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Abstract

Background Polymeric nanofibers have been used in various applications, including drug delivery, wound dressing, tis-
sue engineering, biosensors, and implants. A wide range of cargoes such as drugs, metal nanoparticles, proteins, cells, and
herbal extracts could be loaded into these systems. Among all the different methods of fabricating fibers, the electrospinning
technique has got a significant interest. Fibers could be generated from synthetic and natural polymers and even the mixture
of these polymers using simple, co-axial, or side-by-side spinneret. Polymers should be either dissolved or dispersed in their
solvents, making solutions or emulsions, respectively. Electrospinning processing conditions, including solution parameters
(polymer molecular weight, polymer concentration, and solvent) and equipment parameters (feeding rate, applied voltage,
needle-to-collector distance, and speed of collector in rotating collectors) could influence diameter, morphology, or orienta-
tion of nanofibers.

Area Covered This article highlights synthetic polymers (such as polyvinylpyrrolidone, polyvinyl alcohol, polyurethane,
polyethylene oxide, poly e-caprolactone, polylactic acid, and poly(lactic-co-glycolic acid)) and natural polymers (such as
gelatin, chitosan, collagen, silk fibroin, and zein) considering their electrospinning process variables. Also, the electrospin-
ning process and formulation parameters are summarized in the most recent studies.

Expert Opinion Choosing proper electrospinning parameters is crucial in fabricating nanofibers. This article summarizes
the most important electrospinning factors, including the active ingredient, molecular weight and concentration of applied
polymers, solvent, voltage, etc. This article can provide a means to quickly assess the preparation conditions of nanofibers
and guide formulators to choose the most suitable electrospinning conditions for nanofiber preparation.

Keywords Nanofibers - Electrospinning - Electrospinning parameters - Synthetic polymers - Natural polymers

Introduction flexibility, high drug loading capacity, good mechanical per-
formance, and ease of functionalization and surface modi-
Nanofibers are fibers in nanoscale diameters, usually in the fication (Eatemadi et al. 2016; Thakkar and Misra 2017;
range of 50-1000 nm, produced from polymer solutions or ~ Nunes and Philipps-Wiemann 2018; Rasouli et al. 2019).
polymer melts. They have numerous advantages, includ-  Moreover, fibers can imitate the natural extracellular matrix
ing large surface area, suitable physiochemical features, = (ECM) and improve the absorption and bioavailability of
poorly soluble drugs (Rasouli et al. 2019; Vass et al. 2019).
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Fig. 1 Schematic representation
of nanofibers application in the

medical field Tissue engineering

Drug and gene delivery

VA .

Stent coating

According to the incorporation method, fibers may have
rapid, extended, or delayed release of the loaded cargoes
(Chou et al. 2015; Sebe et al. 2015).

Several techniques for manufacturing nanofibrous
scaffolds include electrospinning, phase separation, self-
assembly, template-directed, and hydrothermal synthesis.
Electrospinning, self-assembly, and phase separation are
the three most important methods. Electrospinning is the
most convenient, versatile, cost-effective, and widely used
scaffold fabrication technique, which has emerged as an
excellent method to render different kinds of polymers into
multi-functional ultrafine fibers with diameters ranging from
tens of nanometers to several microns (Eatemadi et al. 2016;
Thakkar and Misra 2017; Shahriar et al. 2019). Therefore,
in this manuscript, we have focused on this preparation
technique.

A standard electrospinning machine consists of a high-
voltage power supply, a syringe with a needle tip (spinneret),
and a conducting collector (Eatemadi et al. 2016). During
electrospinning, a polymer solution or melt in a syringe with
a capillary orifice is fed through the spinneret at a constant
pump rate. A sufficiently strong electrostatic field is applied
to the polymer solution. Afterward, a droplet of the polymer
solution forms at the tip of the capillary, which causes a
deformation of the solution from a spherical to a conical
shape, called a “Taylor cone” (Eatemadi et al. 2016; Vass
et al. 2019). After exceeding a critical voltage value, the
repulsive electrical forces overcome the surface tension
of the solution, the cone becomes unstable, and fibers are
extruded from the syringe tip, accelerating toward the col-
lection plate. Simultaneously, the solvent evaporates, and the
charged jets of polymer solution rapidly dry leading to the
formation of a solid fiber, which is collected on the collector
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with an opposite polarity (Eatemadi et al. 2016; Thakkar and
Misra 2017; Vass et al. 2019).

Several parameters can affect the electrospinning process
and the size and surface morphology of the resulting fib-
ers. These factors include (1) solution factors (solvent type,
polymer molecular weight, and polymer solution properties
including concentration, viscosity, conductivity, polarity,
and surface tension); (2) operating factors (collector type,
electric field strength, needle-collector distance, nozzle
gauge and geometry, and feeding rate); and (3) environ-
mental conditions (the relative humidity and temperature)
(Fig. 2) (Thakkar and Misra 2017; Bhattarai et al. 2019;
Pant et al. 2019).

The electrospinning method is governed by all these var-
ious parameters, and the structural properties of obtained
nanofibers notably depend on the deliberate manipulation
of different parameters. Studying the effects of these param-
eters is helpful in optimizing the structure and function of
resulting nanofibers. In this context, the optimization of
solution concentration can be the first step. In the electro-
spinning process, a minimum concentration is required to
form nanofibers. Below the minimum required concentra-
tion, the process results in a mixture of beads and fibers.
When the concentration increases, beads turn to spindle-like
structures and then these defects disappear. Further increase
in the concentration can increase the mean diameter of fib-
ers due to an increased viscosity resistance. Besides, there
is an optimal concentration range, and when the concentra-
tion increases above the range, the flow cannot be main-
tained between the tip and collector, and beaded or defec-
tive nanofibers are fabricated (Bhardwaj and Kundu 2010;
Haider et al. 2018).
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Fig.2 Schematic representation
of electrospinning machine and
process parameters
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Considering other factors, most solution parameters
are related to the selected polymer. The physicochemical
properties of the polymer and its molecular weight deter-
mine applicable solvents, solution conductivity, and surface
tension as a function of solvent composition. Besides, the
molecular weight and concentration of polymers or polymers
blend affect the viscosity of electrospinning solution as a
considerable parameter in electrospinning. Generally, higher
molecular weight can ensure the uniformity of nanofibers
due to higher solution viscosity in lower concentrations. It
should be kept in mind that there is an optimal point for dif-
ferent process parameters and an ejection difficulty for jets
when the viscosity is higher than the optimum level. Also,
the polymer and solvent types influence conductivity, and an
increase in conductivity can decrease the mean diameter of
nanofibers (Bhardwaj and Kundu 2010; Haider et al. 2018).

In a study on bioabsorbable amorphous polylactic acid
(PLA), it was indicated that the nanofiber diameter and mor-
phology depended on various electrospinning parameters.
In addition to polymer concentration, the potential effect
of the addition of various salts to the polymer solution was
investigated. As shown in Fig. 3, solutions containing 1 wt %
salts resulted in bead-free morphology. This can be due to an
increase in the charge density of ejected jet’s surface leading
to higher elongation forces, smaller and more spindle-like
beads, and less mean diameter of fibers. Also, it is worth
noting that the size of ions in different salts could affect the
size distribution of nanofibers and the solution containing
1 wt % NaCl showed the smallest mean nanofiber diameter.
A smaller atomic radius causes higher charge density and
subsequently higher elongation forces and smaller nanofiber
diameter (Zong et al. 2002).

Regarding the operating parameters, applied voltage is
one of the main determinative factors. Each electrospinning
procedure has a threshold voltage, and the nanofiber for-
mation occurs above this limit. While the voltage needs to

be optimized for the process, the flow rate should also be
optimized and kept at a minimum to give the solvent enough
time to evaporate. Furthermore, optimizing tip-to-collector
distance can improve the uniformity of nanofibers, and
beads can be observed with less or more distance. Moreo-
ver, ambient parameters can affect the obtained nanofibers
by affecting solution parameters and the electrospinning
process (Bhardwaj and Kundu 2010). In a study on poly
e-caprolactone (PCL), the morphology of nanofibers was
investigated by electron microscopy after alterations in solu-
tion concentration, feeding rate, applied voltage, and tip-to-
collector distance, and the obtained results could present
the impact of different parameters (Fig. 4) (Bosworth and
Downes 2012).

Classically, electrospinning systems have two types
(horizontal and vertical) (Guo et al. 2022). Additionally,
several electrospinning systems have been produced, such
as side-by-side, co-axial, multi-jet, and emulsion elec-
trospinning (Fig. 5). These techniques provide superior
properties, including higher drug loading capabilities as
well as more versatile and tunable release profiles. The
co-axial (core—shell) electrospinning method can simul-
taneously electrospun two immiscible phases (Hu et al.
2014; Choi et al. 2015). Compared to the conventional
process, this method has two aligned capillaries instead
of one, which minimizes the interaction between core and
shell ingredients and protects the core from exposure to
harsh environments (Choi et al. 2015). The production rate
is enhanced by increasing the number of nozzles through
multiple-jet electrospinning. This process has greater con-
trol over fiber distribution. Another method is side-by-side
electrospinning. This method loads two polymer solutions
in separate spinnerets, offering a high surface area and
a controlled morphology (Bhattarai et al. 2019). As one
of the interesting methods, emulsion electrospinning uses
emulsified polymer solutions to produce nanofibers. The
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Fig. 3 Effects of variations in
electrospinning parameters on
the PLA nanofibrous structures
determined by SEM analysis
(the feeding rate: 0.02 mL/min
exhibiting; the scale bar 10 um)
(reprinted with minor modifi-
cation from Ref. (Zong et al.
2002), with permission). PLA
polylactic acid, SEM scanning
electron microscopy

Voltage 1 Baseline

Distance 1

Both 1

20 kV

25 kV

Voltage Concentration Salt

30 wt% 25 wt%

35 wt%

10

0.1 mL/min

0.05 mL/min

Fig.4 Effects of variations in PCL concentration (5, 7.5, and distance of 15 kV and 5 cm, respectively (scale bar 5 pm) (reprinted
10%w/v), flow rate (0.1 and 0.05 mL/min), voltage (25 kV), and nee- with minor modification from Ref. (Bosworth and Downes 2012),
dle-to-collector distance (10 cm) on the PCL nanofibrous structures with permission). PCL poly e-caprolactone, SEM scanning electron
determined by SEM analysis, as compared to the baseline voltage and microscopy
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Fig.5 Schematic representation
of horizontal and vertical elec-
trospinning systems, as well as
simple, co-axial, side-by-side,
and emulsion electrospinning
methods

Simple

obvious difference between core—shell and emulsion elec-
trospinning is that co-axial electrospinning works based on
physical separation using two electrospinning tips and two
polymer solutions. However, emulsion electrospinning is
based on stretching and evaporation-induced demulsifica-
tion (Hu et al. 2014).

The versatility of the electrospinning technique appears
in the possibility of spinning several polymers (natural or
synthetic polymers and polymeric blends) (Rasouli et al.
2019). Several synthetic polymers have been utilized to
prepare nanofibers through electrospinning, such as PLA
(Serio et al. 2019), poly(lactic-co-glycolic acid) (PLGA) (Yu
et al. 2019), polyurethane (PU) (Balaji et al. 2016), PCL
(Babadi et al. 2022a, b; Talimi et al. 2022a, b), polyethylene
oxide (PEO), polyvinyl alcohol (PVA), and polyvinylpyr-
rolidone (PVP) (Sharifi et al. 2022). Besides, a variety of
natural polymers have been applied in electrospinning, such
as gelatin (Okutan et al. 2014), collagen (Dhand et al. 2016),
silk (Chomachayi et al. 2016), and zein (Vogt et al. 2018).
Moreover, polysaccharides such as alginate (Vigani et al.
2018), chitosan (Amiri et al. 2018), dextran (Sheet et al.
2018), cellulose (Shi et al. 2013a, b; Huang et al. 2016),
chitin (Moon et al. 2019), starch (Komur et al. 2017), and
hyaluronic acid (Figueira et al. 2016) have recently been
widely used in electrospinning techniques. Natural polymers
display better biocompatibility and lower immunogenicity
than synthetic ones. Yet, their physical and mechanical prop-
erties are more difficult to modify (Teixeira et al. 2019).

In this article, we summarized and explained the elec-
trospinning parameters of various natural and synthetic

Co-axial

Emulsion

Side-by-side

polymers. Each section explains a brief description of the
polymer, nanofibers characteristics, and optimized electro-
spinning parameters. In tables presented in each section, we
tried to summarize the most important electrospinning fac-
tors including the active ingredient, molecular weight and
concentration of applied polymers, solvent, and voltage. In
each table, records are sorted as free and cargo-loaded poly-
mers by simple spinneret and polymer blends using side-by-
side or co-axial spinneret. The tables can provide a means to
assess preparation conditions of nanofibers quickly and as a
guide for nanofiber fabrication.

Synthetic polymers
Polyvinylpyrrolidone

PVP is a polymeric lactam that has US Food and Drug
Administration (FDA) approval. This polymer consists of
N-vinylpyrrolidone monomers, and it is characterized by its
high biocompatibility, film-forming abilities, and chemical
stability. All these properties along with its non-toxicity and
safety have made PVP one of the most important materials
in pharmaceutical technology with a wide variety of applica-
tions. This polymer has been used in numerous fields, such
as food packaging, textile auxiliaries, adhesives, cosmetics,
medicine, and biological engineering materials (Kurakula
and Rao 2020). PVP has been used in fabricating nanofibers
through the electrospinning process. The characteristics as
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mentioned above are also important for the electrospinning
process. Studies have shown that various molecular weights
including 58 kDa (Yang et al. 2018c), 360 kDa (Dai et al.
2012), 1300 kDa (Wang et al. 2015), etc. have been used in
this process. The PVP concentration in the electrospinning
solution was usually 5-16% (w/v) (Table 1). This non-ionic
and amorphous polymer dissolves well in various aqueous
and organic solvents such as water, acids, ethanol, methanol,
amines, chloroform, and dichloromethane (DCM) (Kurakula
and Rao 2020). However, ethanol is mostly used in PVP
nanofibers as a solvent for electrospinning (Table 1). Some
recent studies on PVP nanofiber fabrication considering pro-
cess variables are summarized in Tables 1 and S1 (Online
Resource 1).

Emodin is a derivative of a Chinese herb that can accel-
erate wound healing (Dai et al. 2012). Some researchers
fabricated PVP nanofibers containing emodin. 10% (w/v)
polymeric solution in ethanol was prepared from PVP with
a molecular weight of 360 kDa. Emodin-loaded nanofibers
demonstrated shrinkage of wound area and re-epithelization
in mice skin wound model (Dai et al. 2012).

In another investigation, metronidazole-loaded nanofibers
were fabricated with different concentrations of PVP. They
showed that the PVP content directly influenced the diam-
eter and mechanical properties of nanofibers. On the other
hand, there were no significant differences in the release
patterns of metronidazole from the nanofibers with different
PVP concentrations (Tugcu-Demirdz et al. 2020).

In another study, curcumin-PVP nanofibers improved
curcumin bioavailability. PVP (1300 kDa) solution at the
fixed concentration of 10% (w/v) was prepared in an acetic
ether medium at 40 °C. Nanofibers were fabricated through
a vertical setup. The diameter of PVP and PVP-curcumin
nanofibers were 888 + 134 and 485 + 123 nm, respectively.
The presence of curcumin might increase the conductivity
of the solution, therefore a decrement in nanofiber diameter
was observed. Pharmacokinetic studies were conducted on
two groups of mice receiving free curcumin or the novel
nanofiber formulation orally. The area under the plasma
concentration curve was increased by 10-fold showing an
increment in bioavailability. Moreover, in vivo anticancer
study revealed that nanofiber formulation inhibited tumor
growth more efficiently (Wang et al. 2015).

Another research group prepared PVP nanofibers con-
taining isosorbide dinitrate. PVP nanofibers were fabricated
from a polymer solution of 8-14% (w/v) in ethanol. As this
polymer concentration range did not affect nanofiber diam-
eter, 8% (w/v) PVP (1000 kDa) was used. According to data,
adding polyethylene glycol 400 (PEG-400) to the polymer
solution improved characteristics (appearance and flexibil-
ity) of fibers. Furthermore, the weight ratio of PVP and PEG
could alter surface characteristics. The weight ratio of PVP
to PEG 8:1 was the optimum ratio, which led to bead-free

@ Springer

fibers. Two formulations were administered sublingually to
rats, including isosorbide dinitrate tablets and nanofibers.
The fiber formulation showed higher and faster drug absorp-
tion. The relative bioavailability of this novel formulation to
the tablet was 152% (Chen et al. 2016).

In another study, diclofenac nanofibers were prepared
using the co-axial electrospinning technique. A thin layer
of shellac was coated on them to protect PVP and drug nano-
composites from acidic erosion. 35% (w/v) PVP (58 kDa)
and 5% (w/v) drug in ethanol (as the core fluid) with a flow
rate of 0.8 mL/h and 10% (w/v) shellac (as sheath fluid) with
a flow rate of 0.2 mL/h were electrospun. These core—shell
nanofibers can be used as colon-targeted pulsatile drug
delivery systems. For comparison, monolithic nanocom-
posites containing PVP, and diclofenac were prepared (the
preparation method was the same as common electrospin-
ning with a flow rate of 1 mL/h). Co-axial nanofibers had
smaller diameters (570 +40 nm) than monolithic nanofib-
ers (720 +£ 80 nm). The ex vivo permeability study was
conducted on a pig intestine. Data exhibited that permea-
tion efficacy was improved (over 20-fold) compared to raw
diclofenac particles (Yang et al. 2018c).

Polyvinyl alcohol

PVA is a synthetic polymer with an elastic nature containing
hydroxyl groups in its structure. This polymer has displayed
suitable properties such as inherent non-toxicity, good water
solubility, non-carcinogenicity, good flexibility, bioadhesive
characteristics, and gas permeability (Gaaz et al. 2015; Wali
et al. 2018). It is a thermostable and semi-crystalline poly-
mer with great transparency (Gaaz et al. 2015), which is
degradable by biological organisms. PVA also has swelling
capability in aqueous solutions and a gel-forming feature.
These characteristics make PVA a promising candidate to be
used as a supporting material in various applications includ-
ing pharmaceutical uses, food packaging, paper industry,
and optical polarizers (Gaaz et al. 2015). PVA with molecu-
lar weight ranging from 70 to 130 kDa has been mostly used
in electrospinning studies. Almost in all these studies, water
has been used as a solvent and the polymer concentration
was in the range of 6-16% (w/v) (Table 2). Table 2 lists
some recent publications on PVA electrospinning condi-
tions (More information is presented in Table S2, Online
Resource 1).

Coptis chinensis is a Chinese medicinal plant. Due to the
presence of various alkaloids, the extract of this plant has
different pharmacological effects. Accordingly, a research
group fabricated PVA nanofibers containing Coptis chinen-
sis extract. PVA solution (10% (w/v)) was prepared in 80 °C
water. The effect of different PVA molecular weights (75
and 110 kDa) on the morphology of nanofibers was studied.
Results revealed that PVA molecular weight played a critical
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role in fabrication of nanofibers and only PVA with 110 kDa
led to bead-free and uniform fibers. In vitro studies of loaded
nanofibers exhibited antifungal and antibacterial properties
(Yang et al. 2018a).

Due to the film-forming properties of PVA, this polymer
has been utilized by blending with other polymers for film
fabrication (Gaaz et al. 2015). However, the drug delivery
application of PVA is hampered due to its poor stability in
water. To overcome this drawback, the solubility of PVA has
been modified by copolymerizing, cross-linking, and graft-
ing (Jannesari et al. 2011). In another study, PVA/collagen
nanofibers were electrospun as a corneal scaffold. 15% (w/v)
PVA aqueous solution and 2.5% (w/v) collagen in acetic acid
were mixed. Using a rotating collector (speed of 300 rpm)
led to aligned fibers, which were more uniform and smaller
than random fibers. For cell culture studies, phosphoric acid
and glutaraldehyde vapors were used to cross-link electro-
spun mats and enhance water resistance ability (Wu et al.
2018). Another research group characterized PVA/ethyl
hydroxyethyl cellulose nanofibers. Results showed that using
tetrahydrofuran (THF)/water (2:1) as a solvent led to beaded
fibers, and using water alone overcame this defect. The effect
of static and rotating collectors (speed of 1000 rpm) was
studied on fiber orientation. Using static and rotating collec-
tors led to non-woven and aligned mats, respectively. Fur-
thermore, using citric acid as a cross-linking agent led to a
controlled release of chlorhexidine as an antimicrobial agent.
These cross-linked nanofibers demonstrated good cytocom-
patibility (Wali et al. 2018).

To obtain a bead-free PVA nanofibrous mat containing
curcumin-f-cyclodextrin complex, Sharma and Satapathy
(2021) investigated various parameters such as PVA con-
centration, dimethylformamide (DMF) content, complex
loading, and applied voltage. Based on the results, the mats
provided using 10 wt % PVA in 100% aqueous solution and
20 kV applied voltage exhibited the minimum number of
beads.

PVA/chitosan nanofibers using 8 wt % PVA/2 wt % chi-
tosan solution were prepared to evaluate electrospinning
experimental parameters. Effects of three factors, including
voltage, flow rate, and tip-to-collector distance were studied,
and the optimum values were 16 kV, 0.13 mL/h, and 20 cm,
respectively. A saturated ethanolic solution of NaOH was
used to stabilize fabricated nanofibers. This treatment led to
a 44 nm decrement in the fiber diameter (Sanchez-Alvarado
et al. 2018).

By a novel approach, a group of researchers fabricated
ciprofloxacin-loaded PVA/dextran fibers via emulsion elec-
trospinning. PVA 10% (w/v) and dextran 10% (w/v) aqueous
solutions were mixed with the optimum volume ratio of 9:1.
Dissolved ciprofloxacin in plant oil was added to a poly-
mer mixture to prepare an emulsion, and the final sample
was electrospun under voltage of 15 kV and feeding rate of

0.5 mL/min. Fibers were also prepared via co-axial process
in which an aqueous solution of ciprofloxacin hydrochloride
was used as the core, and a polymer mixture was used as the
shell under a voltage of 50 kV with a feeding rate of 0.5 and
0.2 mL/min, respectively. Fibers were cross-linked by heat-
ing. Both procedures led to core—shell structures, although
the emulsion method showed slower release rate, with only
about half of the drug released within 48 h (Moydeen et al.
2018).

Polyurethane

PU is a versatile and non-immunogenic polymer having
outstanding mechanical and biological properties such as
elasticity, biocompatibility, and low toxicity. Moreover, it
can be electrospun into nanofibrous scaffolds for biomedi-
cal and pharmaceutical purposes (Naureen et al. 2021).
This synthetic polymer is compatible with blood and has
been used for the preparation of vascular substitutes, adhe-
sives, elastomers, and resins (Fathi-Karkan et al. 2022). PU
with a molecular weight of 110 kDa with polymer concen-
tration of 5-20 wt % is very common in electrospinning.
1,1,1,3,3,3-Hexafluoro-2-isopropanol (HFIP), DMF alone
or mixed with either THF or methyl ethyl ketone/2-butanone
(MEK) are usually used as PU solvents (Table 3). Some
recent research on PU electrospinning conditions is in
Tables 3 and S3 (Online Resource 1).

The superior hydrophobicity of this polymer hinders suf-
ficient contact with the wound and adsorption of exudate
when used as a wound-dressing material. Recently, PU
nanofibers (12 wt %) loaded with various concentrations of
silver nanoparticles (Ag NPs) and lavender oil were fabri-
cated under a voltage of 15 kV and a flow rate of 0.5 mL/h.
These cargoes improved the hydrophilicity of fibers due to
the presence of silver ions and hydroxyl groups, respectively.
Data also showed a synergistic antibacterial effect (Fig. 6)
(Sofi et al. 2019).

The effects of three essential oils (St. John’s Wort oil, lav-
ender oil, and virgin olive oil) on the formation of thermo-
plastic PU electrospun were investigated in a recent study.
Adding these essential oils increased the fibers’ diameter
and decreased the contact angle values (Arik et al. 2022).

In a recent study, PU nanofibers containing gelatin and
single-walled carbon nanotubes (SWCNT) were fabricated
for cardiovascular tissue engineering. Increasing gelatin
content brought out smaller diameters of nanofibers and
more percent elongation. Moreover, the addition of SWCNT
advanced the Young’s modulus and ultimate strength of
nanofibers (Tondnevis et al. 2020).

Another research group developed PU nanofibers co-
loaded with honey and Carica papaya extract to manage
burn injuries. The herbal extract is reported to have anti-
inflammatory and antimicrobial properties. PU fibers were

@ Springer
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d PU + LO: AgNPs
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Fig.6 a TEM images of PU nanofibers, b Average contact angle of
nanofibers with various concentrations of AgNPs and LO, ¢ Cell via-
bility (%) of fibroblast cells cultured on nanofibers, d Zones of inhibi-
tion of nanofibers against E. coli and S. aureus, e SEM images of the

fabricated at a feeding rate of 0.7 mL/h and a voltage of 16
kV. Adding Carica papaya extract and honey reduced the
solution viscosity. The former parameters were increased
to 0.75 mL/h and 20 kV, respectively, to obtain a steady
stream. Adding cargoes reduced the diameter of nanofib-
ers and changed their morphology from smooth to ribbon-
like structure due to changes in viscosity and conductiv-
ity. Moreover, exudate absorption of active nanofibers was
higher than empty nanofibers, due to an enhancement in
mats hydrophilicity (Balaji et al. 2016).

PU polymers are favorable in tissue engineering due to
their flexibility. By a novel approach, amoxicillin nanofib-
ers containing 10 wt % PU, 3 wt % chitosan, and 3 wt %
B-tricalcium phosphate (B-TCP) were electrospun. -TCP,
similar to mineral components of bone, is widely used in
bone tissue engineering. The flow rate varied between 0.8

@ Springer
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fibroblast’s morphology cultured on nanofibers (reprinted with minor
modification from Ref. (Sofi et al. 2019), with permission). AgNPs
silver nanoparticles, LO lavender oil, PU polyurethane, SEM scan-
ning electron microscopy, TEM transmission electron microscopy

and 2.3 mL/h and uniform and bead-free nanofibers were
achieved under the lowest feeding rate and voltage of 30.5
kV (Topsakal et al. 2018).

Polyethylene oxide

In recent years, PEO has attracted much attention as an
excipient for various purposes (Vanza et al. 2020). Due to
the physical stability and chemical resistance of PEO, this
polyether has been approved for different medical and phar-
maceutical applications such as drug delivery, gene therapy,
tissue engineering, and cosmetics (Theodosopoulos et al.
2017). PEO is a water-soluble polymer with good biocom-
patibility (Zheng and Wyman 2016; Carrasco-Torres et al.
2019). PEO can be used in pharmaceutical formulations
to extend the drug release. Also, it has low toxicity, high
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swelling, and thermoplastic behavior (Vanza et al. 2020).
Research on nanofibers has used PEO with different molecu-
lar weights ranging from 100 to 1000 kDa (mostly 900 kDa)
(Tables 4 and S4). Besides water, other solvents, such as
acetic acid, chloroform, DCM, DMF, and dimethylsulfox-
ide (DMSO), can be used as the solvent for this polymer
(Table 4). Table 4 represents some recent studies fabricating
PEO nanofibers (More research is presented in Table S4,
Online Resource 1).

A research group developed nanofibers with aqueous
electrospinning solutions of PEO and low molecular weight
sunflower pectin (with a total polymer concentration of 8
wt %). The effect of PEO content and molecular weight
(1000 and 5000 kDa) on the fabrication of nanofibers was
investigated. Data exhibited that PEO content in polymeric
solution had a crucial role in the uniformity and formation
of nanofibers. Uniform nanofibers were achieved with 10%
PEO (5000 kDa). However, PEO (1000 kDa) content lower
than 20% resulted in no fiber, and bead-free fibers could only
be observed at 50%. Triton X-100 as a surfactant formed uni-
form nanofibers even at 30-50% PEO (1000 kDa) content.
The presence of DMSO, DMF, or glycerol as a cosolvent
could improve nanofibers generation even at lower PEO
(1000 kDa) content (20%). It should be noted that even with
5000 kDa PEO, no fibers were generated at 5% PEO (Cui
et al. 2017).

In another work, hesperidin was loaded in polyacryloni-
trile/PEO electrospun nanofibers for wound healing applica-
tion. PEO, hesperidin, and total polymer amounts were the
independent variables in this experiment, and morphology,
fiber diameter, and swelling percent were the responses. The
amount of PEO had a major effect on swelling, so a 20 wt
% to 40 wt % increase in the amount of PEO resulted in a
significantly higher percentage of swelling and release. The
optimized formulation of nanofiber mats was non-beaded
and smooth with a diameter of 126 +24 nm (Taymouri et al.
2021).

In another study, the effects of silk fibroin/PEO poly-
mer ratio variations on the morphology and size distribu-
tion of nanofibers were investigated. Results indicated that
nanofibers prepared from ratios below 5:5 exhibited uniform
thickness and smooth surface with a 400-600 nm diameter.
Whereas, in ratios greater than 5:5, the nanofibers demon-
strated uneven thickness, clear fractures, and many bubbles
with a size distribution of 500-800 nm. The article suggests
that the high crystalline nature of silk fibroin explains fiber
breaks. In addition, the unsuitable viscosity of the electro-
spinning solution could lead to uneven fibers and a great
number of bubbles due to partial volatilization of the spin-
ning solution (Lan et al. 2022).

Egg albumen protein could stabilize emulsions. Using this
component as a carrier led to a controlled delivery of car-
goes. However, the pure component could not be electrospun

due to its globular structure and lack of entanglement. Incor-
porating polymers such as PEO could overcome this issue.
Recently, PEO/egg albumen fibers were fabricated. Inves-
tigating the effect of pH on fiber morphology showed that
uniform fibers were generated at neutral conditions. Acidic
conditions led to irregular and beaded fibers. Data showed
that these structures were formed due to egg white albumen
and its conformational changes (Martin-Alfonso et al. 2018).

Polycaprolactone

PCL is a semi-crystalline aliphatic polymer and exhibits
so many advantages such as superior mechanical strength,
acceptable biocompatibility, and slow degradation rate
(Bharadwaz and Jayasuriya 2020). In almost all publica-
tions on PCL nanofibers, PCL with a mean molecular weight
of 80 kDa was used (Table 5). This polymer shows con-
siderable solubility in many solvents, like acetone, DCM,
DMF, HFIP, and chloroform alone or mixed with methanol
(Table 5). Tables 5 and S5 (Online Resource 1) summarized
some recent publications investigating PCL nanofibers.

A research group evaluated the effect of PCL concen-
tration on nanofiber morphology. Two polymer solutions
in acetone (7.5% and 15% (w/v)) were electrospun under
the feeding rate of 6 mL/h and voltage of 7 kV. Increasing
PCL concentration led to an increment in nanofiber diameter
(from 295 to 701 nm) and pore area (about 3.5-fold), though
surface porosity was similar in both scaffolds (Rabionet et al.
2017).

In another study, PCL solutions were prepared in different
solvent mixtures (THF/DMF and chloroform/DMF). Fibers
were fabricated under a voltage of 16-18 kV and the flow
rate of 3 mL/h. Random, semi-aligned, and aligned fibers
were prepared with collector speeds of 60, 2000, and 3000
rpm, respectively. Data showed that aligned nanofibers can
be used as a cell culture scaffold and guide the orientation
of human mesenchymal stem cells (Fotticchia et al. 2013).

In a novel approach, PCL solutions were prepared in
trichloromethane and trichloromethane/ethanol at a concen-
tration of 17.5% and 15% (w/v), respectively. Polymer solu-
tions were electrospun, leading to fiber diameters of 10 and
2 pm, respectively. Thinner fibers were easily coated with
norepinephrine via immersion of fibers in a norepinephrine
solution. This membrane showed the potential for muscle
regeneration in injuries (Liu et al. 2017b).

In another research, the effect of the PCL/keratin ratio
on the conductivity and diameter of nanofibers was inves-
tigated. Since amine and carboxyl moieties are responsible
for keratin’s high polarity and conductivity, an increase in
the keratin ratio of the polymeric mixture resulted in higher
conductivity and consequently, thinner nanofibers. A PCL/

@ Springer
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Y 5 § = keratin ratio of 7:3 was considered an optimized ratio to
% E = 3 § preserve the mechanical features (Li et al. 2020).
% =8 g g Despite all its advantages, PCL also has some negative
~ < 5 g points like a slow degradation rate and high hydrophobicity
g Sz § E .(Sims.-Mourtada et al. 2914; Bapadi .et al. %O22a). Combin-
& %’é _ S| E ing with some natural biomaterials, including gelatin (Lim
S3E® g § and Sultana 2016), collagen (Babadi et al. 2022a), and chi-
. EZ tosan (Sims-Mourtada et al. 2014) could help to solve the
% % g _ EE problem. Recently, our team fabricated piperine-loaded
éd :8 % g/ o 3 Z PCL/collagen nanofibers for the postsurgical treatment of
- z g breast cancer. Increasing collagen content in polymer solu-
B % . % % é tion led to an increment in conductivity and a decrement in
§ %0?} g E ’g Z 9 viscosity of the solution and, consequently, thinner fibers.
Z &He E8E | Z = PCL/collagen fibers exhibited higher drug release due to the
. é:ig higher swelling degree and hydrophilicity than PCL fiber
%ﬂg § g (Babadi et al. 2022a).
39 o) = £ A group of researchers developed a three-layer PCL mat
. S & for tissue engineering connecting bone and soft tissue. Two
= § ) g = Eﬁ% microfiber layers were separated by a nanofiber layer and
23 2 g2 5 E fibroblasts and mesenchymal cells were seeded on either
82 © Z 2 side. Under a voltage of 17 kV, feeding rate of 2.4 mL/h,
_— §0 :Zug and collector speed of 300 rpm, 10 wt % PCL in DCM (tip-
2 é R E = % é to-collector distance of 17 cm) and 5 wt % PCL in DCM/
ol ) o) % ;‘? § methanal (tip-to-collector distance of 10 cm) led to micro-
. 2 R fiber and nanofiber production, respectively (Puwanun et al.
2 "g g =z 2016).
3 § 5 § g § In another study, a PCL scaffold containing ibuprofen
T 8 3 = z "é was electrospun using the co-axial method as a treatment for
E 2 g@“ periodontal inflammation. The ibuprofen was dispersed in
. g . % o 8 % E_ S a PCL solution (in DCM/DMF) containing hydroxyapatite.
§ B g g E QS‘ 5 = : The feeding rate of 0.5 mL/h was fixed for both the outer
3 § ASAT % =S é and inner membranes. The outer needle was connected to a
o 4 .% g 13.3 kV voltage, while the collector was connected to -2.7
3.2 E g § 5 kV (Batool et al. 2018).
5 E £ 3 § z g In a recent study, PEO/PCL fibers containing doxycycline
=5 © E g E were fabricated, and the effect of flow rates (0.1-0.6 mL/h),
5 g « S 9 § o T; applied voltages (10-30 kV), and tip-collector distances
g 5% o 500 & é E S (10-20 cm) were optimized. The optimized parameters
£SS: BAA= S s S were 0.1 mL/h, 15 kV, and 12.5 cm, respectively, leading to
5 sgo § E % uniform and bead-free mats (E.skitoros—Togay et al. 2019).
2 g I N g £ E B Another research group fabricated collagen-PCL nanofib-
%E g g SR = § 28 ers using different proportions of polymers. This study used
= = = S qa: 8 PCL to collagen ratios of 3:7, 6:4, and 9:1 w/w as precursor
g s :E ./é' g t, solutions for artemisinin-loaded electrospun nanofibers. The
2 2 '_7; S E 5 results demonstrated that the increase of PCL increased the
= £ § a %3 viscosity, mass density, and hydrophobicity of the solution.
e é é ‘% Moreover, with increasing the PCL ratio, the nanofibers’
% . g gé 2 @ g s mean diameter increased, and bead formation decreased
E E E@ g § 2 =3 g—; (Huo et al. 2021).
§ S 5 § 3 %’ 'g £ 3 In another study, PU/PCL nanofibers were character-
- Z 2 = 2 “é g 2 g i ized as vascular grafts. 15 wt % PU in THF/DMF and 10
< g = o = 3 Eg < o g ) wt % PCL in chloroform/ethanol solutions were prepared
CRER: S§*° ER2£538 and electrospun individually by the co-electrospinning

@ Springer
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method under the voltage of 25 kV and flow rates of 0.5 and
1.5 mL/h, respectively. On one hand, the presence of PU
improved the elasticity of the scaffold. On the other hand,
adding PCL to PU enhanced the strength of scaffolds, mak-
ing it proper in tissue grafting. In vivo implantation in sheep
carotid exhibited complete patency (Jirofti et al. 2018).

Polylactic acid

PLA is an FDA-approved synthetic polymer (Bharadwaz and
Jayasuriya 2020). Lactic acid (LA) monomers are polymer-
ized to construct PLA. There are two methods to produce
LA: microbial fermentation and chemical synthesis. The
former process can lead to L- or D-LA (two optical enan-
tiomers of LA), while the latter led to a racemic mixture.
These isomers could affect the properties of the resultant
polymer, such as biodegradability and crystallinity (Singhvi
et al. 2019). PLA is a degradable and biocompatible polymer
often used in various tissue regeneration studies, bone tissue
engineering, and drug delivery systems (Santoro et al. 2016;
Bharadwaz and Jayasuriya 2020). PLA with various molecu-
lar weights has been used in electrospinning (Table 6). Chlo-
roform, DCM, HFIP, DMF, acetone, and trifluoroethanol
(TFE) are suitable solvent examples for PLA (Table 6). In
Table 6, some recent studies on PLA fibers are summarized
(More studies are listed in Table S6, Online Resource 1).

Recently, PLA filaments containing bioactive glass par-
ticles were generated to enhance mineralization, especially
in bones. Bioactive glass particles based on silica are bulky
bone cement with antibacterial properties. These particles
were added to 20% (w/v) PLA (85-160 kDa) in DCM/
acetone and electrospun at 12 kV and 0.8 mL/h. Random
and aligned fibers were collected on the static and rotating
collector (5000 rpm), respectively. The presence of glass
particles increased fiber roughness and reduced fiber diam-
eter due to the changes in solution properties (rheology and
conductivity) (Serio et al. 2019).

In another study, PLA/polybutylene succinate mats were
developed, and the effect of electrospinning parameters on
fabricated fibers was evaluated. Data exhibited that a mini-
mum of 6 wt % polymer concentration is needed to obtain
bead-free fibers. Furthermore, the voltage had a great impact
on the fiber formation. It was shown that increasing volt-
age from 20 to 24 kV led to the beaded structure. Opti-
mum parameters to obtain uniform and smooth fibers were
reported as: flow rate of 0.5 mL/h, needle-to-collector dis-
tance of 12 cm, and voltage of 20 kV (Abudula et al. 2018).

The surface morphology of PLA/PCL nanofibrous mats
was investigated in a recent study. PCL content (10-30 wt
%), DMF content (10-30 wt %), and solution concentra-
tion (8—12 wt %) could affect bead formation in the fibers.
Results indicated noticeable bead defects due to either PCL
content of ~30 wt %, DMF content of ~ 30 wt %, or solution

@ Springer

concentration of ~8 wt % due to the elevated electrical con-
ductivity of the electrospinning solution and instability of
the charged jet. A minimum number of beads were exhibited
with either PCL content of ~ 10 wt %, DMF content of ~ 10
wt % or solution concentration of ~12 wt % due to the for-
mation of a stable Taylor cone and a constantly charged jet
(Sharma et al. 2021).

Poly(lactic-co-glycolic acid)

PLGA is a well-known and widely used polymer with many
applications (Naves et al. 2017). PLGA contains PLA and
polyglycolic acid (PGA) as constituent monomers. PLGA
is a biocompatible and biodegradable polymer, making
it appropriate for vast medical usage. It also offers other
remarkable properties, such as swelling behavior, controlled
degradation rate, and mechanical strength (Naves et al. 2017
Bharadwaz and Jayasuriya 2020). PLGA consisting of dif-
ferent PLA-to-PGA ratios is used in fiber development, and
75:25 is mostly used. Moreover, different molecular weights
of PLGA ranging from 20 to 240 kDa are used in this field,
and molecular weights less than 120 kDa are more com-
mon (Tables 7 and S7). Most common solvents, such as
chloroform, DMF, HFIP, and THF, could be used for PLGA
electrospinning. However, HFIP is mostly used (Table 7).
Some recent publications on PLGA fibers are summarized
in Table 7 and Table S7 (Online Resource 1).

The hydrophobicity of PLGA can limit its application (Li
et al. 2017). To overcome these problems, inorganic materi-
als such as hydroxyapatite (Yang et al. 2018b) and bioactive
glass (Chen et al. 2015) have been combined with PLGA.
Also, functionalizing PLGA scaffolds could be a good way
to increase their hydrophilicity (Campos et al. 2014).

In a recent study, aligned and random PLGA fibers were
embedded in polymethyl methacrylate-based microfluidic
chips. Fibers were coated with biotin-(PEG),-amine to con-
jugate to a specific antibody to capture circulating tumor
cells. Electrospinning was carried out at a voltage of 15 kV,
a flow rate of 0.1-0.5 mL/h, and a tip-to-collector distance
of 15 cm with 10 wt % PLGA in HFIP. Random and aligned
fibers were collected on the static and rotating collector
(3000 rpm), respectively. It is noticeable that random fibers
were thicker than aligned fibers, about 1.7-fold, due to a
drafting force in the rotating drum. Also, cell release efficacy
was higher in random fibers, suggesting a suitable device for
capturing circulating tumor cells (Yu et al. 2019).

The surface tension, viscosity, and conductivity of
PLGA solution could be altered by different solvents. Some
researchers inquired about the effects of electrospinning
solvent on the morphology and diameter of PLGA nanofib-
ers. Using HFIP as the solvent resulted in forming bead-
free and smooth surface nanofibers. Whereas nanofibers of
PLGA solution with DCM/DMEF as the solvent mixture had
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generally beaded morphology due to the high volatility and
surface tension of DMF. Moreover, the high content ratio
of DMF reduced the viscosity of the PLGA solutions and
the average nanofiber diameter (Boncu et al. 2020). Another
research group also confirmed that an increase in the DMF
ratio results in an elevation in the surface tension of PLGA
solutions even higher than the surface tension created by
THF and chloroform (Liu et al. 2017a). HFIP is an appropri-
ate solvent for the electrospun process with a suitable boiling
point and low surface tension (Boncu et al. 2020).

Unlike PLA, PLGA exhibits rapid degradation (Kim et al.
2003). Therefore, different polymer ratios were studied for a
balanced degradation rate-hydrophilicity. Accordingly, some
researchers designed PLGA/PLA membranes with differ-
ent ratios of polymeric solution (in chloroform/DMF). Ran-
domly oriented fibers were generated at a 15-20 kV voltage,
a flow rate of 7 mL/h, and a collector speed of 180 rpm. The
stability of fibers was evaluated in phosphate buffer saline
(PBS) at 37 °C. Data demonstrated that PLGA/PLA 50:50
had a reasonable degradation profile and ductility rather than
other mixtures (Zhang et al. 2016a).

By a novel approach, nanofiber mats of PLGA/multi-
walled carbon nanotubes (MWCNT) were fabricated using
three methods, including 1) blend electrospinning, 2) PLGA
electrospinning-MWCNT electrospraying, and 3) adsorption
of MWCNT on PLGA nanofiber via ultrasound. The first
method was conducted at a voltage of 14 kV, needle-to-
collector distance of 17 cm, and flow rate of 0.7 mL/h con-
sisting of PLGA (17 wt %) and MWCNT solution in HFIP.
The second method was performed at a voltage of 17 kV, a
distance of 19 cm, and a feeding rate of 1 and 1.5 mL/h for
PLGA solution (17 wt % in HFIP) and 0.5% (w/v) MWCNTs
in ethanol, respectively. In the last method, nanofibers were
immersed in ethanolic MWCNT solution followed by ultra-
sonication. Data showed a rough surface after the sonication
of fibers. These methods led to mats with different proper-
ties, making electrospinning/electrospray mats suitable for
tissue engineering and ultrasonicated fibers for biosensors
due to the highest biocompatibility and lowest electrical
resistance, respectively (Nazeri et al. 2018).

Natural polymers
Gelatin

Gelatin is a natural polymer derived from collagen and
composed of arginine-glycine-aspartate (RGD) sequences
(Tan et al. 2023; Zhai et al. 2023). Gelatin is a non-toxic,
biodegradable, inexpensive, and easily available polymer.
In light of its good biocompatibility (Tan et al. 2023), it has
been successfully electrospun with different solvents such as
acetic acid, formic acid, and TFE (Table 8). This polymer

can incorporate both hydrophilic and hydrophobic agents
(Sahoo et al. 2015). Despite its good merits, gelatin has
weak mechanical properties, poor water resistance, and rapid
degradation that have restricted its application in different
biomedical fields (Gomes et al. 2015; Morsy et al. 2017).
Glutaraldehyde (Gomes et al. 2015), tannic acid (Tavassoli-
Kafrani et al. 2018), glycerol, glucose (Morsy et al. 2017),
genipin (Baiguera et al. 2014), and PEG diacrylate (Dongar-
gaonkar et al. 2013) are some suitable cross-linking agents
to overcome the problem. Photo-cross-linking under ultra-
violet (UV) light is another option (Coimbra et al. 2017).

Tables 8 and S8 (Online Resource 1) summarized recent
publications investigating gelatin nanofibers. A research
team characterized gelatin nanofibers and investigated the
effect of polymer concentration (7 and 20% (w/v)), volt-
age (28 and 35 kV), and feeding rate (0.1 and 1 mL/h) on
electrospun fibers. The polymer solution in acetic acid was
prepared at 40 °C. According to the data, gelatin 7% (w/v)
could not generate nanofibers, and instead, some fibrous
structures and droplets were obtained due to the low vis-
cosity of the solution. Increasing voltage and decreasing
flow rate simultaneously led to more fibrous structures
and fewer drops. Interestingly, 20% (w/v) gelatin could
fabricate nanofibers under all electrospinning conditions.
The results also showed that voltage was a key factor in
developing bead-free fibers. However, the flow rate influ-
enced fiber diameter and thinner nanofibers were obtained
at lower feeding rates. Also, electrospinning changed the
zeta potential of gelatin from negative to positive, prob-
ably due to the applied voltage (Okutan et al. 2014).

In another study, gelatin/PCL fibers were electrospun
and the effect of solvent on polymer degradation was
investigated by considering gelatin leaching. The study
showed faster erosion in nanofibers electrospun from ace-
tic acid/formic acid than from HFIP, probably due to the
high tendency to phase separation in the former system
(Dulnik et al. 2016).

By a novel approach, ketoprofen-loaded gelatin/PCL mats
were designed using the emulsion method. PCL solution in
chloroform/methanol containing ketoprofen was dispersed
in gelatin solution (in acetic acid), making an oil-in-water
system using Span 80 as the surfactant. Electrospinning
conditions such as flow rate and voltage were set at 1.08
mL/h and 18 kV, respectively. Nanofibers were cross-linked
with glutaraldehyde vapor. Based on the results, treatment
with glutaraldehyde developed continuous structures having
high porosity and less fibrous morphology. Moreover, this
treatment changed the hydrophilicity of fibers to a moderate
level, leading to a sustained release profile for ketoprofen
(Basar et al. 2017).

In a recent study, chitosan/gelatin nanofibers with various
polymer ratios were fabricated using acetic acid 90% (v/v)
as a safer alternative solvent compared to trifluoroacetic

@ Springer
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acid (TFA), HFIP, or DCM. To facilitate electrospinning,
3 wt % PEO as a film-forming additive was added to poly-
mer solutions. Processing parameters, including flow rate,
applied voltage, and tip-to-collector distance in the respec-
tive range of 0.5-1.5 mL/h, 10-25 kV, and 15-25 cm, were
optimized in each polymer ratio. Increasing the applied volt-
age or needle-to-collector distance lowered fiber diameter
due to increased electrostatic forces and more time for fibers
stretching, respectively. However, the high feeding rate led
to higher fiber diameter since the volume of the Taylor cone
increased. To obtain uniform and bead-free structures with
minimum diameter, processing parameters were fixed at 10
kV, 0.75 mL/h, and 20 cm for the chitosan/gelatin ratio of
7:3. Data demonstrated that the gelatin content could alter
fibers diameter and at lower chitosan/gelatin ratios, higher
fiber diameters were obtained. Moreover, glutaraldehyde
vapor as a cross-linking agent was used to stabilize nanofib-
ers in physiological environments (Amiri et al. 2018).

In another study, dendrimers were conjugated to gelatin.
The conjugate and silver acetate were electrospun under the
fixed condition of a flow rate of 5 mL/h, a voltage of 25 kV,
and a speed of rotating collector of about 500 rpm. PEG
diacrylate was used as a cross-linking agent to enhance the
mechanical properties and stability of fibers. The presence
of dendrimer enhanced drug loading capacity and led to
controlled drug delivery. Furthermore, there would be func-
tional sites for drug attachment, and multi-functional fibers
as dressing materials could be electrospun. These fiber con-
structs showed sustained release of silver and antimicrobial
properties against two wound pathogens (Dongargaonkar
et al. 2013).

A recent study produced a core—shell drug-loaded nanofi-
brous mat using co-axial electrospinning. The core and
shell layers contained ciprofloxacin/PCL and tetracycline/
gelatin, respectively. The core—shell structure makes it pos-
sible to deliver various drugs with different release profiles.
The in vitro release curve of tetracycline exhibited a rapid
release, reaching 84% during 2 h due to the hydrophilic
nature of gelatin. The cumulative release of ciprofloxacin
reached only 30% within 2 h due to the hydrophobic prop-
erties of PCL, and consequently, slow destruction of fibers
(Lin et al. 2022).

Collagen

Collagen is a major protein of the natural ECM and is mainly
responsible for ECM tension-resisting (Wang 2021). Since
collagen provides structural support and tensile strength to
tissues, it supports the attachment, proliferation, and dif-
ferentiation of cells (Zhu et al. 2015). In addition, it shows
low antigenicity and good biocompatibility (Wang 2021).
Collagen electrospinning is mostly possible by dissolving
it in HFIP, TFE, and acetic acid solutions (Table 9). Poor

mechanical properties and rapid biodegradability limit
the unmodified collagen usage as a single electrospinning
component. Chemical cross-linking is a solution to stabi-
lize collagen (Delgado et al. 2015). The most used cross-
linking reagents are genipin, glutaraldehyde, N-(3-Dimethyl
aminopropyl)-N’-ethyl carbodiimide hydrochloride (EDC),
EDC with N-hydroxysulfosuccinimide (EDC-NHS), and
hexamethylene diisocyanate (Delgado et al. 2015; Huang
et al. 2015). Also, physical cross-linking via dehydrother-
mal treatment and UV irradiation is considered as another
methods for modification of polymers (Delgado et al. 2015).
Some recent research involving collagen nanofiber fabrica-
tion considering process variables is listed in Tables 9 and
S9 (Online Resource 1).

By a novel approach, collagen nanofibers were electro-
spun under an electrospinning condition of 0.8 mL/h and 17
kV using 8% (w/v) polymer in HFIP/water solution. Mats
contained calcium chloride and catecholamines such as
dopamine and norepinephrine. Collagen cross-linking via
catecholamine oxidative polymerization was induced in the
presence of calcium ions. Furthermore, fiber diameter was
decreased about 3-fold, and welded junctions were formed.
Based on the data, seeding human osteoblasts on the scaf-
fold enhanced cell adhesion, differentiation, and prolifera-
tion (Dhand et al. 2016).

HFIP and TFE are corrosive and could change collagen’s
third configuration. A less corrosive acidic solvent con-
sisting of ethanol and water has been developed to avoid
using these solvents. Citric acid and glycerol were used as a
cross-linking agent and cross-linking extender, respectively.
Nanofibers were fabricated under a voltage of 20 kV, an
injection rate of 1 mL/h, and a rotating drum with a speed
of 1200 rpm. It should be noted that using citric acid did not
develop major fiber deformation while using glutaraldehyde
led to fused fibers. Furthermore, mats cross-linked with cit-
ric acid maintained their structure for one month in PBS at
37 °C. Results demonstrated that cell adhesion and prolif-
eration on citric acid cross-linked fibers were better than on
glutaraldehyde cross-linked fibers (Jiang et al. 2013).

Recently, collagen/poly(lactide-co-e-caprolactone)
(PLCL) scaffold was electrospun by a co-spinning approach
using PVP as a polymer sacrificing agent. 1% collagen in
acidified water (acetic acid 0.1 M) was mixed with 15 wt %
PVP aqueous solution and 10 wt % PLCL was dissolved in
DCM/DMF. The collagen/PVP/PLCL hybrid mat was fabri-
cated at a voltage of 30 kV and a flow rate of 2.5 mL/h and 3
mL/h for collagen/PVP and PLCL, respectively. Smooth and
bead-free fibers were fabricated after the co-electrospinning
of polymers. PVP was removed from the scaffold via fiber
immersion in water. This hybrid mat showed the highest
tensile strength due to the intramolecular bonding of col-
lagen and its reinforcing effect on PLCL. Also, reasonable
cell adhesion and proliferation were obtained. This scaffold

@ Springer
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Fig.7 a Schematic representation of nanofiber fabrication, b SEM
images of fibers, ¢ Stress—strain curve of scaffolds, d Cell prolifera-
tion of fibroblast cells on nanofiber mats after various time intervals,
e SEM images of fibroblast cells proliferation on fibers containing

could be used for tissue engineering due to its high biocom-
patibility (Fig. 7) (Turker et al. 2019).

Chitosan

Chitosan is a natural linear polysaccharide, a chitin deriva-
tive obtained through a deacetylation process (Aranaz et al.
2021). Chitosan is well known for its good biocompatibil-
ity, desirable biodegradability, intrinsic anti-bacterial nature,
and nontoxicity (Aranaz et al. 2021; Thambiliyagodage
et al. 2023). Due to chitosan’s polycationic nature, com-
mon solvents are not appropriate for the electrospun pro-
cedure (Thambiliyagodage et al. 2023). Thus, acetic acid,
TFA, HFIP, DCM or their combinations are being replaced
(Qasim et al. 2018). The concentration of prepared chitosan
solutions and flow rates were 2-8% (w/v) and <1 mL/h,
respectively (Table 10). Despite the benefits of chitosan, it
has poor mechanical properties, weak electrospinnability,
and a fast degradation rate (Gomes et al. 2015; Adamski
and Siuta 2021). Combining chitosan with other polymers,
such as PVA (Habiba et al. 2017), PEO (Yuan et al. 2018),
PCL (Li et al. 2018), and gelatin (Amiri et al. 2018), or using
cross-linking agents such as glutaraldehyde (Amiri et al.
2018) and EDC (Pezeshki-Modaress et al. 2018) could help

5
C —PLLCL
PLLCL/PVP/Col gy
44— PLLCLIPVP/Col
——PLLCL/Col |

w
1

Stress (MPa)

PLLCL/Col

100 150 200 250 300
Strain (%)
3 7d B

0 T
0 50

Col and PLLCL (reprinted with minor modification from Ref. (Turker
et al. 2019), with permission). Col collagen, PVP polyvinylpyrro-
lidone, PLCL poly(L-lactide-co-e-caprolactone), SEM scanning elec-
tron microscopy

to stabilize the electrospinning process and lead to defect-
free fibers (Qasim et al. 2018; Han et al. 2023). Some recent
studies on chitosan fibers are listed in Tables 10 and S10
(Online Resource 1).

In a recent work, three steps were carried out to fabri-
cate chitosan-based nanofibers with remarkable antibacte-
rial activity. For this, 1) NaOH hydrolysis was utilized to
reduce the molecular weight of chitosan, 2) PVA and PVP
were used as carrying polymers, and 3) in-situ synthesized
AgNPs were incorporated in nanofibers. Increasing of
hydrolyzed chitosan fraction decreased the diameter of fib-
ers. The lowest fiber diameter and best antibacterial activity
were observed in the nanofibers containing AgNPs, and the
optimizations mentioned above improved the electrospin-
ning performance (Bandatang et al. 2021).

The effects of physical and chemical cross-linking on
the mechanical and biological properties of chitosan-based
nanofibers were investigated. In this regard, phosphate ions
and ethylene glycol diglycidyl ether were used for physi-
cal and chemical cross-linking, respectively. Based on the
results, physical cross-linking led to smooth nanofibers,
whereas chemical cross-linking provided rougher and big-
ger nanofibers. Moreover, physically cross-linked nanofibers

@ Springer
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Fig.8 a SEM image of nanofibers fabricated at the flow rate of
0.25 mL/h, b TEM images of fibers prepared at different flow rates,
¢ Rosuvastatin release profile of fibers electrospun under different
flow rates, d Formation of extracellular matrix on fibers following

showed better results in cell viability analysis (Dodero et al.
2021).

In a study, a chitosan/gelatin scaffold using PVA as a
film-forming agent was electrospun using acetic acid as
the solvent. The effect of different concentrations of acetic
acid (2, 20, and 70 wt %) was investigated. Changing acetic
acid concentration from 2 to 70 wt % decreased electrical
conductivity. However, acetic acid 2 and 20 wt % were not
electrospinnable, and beaded structures were obtained rather
than fiber. Nevertheless, acetic acid 70 wt % is not environ-
mentally safe. Hence, 4 wt % PVA was used to improve spin-
nability and reduce the acetic acid concentration to 20 wt %,
generating bead-free mats. The hybrid mat was cross-linked
via glutaraldehyde vapor. The better proliferation of mes-
enchymal stem cells on mats was obtained than on sponges
(Tsai et al. 2014).

In another experiment, different weight percentages of
polypyrrole, a conductive polymer, were used in electro-
spun nanofibers containing collagen, chitosan, and PEO.
The increase in polypyrrole content enhanced the conduc-
tivity and reduced the mean diameter. In addition, better
cell growth and proliferation properties were observed in
nanofibers with 10 wt % polypyrrole (Zarei et al. 2021).

@ Springer

differentiation of stem cells which were seeded on them (reprinted
with minor modification from Ref. (Kalani et al. 2019), with permis-
sion). SEM scanning electron microscopy, TEM transmission electron
microscopy

Silk fibroin

Silk fibroin is a structural protein extracted from silkworm
cocoons. This process leads to an aqueous solution, which
makes silk fibroin self-assemble and form both an amor-
phous and a crystalline form. These two forms have differ-
ent physicochemical features. While the amorphous type is
soluble in water, the crystalline type is insoluble (Lu et al.
2010). Also, elasticity and flexibility contributed from the
amorphous part, meanwhile toughness and strength contrib-
uted from the crystalline part (Vepari and Kaplan 2007). Silk
fibroin has been used as a biopolymer due to its superiori-
ties, including high biocompatibility, nontoxicity, control-
lable biodegradability, ease of processing, adequate supply,
excellent mechanical strength, and good cellular response
(Ju et al. 2016; Qi et al. 2017; Onder et al. 2022). Solvents
including HFIP, TFA, formic acid, and water can be used as
a solvent for electrospinning of silk fibroin (Table 11). Some
recent research on silk electrospinning conditions is listed in
Tables 11 and S11 (Online Resource 1).

A research group fabricated silk nanofibers using math-
ematical models considering polymer concentration (10 and
12% (w/v)), feeding rate (0.1-0.6 mL/h), needle-to-collec-
tor distance (8—12 cm), and speed of collector (200-2500
rpm) as variables. The polymer solution was prepared using
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Table 12 (continued)

Rate of Voltage Nozzle Needle-  Tempera- References
kV) gauge

Time of

Fiber diam-

Method of Solvent

electro-

Indication Polymer  Polymer

Drug

Composi-
tion

ture (°C),
humidity

(%)

collector
distance

(cm)

injection

(mL/h)

stirring
(h)

eter (nm)*

concentra-
tion (%

w/v)

molecular
weight
(kDa)

(G)/ nee-

spinning

dle inner
diameter

(mm)
21G

Figueira

15

Top layer: Top layer:

Zein,

Top layer:

Two-layer Ethanol 80%

‘Wound chitosan:  Zein: 40,

SA

Top layer:

et al.

chitosan: 2.5, 25,

0.25

4724192,
bottom
layer:

(for zein),

chi-

LMW,

dressing

PCL,

(2016)

bottom

bottom

acetic acid
70% (for

tosan: 7,
PCL:7,

hyalu-

hyalu-

layer: 28

layer: 3

ronic
acid:

ronic
acid

Bottom

530+180

chitosan),

hyalu-

TFE 80% (for
PCL), NaOH
5 M/DMF 4:1
(for hyalu-

ronic

1500—
2200

acid: 1

layer:
zein,

chitosan

ronic acid)

pun fibers, respectively

2Fibers with diameters < 1000 and > 1000 nm were considered as nanofibers and electros

—: Not provided

DMA dimethylacetamide, DMF dimethylformamide, HFIP 1,1,1,3,3,3-hexafluoro-2-isopropanol, LMW low molecular weight, PCL poly e-caprolactone, PEO polyethylene oxide, PGS

poly(glycerol sebacate), PLA polylactic acid, PVP polyvinylpyrrolidone, RCSPs Rana chensinensis skin peptides, SA salicylic acid, TFE trifluoroethanol

formic acid as a solvent. According to data, changing pol-
ymer concentration from 10 to 13% (w/v) increased fiber
diameter about 2.2-fold probably due to an increment in
polymer amount in the electrospinning jet. Increasing flow
rate had a direct influence on diameter, generating thicker
fibers. Flow rate affects the formation of Taylor cone and
consequently, the structure of fibers. An increment in dis-
tance lowered fiber diameter due to more solvent evapora-
tion. However, this change did not affect the morphology
of fibers. Moreover, higher speeds of collector decreased
nanofiber diameter. Altogether, optimized parameters gen-
erating fibers with minimized diameter were 10% (w/v), 0.1
mL/h, 12 cm, 20 kV, and 200 rpm (Chomachayi et al. 2016).

The high cost of HFIP made this solvent unfavorable,
especially in large-batch preparations of fibers. Thus, formic
acid as an alternative solvent gathered much attention; how-
ever, this solvent could lead to phase separation in polymer
solution after being left for a few hours. Accordingly, acetic
acid was added to the solution to obtain a homogenous solu-
tion of silk fibroin/PCL in formic acid. Acetic acid concen-
tration could alter phase separation. Formic acid/acetic acid
33:7 containing 17.5% (v/v) acetic acid resulted in no phase
separation after 24 h. Phase separation could lead to inho-
mogeneous morphology of scaffolds and consequently affect
the adhesion and proliferation of cells (Zhu et al. 2016).

In a study, some researchers developed rosuvastatin-
loaded silk fibroin/PVA for enhancing osteogenesis via the
co-axial method. The core and shell consisted of a PVA solu-
tion containing rosuvastatin and silk fibroin, respectively.
Both core and shell solutions were prepared in formic acid.
While the feeding rate of the core was fixed at 0.25 mL/h,
the shell went through different flow rates ranging from O to
0.25 mL/h. Results exhibited larger fibers were formed by
increasing the shell flow rate. At the highest shell injection
rate, wet fibers deposited on the collector, and a few spin-
dles were observed (Fig. 8A). At lower rates, shell material
would be insufficient and axial asymmetry was occurred.
Increasing the shell feeding rate from 0.15 to 0.2 mL/h
resulted in thicker shell fibers. Based on the data, the 0.2
mL/h shell flow rate was properly giving smooth nanofib-
ers (Fig. 8B). Moreover, increasing the shell flow rate con-
tributed to a sustained drug release (Fig. 8C). Also, using
nanofibers led to an enhancement in osteogenic differen-
tiation and proliferation (Fig. 8D). To stabilize developed
scaffolds, mats were cross-linked with glutaraldehyde and
hydrochloric acid solution (Kalani et al. 2019).

Zein
Zein is a natural polymer, accredited as a safe ingredient by
the FDA. Zein is a prolamine in a corn maize and is widely

known for its biodegradability, biocompatibility (Berardi
et al. 2018), biological function to enhance cell attachment

@ Springer
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Table 13 Properties of marketed nanofiber products

Product name Company Indication Composition Administration route  References
ActiVLayr® Revolution Fibers Skincare Marine collagen, a Dermal (under-eyes Zheng et al. (2020)
mixture of grapefruit  patch)
and kiwifruit bioac-
tives (Vinanza)
AVflo™ Vascular Nicast Vascular access in PU Surgery (implant) Stoddard et al. (2016),
Access Graft hemodialysis Omer et al. (2021),
Hiwrale et al. (2023)
Chito-Flex® PRO Tricol Biomedical Wound dressing Chitosan Dermal Tien et al. (2021)
HealSmart™ PolyRemedy Antimicrobial wound  Hyaluronic acid, Dermal Fadil et al. (2021), Omer
dressing PHMB et al. (2021), Hiwrale
et al. (2023)
Kerlix™ AMD Kendall Decrease in wound PHMB Dermal (gauze) Kattamuri et al. (2012)
and surgical site
infections
NeoDura™ Medprin Biotech Absorbable dural PLA (L), gelatin Dural (patch) Fadil et al. (2021)
GmbH repair
PK Papyrus® Biotronik Stent covering PU Surgery (implant) Stoddard et al. (2016),
Omer et al. (2021),
Hiwrale et al. (2023)
ReBOSSIS® Ortho ReBirth Filling gaps and voids  Bioabsorbable poly- Surgery (bone substi-  Omer et al. (2021),
in bone mer, B-TCP, silicone,  tution) Hiwrale et al. (2023)
calcium carbonate
ReDura® Medprin Similar to ECM, rapid PLA (L) Dural (patch) Fadil et al. (2021), Omer
repair and regenera- etal. (2021)
tion
Surgiclot® ST. Teresa Medical Bone bleeding Dextran Dermal Omer et al. (2021),
Hiwrale et al. (2023)
Tromboguard®  TRICOMED S.A Wound dressing Chitosan, alginate Dermal Tien et al. (2021)

Zeus Bioweb™  Zeus Stent covering

PTFE

Fadil et al. (2021), Omer
et al. (2021)

Surgery (implant)

ECM extracellular matrix, PHMB polyhexamethylene biguanide, PLA polylactic acid, PTFE polytetrafluoroethylene, PU polyurethane, f-TCP

B-tricalcium phosphate

and viability (He et al. 2016), high degree of microbial
resistance (Pedram Rad et al. 2019), low cytotoxicity, tough-
ness, flexibility, and water swelling (Rahman et al. 2023).
Due to a significant proportion of nonpolar groups, zein can-
not be dissolved in water (Berardi et al. 2018). Still, it can
be dissolved in organic solvents like DMF, HFIP, ethanol,
and acetic acid (Table 12). Electrospinning feeding rates
and applied voltages range from 0.05 to 3 mL/h and from
10 to 28 kV, respectively. Zein has an amphiphilic poly-
meric nature; hence it could be blended with hydrophilic
and hydrophobic solvents (Berardi et al. 2018). Some recent
research on electrospinning conditions of zein is summa-
rized in Tables 12 and S12 (Online Resource 1).

It is shown that the humidity of the electrospinning cham-
ber can alter electrospinnability and fiber morphology due
to the change in solvent removal and solidification rate.
Recently, zein nanofibers were generated under the relative
humidity of 25 and 50%, and circular cross-section, defect-
free, and bead-free structures were developed. The authors
also used either ethanol or acetic acid as the solvent, and

@ Springer

based on the data, acetic acid led to a higher yield (Vogt
et al. 2018).

Another study tested the effect of ethanol concentra-
tion (85 and 90%) on the fiber morphology. By increasing
the ethanol percentage, nonpolarity increased, leading to
decreased electrical conductivity. Lower ethanol concentra-
tion decreased viscosity, meanwhile increased surface ten-
sion. Altogether, low ethanol concentration with high solu-
tion conductivity and low viscosity yielded disintegrating
fibers. Furthermore, lower ethanol concentration decreased
solvent evaporation rate, generating spider-web structures
(Wongsasulak et al. 2013).

Recently, zein nanofibers were fabricated using deep
eutectic solvent (DES) electrospinning. DES consisted of
furfuryl alcohol and choline chloride with a ratio of 2:1.
Compared to the hydrophobic zein nanofibers, DES-zein
nanofibers showed hydrophilic properties and less average
diameter. The average diameter of DES-zein nanofibers
partially increased following a decrease in the tip-collector
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Brookshier (2023)

Not provided NCT06063694

Not applicable

temporary skin substitute

(Spincare® Matrix) for
wound healing in RDEB

patients
wound closure following

Prospective randomized
controlled trial compar-
ing infection rates and
transmetatarsal amputa-
tion with aid of electro-
spun fiber matrix

Surgery (graft)

PCL-TCP polycaprolactone-tricalcium phosphate, PGL polyglycolide, PLCL poly(lactide-co-e-caprolactone), PLGA poly(lactic-co-glycolic acid), PLL poly(L-lysine), RDEB recessive dys-

trophic epidermolysis bullosa, TAP electrospun triple antibiotic mixture

Restrata®

distance, while the voltage did not affect their morphology
(Khatri et al. 2020).

Different electrospinning methods could generate
nanofibers with different properties (Pedram Rad et al.
2019). For example, a wound dressing patch was fabri-
cated using zein/PLA mats loaded with skin peptides.
Nanofibers were obtained by blend and co-axial (core:
PLA and shell: zein) methods. Fibers from the co-axial
technique had lower diameters and more hydrophobic
nature, while blend mats showed hydrophilic properties
and lower mechanical characteristics (Zhang et al. 2016b).

By a novel approach, Calendula officinalis extract was
loaded into zein/PCL/Arabic gum nanofibers for skin tis-
sue engineering using suspension, two-nozzle, and multi-
layer fabrication methods. In the suspension method, one
solution containing all ingredients was electrospun. While
in the other methods, two solutions containing zein/PCL/
Arabic gum and PCL/Calendula extract were electrospun,
individually. All methods resulted in bead-free and smooth
fibers. The multilayer mat had finer fibers, while fibers
from the suspension method had lower strength. Multilayer
fibers had more Arabic gum content, hence higher strength
than fibers fabricated from the two-nozzle method. Both
multilayer and two-nozzle techniques developed fibers
with similar porosity, which is lower than fibers gener-
ated from the suspension technique. All nanofibers showed
moderate biodegradability (Pedram Rad et al. 2019).

Marketed nanofibers and nanofibers
under clinical trials

Electrospinning is known as the most efficient technol-
ogy for the large-scale production of polymeric fila-
ments (Shahriar et al. 2019). Some of these electrospun
nanofiber-based products have been commercialized
(Table 13), and some are under clinical trials (Table 14)
for various biomedical applications, including wound
dressings, drug delivery, and tissue engineering.

Electrospun nanofibrous scaffolds are promising in
the wound dressings area as they can mimic the ECM
regarding the structure and accordingly assign an effec-
tive microenvironment for cell adhesion, proliferation,
and differentiation. In addition, nanofibrous materials also
retain a large amount of water due to their porous struc-
tures (Rasouli et al. 2019).

Electrospun nanofibers are superior platforms for drug
delivery because of their unique properties (Shahriar et al.
2019). The aim of exploiting the nanofibers in tissue engi-
neering is to mimic tissue properties by designing scaf-
folds with exclusive features of that specific tissue (Gao
et al. 2019). For example, polycarbonate-urethane was
electrospun with silicone copolymers in the multilayered
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form to fabricate AVflo™ for use as a vascular access
graft. Biotronik® produced a coronary stent system using
PU (named PK papyrus™) as the stent coating. AVflo™
mostly consists of electrospun fibers, but PK papyrus™
just covers the coronary metal stent. Both products
obtained Conformite Européenne (CE) certification (Stod-
dard et al. 2016). Details on other marketed products and
those under clinical trial are summarized in Tables 13 and
14.

Conclusion

Various techniques, such as phase separation, electrospin-
ning, and self-assembly are used to fabricate fibers. To
date, the electrospinning process has gathered much inter-
est in the field of medical applications (wound dressing,
biosensors, drug delivery, tissue engineering, regenerative
medicine, etc.) (Bhattarai et al. 2019; Keirouz et al. 2023)
due to its simplicity, cost-effectiveness, potential to scale
up, generating scaffolds with high surface-volume ratio,
tunable porosity, controlled drug delivery, obtaining desir-
able mats morphology, scaffolds ability to mimic natu-
ral tissues (Nangare et al. 2020), ability to coat materials
such as implants, and antimicrobial properties (Sousa et al.
2020). Both nanofibers and microfibers could be fabricated
using different electrospinning methods (simple, side-by-
side, co-axial, and emulsion) by manipulating critical
parameters. Various electrospinning techniques and their
developments lead to the use of different synthetic and
natural polymers, considering polymer blends that have
the advantage of all polymeric components. Most natu-
ral polymers are biocompatible and biodegradable, which
makes them favorable in drug delivery and biomedical
applications; however, generating nanofibers from these
polymers is hampered due to poor mechanical properties.
The combination of both natural and synthetic polymers
improved the characteristics of scaffolds. Furthermore, a
wide range of cargoes can be loaded into these systems,
including drug molecules, peptides, proteins, cells, inor-
ganic composites, nanostructures, and herbal extracts.
Also, there are commercialized fibers available in the
market.

Solution properties (polymer concentration, solvents
used to dissolve polymers and drugs, viscosity and con-
ductivity of spinning solution, etc.), process factors
(applied voltage, flow rate, distance between needle and
collector), and environmental conditions (humidity and
temperature) are the three main parameters which play
crucial roles in fibers morphology, orientation, porosity,
mechanical strength, cell attachment, and drug release.
To fabricate scaffolds with desirable properties, the

mentioned parameters should be optimized. This article
reviewed electrospinning variable parameters in differ-
ent nanofibers composed of single polymer and polymer
blends.

Numerous studies have covered the potential of fibers;
however, future research should address more preclinical
and clinical studies, identifying the relationship between
cargo concentration, formulation design, and efficacy.
Scale-up methods should also be mentioned as a path to
commercializing products.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s40005-024-00690-x.
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