fabric production to ensure a fast and secure

a-Amylases from Microbial Sources 13
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weaving process. Starch is later removed from the woven

fabric in a wet-process in the textile finishing industry. The

a-amylases remove selectively the size and do not attack the

fibers [6, 83, 84]. Amylase from Bacillus strain was

employed in textile industries for quite a long time.

Paper Industry

The use of a-amylases in the pulp and paper industry is for the

modification of starch of coated paper, i.e. for the production

of low-viscosity, high molecular weight starch [3, 6]. The

coating treatment serves to make the surface of paper suffi-

ciently smooth and strong, to improve the writing quality of

the paper. In this application, the viscosity of the natural starch

is too high for paper sizing and this can be altered by partially

degrading the polymer with a-amylases in a batch or contin-

uous processes. Starch is a good sizing agent for the finishing

of paper, improving the quality and erasability, besides being a

good coating for the paper. The size enhances the stiffness and

strength in paper [6, 41]. Examples of amylases obtained from

microorganisms used in paper industry includes Amizyme�

(PMP Fermentation Products, Peoria, USA), Termamyl�,

Fungamyl, BAN� (Novozymes, Denmark) and a-amylase

G9995� (Enzyme Biosystems, USA) [85].

Baking Industry

a-Amylases have been widely used in the baking industry.

These are extensively employed in processed food industry

such as baking, brewing, preparation of digestive aids,

production of cakes, fruit juices and starch syrups [86]. The

addition of a-amylase to the dough results in enhancing the

rate of fermentation and the reduction of the viscosity of

dough, resulting in improvements in the volume and texture

of the product. These enzymes can be added to the dough of

bread to degrade the starch in the flour into smaller dextrins,

which are subsequently fermented by the yeast. Moreover, it

generates additional sugar in the dough, which improves the

taste, crust colour and toasting qualities of the bread. Besides

generating fermentable compounds, a-amylases also have an

anti-staling effect in bread baking, and they improve the

softness retention of baked goods, increasing the shelf life of

these products [3, 6]. Currently, a thermostable maltogenic

amylase of B. stearothermophilus is used commercially in

the bakery industry [3]. Amylases are also used for the

clarification of beer or fruit juices, or for the pretreatment of

animal feed to improve the digestibility of fiber [3, 87, 88].

Conclusion

The a-amylase family comprises a group of enzymes with

a variety of different specificities that all act on one type of

substrate, being glucose residues linked through an a-1,1;

a-1,4; or a-1,6-glycosidic bond. Members of this family

share a number of common characteristics but at least 21

different enzyme specificities are found within the family.

These differences in specificities are based not only on

subtle differences within the active site of the enzyme but

also on the differences within the overall architecture of the

enzymes. The a-amylase family can roughly be divided

into two subgroups: the starch-hydrolysing enzymes and

the starch-modifying or transglycosylating enzymes. As

evident from the foregoing review, amylases are among the

most important enzymes used in industrial processes. With

increase in its application spectrum, the demand is for the

enzyme with specificity. Research is focused on developing

thermotolerant and pH tolerant a-amylase from microbes,

modifying them genetically or applying site-directed

mutagenesis to acquire desired properties in the enzyme.

Commercially most of the production of a-amylase is

carried out in SmF, but solid-state fermentation is being

looked at as a potential tool for its production, especially

applying agroindustrial residues as substrate.
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