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Abstract
Background  Continuous manufacturing, a new process that applies the concept of time rather than batch size, is gradually 
being implemented throughout the pharmaceutical industry. In this process, critical quality attribute (CQA) management strat-
egy for pharmaceutical manufacturing must be established through real-time monitoring technology. Therefore, transitioning 
from existing offline testing to real-time process analysis techniques (PAT; at-line, on-line, in-line) is essential for ensuring 
the quality of the intermediate and final products. Additionally, exploring the suitability of PAT must also be considered.
Area covered  In this review, we discuss the application of real-time monitoring technology in the manufacturing process of 
solid oral dosage forms. We list each manufacturing process for the solid oral dosage form and select each key unit process 
to be considered when converting to continuous manufacturing while identifying the CQA. We also comprehensively review 
the real-time monitoring PAT of the continuous manufacturing process studied to the identified CQA. Therefore, this review 
goal is understanding the status of monitoring enabling quality control and assurance through the listing of real-time PAT 
that can control CQA in continuous manufacturing.
Expert opinion  In existing studies, there are many individual mentions of real-time monitoring techniques to continuous 
manufacturing. However, there are relatively few systematic and comprehensive discussions on PAT that can be applied to 
continuous manufacturing throughout the entire manufacturing process of solid oral dosage forms. Therefore, this review 
attempts to systematically arrange the real-time monitoring technology applicable to the continuous manufacturing of solid 
oral dosage forms and lists various examples other than process controls for continuous manufacturing of the drug products 
listed in ICH guideline Q13. It is hoped that this review will help expand the application of continuous manufacturing in 
the pharmaceutical industry.

Keywords  Continuous manufacturing · Continuous process · Process analytical technology · Critical quality attribute · 
Solid oral dosage form · Quality by design

Introduction

Continuous manufacturing

The conventional pharmaceutical manufacturing process 
is a batch process in which individual unit operations (i.e., 
feeding, powder blending/mixing, granulating, drying, coat-
ing) are performed. The batch process is flexible because 
the manufacturing process can be easily reconfigured. It can 
be worked empirically according to basic principles, and it 
is simple to track when a pharmaceutical quality problem 
occurs (Ierapetritou et al. 2016). However, because quality 
control through off-line testing is performed among these 
individual unit operations, in a batch process, the manu-
facturing line is often stopped and restarted, and the manu-
facturing line is also cleaned during this time (Helal et al. 
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2019). In addition, it is essential that equipment and space 
are sufficient to handle and store intermediates emitted from 
each unit process. Therefore, the batch process requires a 
large amount of human resources and manufacturing costs, 
which have limitations such as batch-to-batch variability 
due to human factor intervention and technical difficulties 
in scaling the batch to pilot scale (Ierapetritou et al. 2016).

In contrast, continuous manufacturing follows the “one-
in, one-out” principle, whereby materials are continuously 
added, and the final product is discharged at a constant flow 
rate, with no starting and stopping between each unit opera-
tion. Continuous manufacturing can therefore be thought 
of as a new pharmaceutical manufacturing process with a 
new concept that can increase batch size over time. There-
fore, continuous manufacturing does not require constant 
updating of equipment required for scale-up research. It is 
possible to operate the process with only a small number of 
workers, or it can be unmanned during 24-h processes. In 
this process, real-time process analytical technology (PAT) 
is used to ensure the quality of the finished product (Fig. 1). 
Process analytical technology is a system that designs, ana-
lyzes, and controls pharmaceutical manufacturing by timely 
measuring of raw materials and in-process materials and 
gauging critical process parameters and performance to 
ensure final drug product quality (ICH 2009). This manu-
facturing method can improve manufacturing efficiency, 
save both time and money, and can easily be scaled up as 
the understanding of the process increases (Lee et al. 2015; 
Matsunami et al. 2018).

The size of a batch produced by continuous manufactur-
ing can be defined as the quantity of output material, the 
quantity of input material, and run time at a defined mass 
flow rate (ICH 2021). Also, in general terms, the size of a 
production batch for continuous manufacturing equipment is 
defined as the unit time (Allison et al. 2015), and because it 
has fewer scale-up issues, the continuous production equip-
ment can be used at the same scale for drug development, 
pilot research, clinical trials, and commercial production. 
Consequently, the overall development time of products 
developed by continuous manufacturing is significantly 
reduced, and their time to market is significantly acceler-
ated. In particular, the process of developing a new drug to 
market occurs over a long period and is hugely expensive. 
If a pharmaceutical manufacturing process is introduced 
through a continuous process when developing a new drug, 
a longer exclusivity period can be enjoyed even if the patent 
expires. Because the continuous production process is not 
a technology that anyone dares to imitate, even if the patent 
expires, you can enjoy a longer patent exclusivity period. 
So, it means that companies that apply these technologies 
can reap enormous economic benefits (Fonteyn et al. 2015; 
Shaver et al. 2011). In addition, there is a possibility of using 
continuous processes in the extension of patent rights, and 
gaining a competitive advantage through cost reduction and 
quality improvement, if continuous manufacturing is used in 
the development of generic drugs (Ierapetritou et al. 2016). 
Other advantages of the integrated continuous manufactur-
ing platform are shown in Table 1.

Fig. 1   Simple diagram showing batch unit manufacturing and continuous process manufacturing for solid oral dosage forms (Lee et al. 2015; 
Vanhoorne et al. 2020)
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Quality assurance in continuous manufacturing

Previously, there was no specific mention of a continuous 
process in the ICH guidelines; it was discussed only as 
an improved manufacturing management method for the 
actual implementation of quality by design (QbD). How-
ever, a draft of specific content for continuous manufac-
turing was recently mentioned in ICH Q13, released in 
2021, which can be used as a reference for detailed guid-
ance on continuous manufacturing (Table 2). This means 
that in order for us to develop a successful continuous 

manufacturing technology, we need to understand ICH 
Q13 and establish management strategies based on the 
definitions and principles presented in ICH Q8–Q12.

QbD is a systematic approach to drug development, 
with the overarching goal of providing a consistent sup-
ply of drugs with guaranteed critical quality attributes 
(CQA). The continuous process was understood as a phar-
maceutical manufacturing method consistent with the QbD 
principle, as it can improve drug quality by understand-
ing the production process and ensuring CQA (Nasr et al. 
2017). In this regard, examples of the current status of 

Table 1   Characteristics and advantages of continuous manufacturing (Fonteyne et al. 2015; Lee et al. 2015; Burcham et al. 2018; Vanhoorne 
et al. 2020; Wahlich 2021)

Characteristics Advantages

Able to manufacture high-quality products Manufacturing method consistent with QbD principles, including in-process 
monitoring, feedback, and feed-forward control

Requires smaller equipment and less space for installation Efficient and high throughput per unit volume and unit time, which can accel-
erate product development

In-scope control of all CQA Simple development of continuous process monitoring system and control 
strategy

Non-stop continuous transport of materials between each process Fewer workers and fewer risks related to worker safety
Shorter supply chain Improved drug stability due to no on-site movement and no intermediate 

holding period between manufacturing steps
No intermediate storage or transportation costs

Efficient development transfer and commercialization process Equipment runtime can be adjusted to vary the batch size to meet require-
ments

Faster development transfer and commercialization in a shorter period of 
time, resulting in a shorter time to market

Easy supply chain response
Economic and social advantages Reduced environmental footprint and environmental impacts (such as reduc-

ing solvent use, reducing energy costs, etc.)
Reduces waste and improves yield
Reduces the risk of having to discard the entire batch if final product testing 

fails
Process enhancement (reducing use of space, energy, and raw materials)
Improved stability (reduced material handling and exposure, ease of cleaning)
Strengthening domestic manufacturing through pharmaceutical production 

based on advanced technology rather than labor

Table 2   ICH guidelines, including continuous manufacturing contents (ICH 2005; ICH 2008, 2009, 2019, 2021, 2023; Wahlich 2021)

Classification Title Data Contents related to continuous process

ICH Q8(R2) Pharmaceutical Development 2009 Control strategy, Real time release testing, Continuous 
process verification

ICH Q9(R1) Quality Risk Management 2023 Risk assessment and control, Risk-based decision-making, 
and Risk review activities

ICH Q10 Pharmaceutical Quality System 2008 Continuous improvement of process performance and quality 
assurance

ICH Q12 Technical and Regulatory Considerations for Pharmaceuti-
cal Product Lifecycle Management

2019 Provides a framework throughout the product lifecycle

ICH Q13 Continuous Manufacturing of Drug Substances and Drug 
Products

2021 Continuous process concepts, Scientific approaches, and all 
regulatory considerations (drafts)
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commercialized continuous processes can also be con-
firmed (Testa et al. 2020).

As the continuous process application develops, PAT 
is utilized to monitor the CQA of intermediates and pro-
cesses in real time, making it possible to construct a sys-
tem that designs, analyzes, and controls the manufacturing 
process. Therefore, each CQA will need to be included 
in the appropriate range and limit to ensure the quality 
of the drug product. The implementation of PAT requires 
utilizing the following methods: identification of trace-
ability and residence time distribution (RTD) through 
the PAT framework; continuous monitoring of material 
properties, critical process parameters (CPP), and real-
time release testing (RTRT); and maintaining the process 
and CQA within the operating range by controlling the 
drug manufacturing process operation in real-time (Zhong 
et al. 2020). RTD is defined as the time required for mate-
rial transport and transformation; ICH Q13 explains that 
understanding this will be beneficial in material tracking, 
sampling, and the establishment of conversion strategies.

In addition, it is important to explore regulatory aspects 
when applying continuous processes in the pharmaceutical 
industry. ICH Q13, currently under discussion, provides 
an overview of current regulatory considerations. These 
considerations are overview of the process, quality control 
strategy for output, the definition of batch, process model, 
stability of manufactured drug product, process validation, 
pharmaceutical quality system (PQS), lifecycle manage-
ment, and cross-referenced Common Technical Docu-
ment data. If the manufacturing method is changed from 
a batch process to a continuous process, these data should 
be described. Table 3 is currently covered in the ICH Q13 
draft. In addition, through major regulatory agencies such 
as FDA, MHRA, EMA, and PMDA, it is possible to under-
stand the global regulatory environment for continuous 
processes and to stay up-to-date on support and regulatory 
status (Wahlich 2021).

The pharmaceutical industry needs to develop a more effi-
cient pharmaceutical manufacturing process, which could 
mean introducing the continuous process discussed in the 
ICH guidelines, along with the associated PAT implementa-
tion and management strategy development. Therefore, it is 
necessary to extensively review the PAT to determine what 
analytical equipment is used for a specific process, and what 
are the important process quality characteristics. Therefore, 
we will list and discuss the current state, scope of technol-
ogy, and mode of application of PAT for commonly pro-
duced solid oral dosage forms, with a particular focus on 
the latest research in this area. We refer to previous reviews 
(Fonteyne et al. 2015; Vanhoorne et al. 2020; Zhong et al. 
2020), and further supplement important information by 
referring to the continuous manufacturing process for the 
drug products listed in ICH Q13.

General manufacturing diagram of solid oral 
dosage forms

A generalized manufacturing process for a solid oral 
dosage form is shown in Fig. 2. The main unit processes 
include mixing, wet granulation, dry granulation, spray 
drying, compression, and coating. However, having a con-
tinuous flow of materials is also imperative. Therefore, a 
control strategy that is suitable for the continuous manu-
facturing of such a solid oral dosage form is necessary 
when developing a continuous process and management 
strategy, meaning that the CQA for each unit process needs 
to be identified. The various CQA for each unit process are 
shown in Table 4 and include content uniformity, which is 
an important CQA that is monitored at almost every step.

Implementing continuous Process Analytical 
Technology in each unit process

The existing batch process was mainly conducted offline, 
while quality evaluation was performed on the intermedi-
ate and final products. Since this is a post-analysis quality 
evaluation, the manufacturing process cannot be immedi-
ately adjusted, so it is not suitable as an improved process 
quality control method. However, the PAT applications 
can measure the CQA related to various unit operations 
of a continuous process line in real-time (Zhong et al. 
2020). Therefore, during the continuous process, CQA 
is evaluated in real-time via at-line, on-line, and in-line 
measurements according to the PAT industry guidelines 
as published by the US Food and Drug Administration 
(FDA). Each measurement method is described as follows 
(FDA 2004) (Fig. 3).

•	 At-line: measurement where the sample is removed, 
isolated, and analyzed near the process stream.

•	 On-line: measurement where the sample is diverted 
from the manufacturing process and could be returned 
to the process stream.

•	 In-line: measurement where the sample remains in the 
process stream and can be either invasive or non-inva-
sive.

The placement of the analyzer’s probe and sensor is an 
essential consideration when developing and establishing a 
continuous process control strategy. In this process, in-line 
measurement can be challenging because of potential con-
tamination of the probe, difficulty in positioning the probe, 
and difficulty in defining the sampling volume of the pow-
der (Sacher et al. 2022). Both probe and sensor should be 
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positioned to measure the powder flow at a location that 
does not affect the flow in any way (Fonteyne et al. 2015). 
If the continuous process manufacturing equipment and 
PAT tools are appropriately designed or selected in con-
sideration of these points, the process will be simplified, 
and process monitoring and material conversion can both 
be facilitated (ICH 2021).

Consequently, this review paper also identifies equipment 
and process parameters that affect process control based on 
ICH Q13’s continuous process management strategy. The 
impact on the material quality characteristics and the unit 

operating equipment is evaluated as CQA. A description 
of the PAT according to the manufacturing process flow of 
solid oral pharmaceuticals is detailed in the next section.

Continuous material streams

An essential element of any continuous process is to 
ensure a sufficiently constant mass flow (Engisch et al. 
2012), since consistently and accurately supplying mate-
rial from the unit process to the subsequent unit process 

Table 3   Regulatory considerations when applying continuous processes (ICH Q13, 2021)

No. Regulatory considerations Details

1 Overview of the process In the case of a continuous process, the following information should be supplemental 
in addition to the manufacturing process to be described in the CTD

- Manufacturing process flow chart
- Operating conditions
- In-process control and testing, Material collection criteria for manufacturing
- Continuous process operation strategy including material conversion strategy
- Equipment design and arrangement
- Details related to system integration

2 Quality control strategy for output Matters related to the control items and control methods used for the output material 
during execution time and the operation of the continuous process

- Input material characteristics
- Process monitoring and management
- System operation procedure
- Substance conversion and collection strategy (RTD)
- Real-time release test (RTRT)
- Equipment and system integration description and justification

3 Definition of the batch - Decision method of batch size
- Validation of batch size
- Appropriate quantitative measurement method between batches

4 Process model - Model type, Impact classification
- Process model development and validation
- Maintenance scope

5 Stability of manufactured drug product To generally confirm that there is no difference in stability between a continuous pro-
cess and a conventional batch process

- Primary stability data
6 Process validation - Validation based on product and process understanding, system design, and overall 

management strategy
- Implementation of continuous process system and continuous monitoring of material 

quality
7 Pharmaceutical quality system (PQS) Rejected substances can be diverted when substance traceability, process monitoring 

and substance diversion strategies are well established according to the PQS
8 Lifecycle management The principles and practices described in ICH Q12 are applicable to lifecycle manage-

ment of continuous processes
9 CTD data Preparation of continuous process related information in CTD

- Manufacturing process development
- Batch definition
- Manufacturing process and process management technology
- Critical step control and semi-finished product information
- Maintenance protocol
- Specification/Analysis procedure
- Proof of standard validity
- Including information described in ICH M4Q

10 Data on change from batch to continuous process - Develop management strategy
- Comparison of output material quality between batch process and continuous process
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is important. Therefore, a loss-in-weight (LIW) feeder 
system that analyzes injector mass flow and variability 
is typically used for all major routes during a continuous 
manufacturing process and is also utilized in all major 
routes of the continuous production lines of solid oral 

pharmaceuticals, such as direct compression, wet granu-
lation, and dry granulation (Hanson 2018). This is par-
ticularly important because LIW feeders can generate fast 
dynamic disturbances, which are controlled through pro-
cess monitoring (ICH 2021).

Fig. 2   General manufacturing flow for solid oral pharmaceuticals

Table 4   CQA for each unit process to be considered for continuous process monitoring

Unit process CQA

Continuous material stream Material flow, API content, Particle size, Residence time distribution
Continuous blending Blend uniformity, API content, Excipient content, Particle size, Blend concentration
Wet granulation Granule size distribution, Granule moisture content, Granule content uniformity, API content, Growth kinetics
Dry granulation Ribbon density, Granule content uniformity, Granule moisture content, API Content, Granule size distribution, 

Compression
Spray drying Particle size distribution, Spray solution composition, Residual solvent quantification
Compression Tablet content, Content uniformity, API content, Blend uniformity, Compression force, Tablet release behavior, 

Tablet disintegration time, Tablet friability, Tablet tensile strength, Weight, Hardness
Coating Coating thickness, API content, Content uniformity, Surface roughness
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The ICH Q13 guideline states that it is essential to under-
stand the flow of substances (process execution time and 
RTD) in individual units of equipment design in order to 
establish the integration process. In particular, because RTD 
represents the diffusion of material in a continuous process, 
it is important for the tracking of raw materials during pro-
cess execution, and it allows downstream control or removal 
of the affected material in the entire continuous system 
(Engisch et al. 2016). A detailed overview of the principles 
and mechanisms of the continuous process feed step can be 
found in Blackshields et al. (2018).

Consequently, evaluating the homogeneity of the powder 
stream and the monitoring of the API concentration is con-
ducted during the continuous material stream process. Moni-
toring techniques usable in continuous processes related to 
continuous material streams have been developed as follows. 
In addition, if the monitoring technology is closely inter-
twined with other major unit processes in the continuous 
manufacture of solid oral products, it is classified as one of 
the main unit processes, which are described later in more 
detail (Table 5).

The monitoring method for evaluating the flowability 
of powder is generally analyzed, in-line, in a LIW feeder. 
Additionally, a monitoring method using near-infrared spec-
troscopy (NIRS), which is the most commonly used tech-
nique for process analysis of continuous processes, is also 
widely used. In particular, as a result of comparing the NIRS 
monitoring system presented in (Destro et al. 2021) and high 

performance liquid chromatography (HPLC) and spectro-
scopic measurements by offline tests, successful in-line 
measurements can be made, such as active pharmaceutical 
ingredient (API) concentrations, which tend to have a high 
level of consistency. Therefore, as a recent research trend, it 
is in progress that a more detailed study on the influence of 
supply parameters and the identification and analysis of vari-
ous CQA during the initial powder supply process. In addi-
tion, various combinations of these monitoring approaches 
are made. Therefore, it is expected that a hybrid form of 
latent variable modeling and state estimator for fault detec-
tion and control will exist from now on (Destro et al. 2020). 
In addition, an important element of PAT equipment for 
continuous material stream is the detection of all significant 
disturbances through high-frequency measurement methods. 
Therefore, a method of tracing raw materials using RTD data 
and identifying their characteristics is being developed as a 
form of corrective action when a disturbance starts, along 
with utilization of a diagnosis system (Engisch et al. 2016).

Continuous blending

Blend uniformity in the mixing process step is important 
since it is a prerequisite to ensuring the uniformity of the 
final drug content. Offline HPLC analysis is often used to 
evaluate general blend uniformity in the existing batch unit. 
However, this method has disadvantages such as possible 

Fig. 3   Comparison of the At-line, On-line, and In-line PAT measurement methods

Table 5   PAT tools and evaluable CQA used in continuous material streams

PAT tool Evaluated CQA Characteristics References

Microwave sensors Material flow In-line Meier et al. (2017)
X-ray sensors In-line Ganesh et al. (2017)
Load cells In-line Engisch et al. (2012) and Destro et al. (2021)
High-frequency sensors Residence time distribution In-line Engisch et al. (2016)
NIRS (Near-infrared spectroscopy) API content In-line Hanson (2018) and Destro et al. (2021)
Laser diffraction particle size analyzer Particle size In-line Meier et al. (2017)
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sampling errors, process delays, and increased time and 
labor (Zhong et al. 2020). Therefore, the following PAT 
was used in continuous blending monitoring to overcome 
this limitation. Similarly in the continuous blending step, 
the RTD identified shows its impact on process dynamics 
and equipment design in the course of comparing APIs with 
tracers that have similar flow characteristics to APIs (ICH 
2021). ICH Q13 shows that RTD characteristics can pro-
vide information on forward and backward blending and the 
degree of jamming, which can define material traceability 
and conversion strategies. Additionally, other scientifically 
validated theories can be used to establish process kinetics 
knowledge. Based on these characterizations, other CQAs 
besides blending uniformity are shown in Table 6.

A widely used representative process analysis method, 
as aforementioned mentioned, is NIR-PLS (partial least 
squares). In addition, RS (Raman spectroscopy) is a suit-
able alternative to monitor lower concentrations than NIRS. 
However, according to (Galata et al. 2021a, b), it is difficult 
to accurately quantify low concentrations (less than 2w/w%) 
of API in both of the aforementioned methods. Therefore, 
there is a need for a PAT tool that can accurately quantify the 
amount of low-concentration API in the continuous powder 
blending process.

Recent research is focusing on how PAT is being devel-
oped to evaluate the suitability of the current technology 

for drug development, including low-concentration API. 
For example, machine vision systems can quantify intensely 
colored APIs, even in low-density images, when viewed with 
a digital camera (Galata et al. 2021a, b). There is a study of 
chemical composition monitoring of metal–organic reaction 
products using an explosion-proof online NMR sensor with 
a sampling rate of 15 s. This was introduced as a method that 
allows access to unstable lithiated intermediates that cannot 
be calibrated using conventional HPLC analysis methods. In 
addition, NMR sensors are available as an on-line method 
for calibrating NIR spectrometers (Kern et al. 2019). There-
fore, the transition to a continuous process requires ongoing 
research to develop PAT tools suitable for all types of API.

Wet granulation

Wet granulation is a process whereby granules are pre-
pared using a liquid binder to improve the fluidity, homo-
geneity, and compressibility of the mixed powder before 
tablet compression (Suresh et al. 2017). Twin-screw wet 
granulators (Huang et al. 2010; Fonteyne et al. 2014a, b), 
fluid bed granulators (Chablani et al. 2011; El Hagrasy 
et al. 2013; Fonteyne et al. 2013), and high-shear mixers 
(Fonteyne et al. 2012; Kumar et al. 2013) are the main 
methods used during the continuous wet granulation 

Table 6   PAT tools and evaluable CQAs used in continuous blending

PAT tool Evaluated CQA Characteristics References

NIRS (Near-infrared spectroscopy) Blend uniformity On-line Besseling et al. (2015), Wu et al. (2015), Fonteyne et al. 
(2016), Pedersen et al. (2020)

In-line Van Snick et al. (2017a, b), De Leersnyder et al. (2018), 
Vargas et al. (2018), Harms et al. (2019), Alvarado-
Hernández et al. (2020)

API content On-line Liu et al. (2014)
In-line Martínez et al. (2013), Vanarase et al. (2013) and Román-

Ospino et al. (2020)
Particle size On-line Lee et al. (2019a, b)

RS (Raman spectroscopy) Blend uniformity In-line Nagy et al. (2017), Li et al. (2018), Harms et al. (2019) and 
Pauli et al. (2019a, b, c)

API content On-line Harms et al. (2019)
Blend homogeneity,
API content,

In-line Nagy et al. (2017)

NIR-CI (Near-infrared chemical imaging) Blend uniformity,
API content

At-line Bakri et al. (2015)

Blend uniformity,
Particle size

In-line Osorio et al. (2014)

NMR (Nuclear magnetic resonance) sensor API content On-line Kern et al. (2019)
LIFS (Light-induced fluorescence) Blend uniformity On-line Durão et al. (2017)

In-line Igne et al. (2021)
Machine vision system API content In-line Galata et al. (2021a, b)
RGBI (Red, green and blue color imaging) Blend uniformity On-line Durão et al. (2017) and Gosselin et al. (2017)
Accelerator Blend uniformity In-line Cameron et al. (2019)
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process. The CQA of the wet granulation process includes 
the solid state, moisture content, and granule size distribu-
tion of API and excipients, which is particularly important 
since particle size, moisture content, and granule density 
can affect granule fluidity, compressibility, and stabil-
ity (Fung et al. 2006; Närvänen et al. 2008; Ehlers et al. 
2009; Gabbott et al. 2016). It should be noted that for wet 

granulation, controlling and evaluating the properties of 
the input material properties during the continuous process 
may be more important than the actual material specifica-
tion properties typically considered in batch manufactur-
ing. This is described in ICH Q13 in the section regarding 
the development of a continuous process control strategy 
(ICH 2021). Therefore, recognizing the importance to 

Table 7   PAT tools and evaluable CQA used in wet granulation

Unit operation PAT tool Evaluated CQA Characteristics References

TSG
(Twin-Screw Granulation)

NIRS (Near-infrared spectros-
copy)

Granule size distribution In-line Meng et al. (2019) and Pauli et al. 
(2019a, b, c)

Granule moisture content,
Granule content uniformity

In-line Pauli et al. (2019a, b, c)

Solid state characterization In-line Fonteyne et al. (2014a, b)
Granule size distribution,
Moisture content, Density

In-line Tian et al. (2018)

RS (Raman spectroscopy) Granule content uniformity In-line Harting et al. (2019)
Solid state characterization In-line Fonteyne et al. (2014a, b)
Granule API content In-line Meng et al. (2019)

SFV (Spatial filter velocimetry) Solid state characterization At-line Fonteyne et al. (2013)
Granule size distribution In-line Fonteyne et al. (2013) and 

Reimers et al. (2019a, b)
FBRM (Focused beam reflec-

tance measurements)
Granule size distribution In-line Kumar et al. (2013)

High-speed imaging camera Granule size distribution In-line El Hagrasy et al. (2013)
Custom image analysis Granule size In-line Madarász et al. (2022)
Dynamic Image analysis Granule size distribution In-line Madarász et al. (2022)
3D imaging Granule size distribution In-line Meng et al. (2019)
RGB Camera Granule API content In-line Ficzere et al. (2021)
AE (Acoustic emission) Granule size distribution In-line Abdulhussain et al. (2021)
Particle size analyzers Granule size distribution In-line Meng et al. (2019)

FBG
(Fluid Bed Granulation)

NIRS Granule moisture content In-line Peters et al. (2018a, b)
Granule content uniformity In-line Zhong et al. (2022)

SFV (Spatial filter velocimetry) Granule size distribution In-line Pauli et al. (2019a, b, c), Reimers 
et al. (2019a, b) and Reimers 
et al. (2019)

FBRM (Focused beam reflec-
tance measurements)

Granule growth kinetics In-line Alshihabi et al. (2013)

3D imaging Granule size distribution In-line Meng et al. (2019)
AAE (Audible acoustic emis-

sion)
Granule moisture content In-line Aoki et al. (2022)

MRT (Microwave resonance 
technology)

Granule moisture content In-line Peters et al. (2017, 2018a, b, 
2019)

Granule moisture content In-line Gavan et al. (2020)
HSM
(High-Shear Mixer)

NIRS Granule moisture content
Granule composition and size

In-line Luypaert et al. (2007), Watano 
(2007), and Liu et al. (2021)

FBRM (Focused beam reflec-
tance measurements)

Granule dimension/count In-line Kumar et al. (2013)

FBD
(Fluid Bed Dryer)

NIRS Granule moisture content In-line Fonteyne et al. (2014a, b) and 
Pauli et al. (2019a, b, c)

Granule content uniformity In-line Roggo et al. (2020)
NIRS and RS Residual moisture content,

Solid state of the API
In-line Fonteyne et al. (2014a, b)
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identify and manage the properties of the materials, PAT 
development should continue apace (Table 7).

During the wet granulation process, the majority of PAT 
tools are used for the in-line monitoring of granule size 
distribution. In addition to NIRS and RS, various process 
analysis tools such as FBRM, SFV, imaging technology, and 
acoustic emission (AE) have been studied, and their appli-
cability has been proven. However, although the NIRS tool 
is one of the most commonly used methods, it requires a 
relatively large amount of data for calibration and can some-
times produce inaccurate data because it can be affected by 
sensor fouling (Rantanen et al. 2015). In addition, the opti-
cal device used in the image processing system can become 
contaminated, leading to resolution problems when check-
ing the particle size (Suresh et al. 2017). One of the more 
recently developed tools, AE, is presented as a non-destruc-
tive method for particle size adjustment. It is also suitable 
for the wet granulation process because it is relatively unaf-
fected by pollution and dust and it has a low implementa-
tion cost (Abdulhussain et al. 2021). In addition, the particle 
size analyzer using a customized image analysis-camera also 
showed excellent similarity when compared with the results 
obtained offline without major drawbacks, and it was pos-
sible to identify the characteristics of the process material 
according to the CPP. Because the latest algorithm is applied 
in this process, this method can be applied in a role such 
as deep learning-based image segmentation in the future 
(Madarász et al. 2022). Therefore, today's PAT tool, such as 
AE, is also being touted as an improvement over the exist-
ing PAT tools, with the added advantage of being easy to 
implement during manufacturing while nullifying some of 
the disadvantages of the existing PAT tools.

Dry granulation

Dry granulation is a granulation process that can improve 
the flowability of powder by improving particle size or bulk 
density. However, unlike wet granulation, dry granulation is 
a relatively simple process with no need for liquid additives 
(Burcham et al. 2018). In the continuous dry granulation 
process, a roller compactor compresses the material and 
then mills it to form a ribbon. The CQA of a roller compac-
tor includes ribbon density, moisture content, particle size 
distribution, and content uniformity, which is a factor that 
shows granular properties (Fonteyne et al. 2015).

NIRS, which is a quality control method most commonly 
used for the roller compaction process applied in the phar-
maceutical industry, unlike in the past, tends to lose a large 
gap between the real-time monitoring value and the standard 
value at the current technology level (SAMANTA 2012). 
However, the applicability of new techniques has recently 
been re-verified due to the shortcomings of NIRS data 

preprocessing and the need for more sophisticated chemistry 
(Nasr et al. 2017). In a recent study, the temperature distri-
bution of the ribbon was confirmed by installing a thermal 
imaging camera on the roller compactor, and the optimal 
relative temperature uniformity was ensured (Yu et al. 2022). 
Studies to identify the relationship between process param-
eters and material properties are being conducted along with 
the application of PAT. In addition, information on laser dif-
fraction, microwave sensors, infrared thermography, spatial 
filtering technique (SFT), particle size analyzers, NIRS and 
microwave resonance sensing is shown in Table 8, whereas 
more details about the PATs applied in dry granulation, can 
be found in the paper by Dular Vovko et al. (2020).

Spray drying

Spray drying is a process used to convert a fluid material into 
a dried particulate form. This process is often used before 
the direct compression process and has also been utilized in 
other product manufacturing fields such as for the drying of 
heat-sensitive materials (Coppi et al. 2002; Picot et al. 2004) 
and microencapsulation (I Ré 1998). During the spraying 
process, the CQAs are the particle size distribution, as well 
as the quantification of the solution composition and residual 
solvent used in the process. Related PAT tools are shown in 
Table 9, while a more detailed description of spray drying 
can be found in Ziaee et al. (2019).

The first unit operating step of spray drying is the prepa-
ration of the spray solution (Lee et al. 2019a, b). NIRS can 
measure the composition of the final spray-drying solution 
through real-time monitoring at this stage and can correct 
any problems with the spray volume is incorrect. In this 
way, the accuracy of the analysis has been proven. In addi-
tion, NIRS can be used during intermediate quality control 
for the quantification of residual solvents and the optimiza-
tion of drying process cycles (Ikeda et al. 2022). Various 
studies have been comparatively validated, in-line, at-line, 
and offline, including the use of an in-line laser diffraction 
system to monitor particle size distribution, which affects 
the properties of both the intermediate and final products 
(Chan et al. 2008).

Compression

When using a tablet press machine during the tablet com-
pression phase, the PAT is mainly applied to the powder 
feed frame of the tablet press machine. The CQA of this 
process is the content uniformity of the tablet, the content 
of the main ingredient, the tableting pressure, and the physi-
cal properties (Kim et al. 2021). The process is controlled 
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through monitoring, which determines the quality of the 
tablets (Table 10).

In the case of NIRS in tablet pressing, the PLS model was 
designed to quantitatively analyze the concentration of API 
and its excipients, while a dissolution performance prediction 
model was also established (Pawar et al. 2016). RS can also 
be used to determine the CQA of intermediate and final tab-
lets from the tablet press (Nagy et al. 2017), while Terahertz 
spectroscopy is able to detect tablet weight by measuring the 
effective refractive index (Bawuah et al. 2014). A report was 
also written on the combination of two NIRS probes on a tablet 
press feed frame (Pauli et al. 2019a, b, c): the first probe con-
firms the API content uniformity of the dried granules, while 
the second probe allows accurate monitoring of tablet content 
uniformity at various tableting rates up to 70,000 tablets/h. In 
addition, according to a recent study, a new NIR-SS hybrid 
method combining online NIR-PLS and titer soft sensor was 
successfully performed. This method utilizes the average data 

of the degree of movement according to the process stay time 
through a combination of two data streams, and it is possi-
ble to diagnose real-time online performance (Cogoni et al. 
2021). This means that unsuitable tablets that do not conform 
to the CQA are distinguished through various combinations 
rather than through a single utilization of PAT. In addition, 
the feedback control loop is designed to respond immediately 
to problems in the process. The overall goal, therefore, should 
be to establish a system that optimizes current quantitative 
methods and facilitates improved control strategies for future 
PAT development in a continuous process.

Coating

The coating process allows for the sustained or controlled 
release of API, and the stability of tablets. It is an important 
process that determines the overall appearance of the final 

Table 8   PAT tools and evaluable CQA used in dry granulation

PAT tool Evaluated CQA Characteristics References

NIRS (Near-infrared spectroscopy) Ribbon density In-line McAuliffe et al. (2015)
Ribbon density,
Granules content uniformity

On-line Gupta et al. (2015)
In-line Samanta et al. (2013)

Granule moisture content On-line Gupta et al. (2015)
API Content,
Relative density,
Tensile strength,
Young's modulus

In-line Samanta et al. (2013)

Laser diffraction Granule size distribution In-line, On-line Wilms et al. (2021)
Microwave sensor Ribbon density On-line Gupta et al. (2015)

Granule content uniformity On-line Gupta et al. (2015)
Granule moisture content On-line Gupta et al. (2015)

Infrared thermography Ribbon density On-line Vovko et al. (2021)
In-line Wiedey et al. (2018, 2019)

Temperature uniformity On-line Yu et al. (2022)
Powder flow On-line Yu et al. (2020) and Yu et al. (2022)

Thermal camera Temperature uniformity On-line Yu et al. (2022)
SFT (spatial filtering technique) Granule size distribution In-line Vovko et al. (2021)
Particle size analyzers Granule size distribution In-line McAuliffe et al. (2015)
NIRS and microwave resonance sensing Ribbon density,

Moisture content
On-line Austin et al. (2013)

Table 9   PAT tools and the evaluated CQAs used in spray drying

Unit operation PAT tool Evaluated CQA Characteristics References

Spray solution preparation NIRS (Near-infrared spectroscopy) Spray solution composition On-line Lee et al. (2019a, b)
Intermediate quality control NIRS (Near-infrared spectroscopy) Quantification of residual solvent On-line Lee et al. (2019a, 

b) and Ikeda et al. 
(2022)

Laser diffraction system Particle size distribution In-line, At-line Chan et al. (2008)
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product (Carter et al. 2018). Conventional coating thickness 
measurement methods are gravimetric, dissolution-based, 
and conducted offline. They are also time-consuming and 
cannot always provide information relating to tablet uni-
formity, porosity, and cracking. The CQAs of the coating 
process include coating thickness, API content, and con-
tent uniformity. Examples of real-time PAT development to 
evaluate these factors are listed below in Table 11.

Various new technologies are applied in the coating pro-
cess analysis. These include NIRS, RS, SFV, and BARDS, 
which are spectrum technologies; TPI and OCT, which are 
imaging technologies; and sound technologies. Among 
these technologies, in-line OCT has been widely used in 
recent film coating research; it is a method that can monitor 
parameters such as tablet coating thickness and content uni-
formity in real-time using high-resolution imaging. Sacher 

et al. (2019) explain that OCT can detect defined values 
and deviations during the coating process faster and more 
accurately than conventional techniques. A recent study con-
firmed the high accuracy of tablet moisture content using a 
PLS model through manual wavelength selection (Shibay-
ama et al. 2021).

The coating process has nevertheless proven to be argu-
ably the most difficult unit operation to convert into a con-
tinuous process because of its complexity and its many 
parameters (Suzzi et al. 2010). In addition, tablets tend to 
relax after compression, so if the coating process proceeds 
too quickly, the coating may swell and affect the quality of 
the finished product. So the holding time before the tablet is 
coated is an essential process element. However, this hold-
ing time conflicts with the characteristics of the continuous 
process. Therefore, the continuous coating system is known 

Table 10   PAT tools and evaluable CQA used in compression

PAT tool Evaluated CQA Characteristics References

NIRS (Near-infrared spectroscopy) Tablet content,
Content uniformity

On-line Pawar et al. (2019)
In-line Boiret et al. (2017), Colón et al. (2017), 

Dalvi et al. (2019), Roggo et al. (20(20), 
Galata et al. (2021a, b), Kamyar et al. 
(2021)

In-line, At-line Vargas et al. (2018)
Content uniformity In-line Roggo et al. (2020)
API content On-line Ward et al. (2013), Šašić et al. (2015), 

Hetrick et al. (2017), Dalvi et al. (2019)
In-line Järvinen et al. (2013), Wahl et al. (2014), 

Pauli et al. (2019a, b, c), Suzuki et al. 
(2021)

Detect potency deviation In-line Alam et al. (2021)
Tablet release behavior (Dissolution) On-line Pawar et al. (2016), Nagy et al. (2019), 

Zaborenko et al. (2019), Zhao et al. (2019)
Tablet disintegration time,
Tablet friability,
Tablet tensile strength

In-line Pestieau et al. (2014)

NIRS (Near-infrared spectroscopy)-SS Overall process control On-line Cogoni et al. (2021)
RS (Raman spectroscopy) Tablet content uniformity In-line Nagy et al. (2017) and Li et al. (2018)

API content In-line Li et al. (2018) and Harms et al. (2019)
API content,
Blend uniformity,
Tablet content uniformity

In-line Nagy et al. (2017)

UV–VIS Compression force,
Crushing strength,
API content,
API and particle size distribution

In-line Mészáros et al. (2020)

Density of pharmaceutical compacts On-line Lillotte et al. (2021)
NIR-HIS (Near-infrared hyperspectral 

imaging)
Tablet content,
Content uniformity

On-line Nishii et al. (2020)

Terahertz spectroscopy Weight At-line Bawuah et al. (2014)
FS (Fluorescence spectroscopy) API content At-line Warnecke et al. (2015)
Compaction force Hardness, Weight On-line Manley et al. (2019) and Zhong et al. (2020)
Ultrasound sensors Tablet tensile strength On-line Razavi et al. (2016)
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to have developmental limitations meaning that there is a lot 
of potential for future research and development (Leane et al. 
2018; Wahlich 2021). In addition, because the amount of 
data is not large in the coating stage, it will be necessary to 
introduce PAT through a selection of optimal hyper-parame-
ters and confirmation of correlation in the future (Shibayama 
et al. 2021).

Conclusion

This review paper was written based on the management 
strategy for continuous manufacturing mentioned in the 
draft ICH Q13 guidelines and discussed the details of pro-
cess monitoring and management among the elements of 
the control strategy. Real-time monitoring PAT enables us 
to establish a scientific understanding of the process and 
control strategies when implementing a continuous manufac-
turing process. In particular, NIRS and RS are traditionally 
widely used as tools for process analysis in the manufac-
turing process of solid oral dosage forms, and most CQA 
monitoring is possible using only these two tools. However, 
as mentioned in the text, both NIRS and RS have their dis-
advantages. An increasing number of studies are therefore 
evaluating whether existing tools can be improved upon 
while determining the applicability of real-time monitoring 
analysis techniques of new tools. In this process, some of the 
most recent articles covered in this review paper discusses 
the detailed analysis of various CQAs through multi-point 
measurement, and flexibly utilizes various PATs by mixing 
existing process analytical techniques. Therefore, using PAT 

in recent studies provides in-depth knowledge about PAT as 
a real-time monitoring technology.

In addition, the development processes of the majority 
of continuous manufacturing technologies often only con-
cluded with a review of each unit process. It is therefore 
necessary to discuss more extensive in-line monitoring 
to apply and integrate technologies in more diverse unit 
processes. One of the most recent papers related to this 
content was written by (Sacher et al. 2021). In addition 
discussions about the continuous manufacturing process 
of solid oral pharmaceuticals as well as the formation of an 
end-to-end system from drug substance synthesis to final 
formulation are being reported (Wahlich 2021). Therefore, 
the exploration of real-time monitoring analysis technol-
ogy utilized in the solid oral dosage form in this text can 
be referred to as a basic guideline for PAT trends. How-
ever, we also need to be aware of and follow the latest 
discussions about the broader continuous process.
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Table 11   PAT tools and evaluated CQAs used in coating

PAT tool Evaluated CQA Characteristics References

NIRS (Near-infrared spectroscopy) Coating thickness At-line Kim et al. (2017) and Naidu et al. (2017)
In-line Hattori et al. (2018)

API content In-line Avalle et al. (2014)
Tablet moisture content In-line Shibayama et al. (2021)

RS (Raman spectroscopy) Coating thickness In-line Barimani et al. (2017) and Silva et al. (2019)
Content uniformity In-line Hisazumi et al. (2017)

TPI (Terahertz pulsed imaging) Coating thickness At-line Dohi et al. (2016) and Lin et al. (2017)
In-line Lin et al. (2015, 2017)

Surface roughness, Tensile strength In-line Dohi et al. (2016)
SFV (Spatial filter velocimetry) Coating thickness In-line Wiegel et al. (2016)
XRFS (X-ray fluorescence) Coating thickness In-line Nakano et al. (2018)
Passive acoustic emissions monitoring Temperature during coating In-line Carter et al. (2018)
BARDS (Broadband acoustic resonance 

dissolution spectroscopy)
Coating thickness dissolution At-line Alfarsi et al. (2019)

OCT (Optical coherence tomography) Coating thickness,
Content uniformity

In-line Markl et al. (2015) and Sacher et al. (2019)
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