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Abstract
Background  Oral extended release (ER) delivery systems have quickly gained increasing importance because of their ability 
to maintain drug levels in the blood more consistently, reducing side effects and improving patient compliance. The complex-
ity of ER formulation leads to additional development challenges in the fulfilment of quality-related regulatory requirements. 
Despite their challenging properties, the potential of ER system formulation and process development can be better exploited 
by applying quality by design (QbD) approaches and advanced modeling techniques such as machine learning (ML).
Area covered  This review provides a comprehensive overview of QbD concepts applied to oral ER delivery systems, clarify-
ing the impact of raw materials and process variables on critical quality attributes (CQAs). Moreover, data science coupled 
with ML algorithms is also elucidated in this article as a potential tool for predicting and optimizing ER formulation design 
and manufacturing processes.
Expert opinion  QbD, as a scientific and risk-based approach, provides a comprehensive understanding of oral ER drug 
delivery systems improving product quality and reducing postapproval changes. Enabling QbD with ML-driven pharma-
ceutical development can provide an opportunity to move toward risk mitigation for efficient ER tablet formulation and 
process development. However, there are some barriers to overcome in the way of adopting QbD concepts. The key issues 
are the lack of understanding and the gap between industries and regulatory authorities concerning the scientific principles 
and terms beyond QbD, which can create an obstacle during the approval process. Furthermore, it is generally believed 
that the resources and time invested in applying QbD tools are not cost-effective during constant and continuous improve-
ment. Today, it is time to realize that a multidisciplinary understanding of the formulation and manufacturing process is as 
important as achieving the final result.

Keywords  Design of experiments · Extended release · Machine learning · Multivariate data analysis · Process analytical 
technology · Quality by design

Introduction

The oral route is the most common route for drug adminis-
tration due to its clear advantages and convenience. One of 
the strategies used in drug development includes the consid-
eration of using different delivery systems and technologies 

to ensure the most appropriate pharmacokinetic and phar-
macodynamic profiles (Walker 2008).

According to the generally accepted definition, modi-
fied release (MR) is a dosage form release pattern where 
the time, rate and/or location of release of the drug sub-
stance are chosen to fulfil therapeutic or compliance goals 
not offered by conventional dosage forms administered by 
the same route (FDA 1997b; EMA 2014). MR is a slightly 
ambiguous term embracing several types of formulations 
with distinct release patterns. Compendial publications such 
as the United States Pharmacopeia (USP)  and European 
Pharmacopoeia (Ph. Eur.) or regulatory agencies such as the 
food and drug administration (FDA) and European medi-
cines agency (EMA) do not provide a harmonized definition 
for MR or controlled release (CR) dosage forms.
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Several types of MR systems have been recognized, 
including extended release (ER), delayed release (usually 
gastroresistant), targeted release and orally disintegrat-
ing tablets (Ding 2016). In this review, special attention is 
given to oral ER drug delivery systems. Since expressions 
such as “prolonged” (an equivalent term of extended release 
used by the EMA), “controlled”, “sustained”, “long-acting” 
and “repeat action” have also been interchangeably used to 
describe ER drug delivery systems, in the context of this 
article, ER will be used when referring to “extended release” 
and/or “modified release” formulations.

Although the concept of ER was introduced a few dec-
ades ago, its unique advantages and innovative technologies 
continue to provide pharmaceutical interest. When develop-
ing and manufacturing effective ER systems, it is crucial to 
ensure controlled and timed drug release with predictable 
kinetics, as revealed by recent research (Khan et al. 2020; 
Mohamed et al. 2020; Than et al. 2021; Akhtar et al. 2022). 
Therefore, critical raw material and process properties must 
be carefully selected and assessed to achieve the desired 
release profile.

Although ER drug product development faces several 
constraints in data acquisition, understanding of the drug 
release mechanisms, robustness and reproducibility, the 
potential of ER systems can be better exploited if formula-
tion and process development are performed using the qual-
ity by design (QbD) approach.

The systematic QbD approach, supported by the Inter-
national Council of Harmonisation (ICH) Q8, Q9 and Q10 
guidelines, has been widely used by pharmaceutical indus-
tries to design, develop and manufacture high-quality drug 
products. QbD elements include the quality target product 
profile (QTPP), which enables the identification of critical 
quality attributes (CQAs); identification of critical material 
attributes (CMAs)  and critical process parameters (CPPs), 
linking to the CQAs; risk assessment (RA); definition of the 
design space; and control strategy and continuous improve-
ment. The application of these concepts can ensure safety, 
efficacy, and quality across the ER drug product lifecycle 
and streamline regulatory processes. Understanding the 
drug product and respective manufacturing process results 
in quality improvement and risk reduction (ICH Q9 2005, 
ICH Q10 2008, ICH Q8(R2) 2009). Design of experiments 
(DoE) and process analytical technology (PAT) are two use-
ful tools applied in QbD. PAT tools could be fundamental to 
support real-time release testing (RTRT) as part of a control 
strategy (ICH Q8(R2) 2009).

Extended release of drugs can be achieved using 
numerous manufacturing technologies. Usually, strong 
efforts are allocated to eliciting the type of rate control-
ling polymers with a focus on their unique properties and 
respective amount. However, the performance of ER drug 
products based on their dissolution profiles can be more 

time-consuming and complex than conventional formula-
tions, as models predicting drug release from ER systems 
eventually consider a high number of factors, which may 
lead to a high volume of data, thus hampering their fast 
and effective pharmaceutical development.

On the other hand, the increase in data volume and 
complexity generated in drug discovery and development 
has resulted in the growing application of efficient statis-
tical and modeling tools. From this perspective, modern 
data analytics technology based on the concepts of multi-
variate data analysis (MVDA), artificial intelligence (AI) 
and machine learning (ML) algorithms, frequently coupled 
to the QbD approach, has guided pharmaceutical R&D 
assuring the desired product quality (Banner et al. 2021; 
Paul et al. 2021a).

While several previous studies have reported the critical 
points related to oral ER drug delivery systems (Mader-
uelo et al. 2011) as well as the importance of the use of 
the QbD strategy (Yu et al. 2014) and ML algorithms (Lou 
et al. 2021) in the pharmaceutical development context, 
no reviews in the literature were found comprising a mul-
tidisciplinary approach to link the three different strands: 
(1) different oral ER drug delivery systems; (2) a compre-
hensive approach of a well-structured QbD framework; 
and (3) application of advanced statistical modeling tools 
such as ML, applied to oral ER drug delivery system 
development.

The present review intends to detail the current state of 
applying QbD concepts to better understand the design and 
manufacture of oral ER delivery systems in pharmaceutical 
development. An outline of emerging opportunities in QbD 
implementation coupled to MVDA methods and AI/ML 
tools applied to oral ER drug products will also be discussed.

Applying the QbD framework to oral ER 
formulations

The development of ER formulations dates back to the 
1960s. Since then, an increasing number of researchers 
from both industry and academia have allocated significant 
resources to a wide range of scientific domains to expand 
the scientific knowledge in the field of ER delivery systems 
(Hoffman 2008; Lee et al. 2010; Florence 2011).

The main drivers for the ground-breaking advances in 
controlled release were the clinical need to prolong action 
and improve patient benefit (Lee et al. 2010). Moreover, 
the first mathematical models to study the dissolution of 
drugs, the understanding of the behavior of delivery systems 
in vivo and advances in polymer sciences have also greatly 
contributed to this development in the pharmaceutical indus-
try (Hoffman 2008).
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Types of oral ER drug delivery systems

Oral ER drug delivery systems exhibit drug release patterns 
that are intentionally distinct from conventional immedi-
ate release. In fact, these specialized dosage forms allow a 
reduction in the dosage frequency compared to conventional 
dosage forms. Sustained release (SR) and CR are both defi-
nitions for drug delivery systems that can be used to achieve 
an ER pattern (FDA 1997a; Ding 2016). The emergence of 
ER systems has paved the way for significant advancements 
in safety and efficacy of drug release, whether by decreas-
ing the risk of “dose-dumping” or incidence of adverse side 
effects or by maximizing therapeutic benefits in the main-
tenance of therapeutic blood levels and enhancement of 
patient compliance (Wen et al. 2010; Bruschi 2015; Ding 
2016).

In oral ER drug delivery systems, several physical, 
chemical, and biological mechanisms can be strategically 
employed to control drug release, e.g., dissolution, diffu-
sion, partitioning, solvent activation (osmosis and swell-
ing), erosion and targeting. They may act simultaneously 
or at different stages of a delivery process. In a broad sense, 
the different drug release systems can incorporate different 
mechanisms. When different mechanisms take place simul-
taneously or sequentially, the dominant and rate limiting step 
process is the slowest (Wen et al. 2010; Nokhodchi et al. 
2012; Siepmann et al. 2012a, b; Bruschi 2015).

Diffusion is one of the most common strategies for con-
trolling drug release. It is a physical mechanism for the 
transport of drug molecules through a polymer under a con-
centration gradient and can be described by Fick’s law of 
diffusion. The basic designs for diffusion-controlled delivery 
systems are the reservoir and matrix systems where drug 
molecules are released through a polymer membrane or a 
polymer matrix, respectively (Siepmann et al. 2012a; Qiu 
et al. 2017; Bermejo et al. 2020).

Conversely, dissolution is the rate controlling step in 
dissolution-limited systems. If the polymer is quickly dis-
solved, the solvated drug is immediately available to diffuse 
from the surface, and zero-order kinetics are not achievable. 
Therefore, the solubility of the polymer carrier and thickness 
of the membrane (reservoir systems) are the key factors in 
controlling drug release (Siegel et al. 2012; Bermejo et al. 
2020).

In dissolution- and diffusion-limited release systems, both 
processes often coexist. Drug release occurs by dissolution 
followed by diffusion through the matrix. First, the medium 
goes into the core, and hence, quick drug dissolution occurs 
by allowing diffusion of the dissolved drug out of the sys-
tem. In this case, it is difficult to elicit the rate-limiting step, 
but commonly, the dissolution rate is controlled by the dom-
inant mechanism—diffusion (Siegel et al. 2012; Bermejo 
et al. 2020).

A significant number of mathematical models were devel-
oped to aid in understanding the drug release kinetics and 
associated mechanisms. A review by Costa et al. (2001) 
describes some of the most common mechanisms, such as 
zero-order, first-order, Weibull, Higuchi and Korsmeyer-
Peppas. Mathematical modeling of drug release can help 
researchers better understand and develop highly effective 
ER drug delivery systems (Peppas et al. 2014).

The most common oral ER drug delivery systems are 
matrix, reservoir polymeric and osmotic systems (Siepmann 
et al. 2012a; Ding 2016; Qiu et al. 2017). A brief overview 
of each system is provided below.

Matrix systems

Matrices are also defined as monolithic since the drug is 
dissolved or dispersed homogeneously through a release 
rate controlling polymeric matrix (Tiwari et al. 2011; Sie-
pmann et al. 2012a; Qiu et al. 2017). Depending on the ini-
tial drug loading/drug solubility ratio, monolithic devices 
can be distinguished into two groups: monolithic solutions 
and monolithic dispersions (Siepmann et al. 2012a; Ber-
mejo et al. 2020). The former refers to a nonsaturated drug 
solution—the initial drug loading is below its solubility—in 
which the release rate decreases with time, while the latter 
consists of a saturated or oversaturated drug solution com-
prising a dissolved and nondissolved drug fraction. In this 
case, the dissolved drug is first released, decreasing the con-
centration inside the polymer, and thereafter, the undissolved 
drug solid aggregates will be slowly released by diffusion 
after they are dissolved (Siepmann et al. 2012a; Bermejo 
et al. 2020). Since the mean distance traveled by the drug 
to the matrix surface increases with time, the geometry of 
monolithic systems has a substantial impact on drug release 
kinetics (Siepmann et al. 2000; Siegel et al. 2012; Bermejo 
et al. 2020).

Concerning the rate-controlling polymer properties, 
matrix systems may be broadly classified into hydrophilic, 
inert and lipid matrices (Bruschi 2015), with hydrophilic 
systems being the most widely utilized in marketed ER prod-
ucts. In these systems, the drug is dispersed or dissolved in 
water-soluble and/or swellable hydrophilic polymers (Van-
hoorne et al. 2016; Parmar et al. 2018; Ilyes et al. 2021). 
Upon contact with the aqueous solution (water or physi-
ological fluid), the hydrophilic matrix becomes hydrated, 
resulting in relaxation of the polymer chains and lowering 
of the glass transition temperature. These phenomena are 
responsible for the development of a ‘gel’ layer on the sys-
tem surface controlling drug release (Colombo et al. 2000).

This process results in the formation of a series of fronts: 
the swelling front between the glassy polymer and the rub-
bery state, the erosion front that separates the swollen matrix 
of the surrounding solvent; and the diffusion front located 
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between the swelling and erosion front, i.e., between undis-
solved and dissolved drug particles, respectively (Ford 
2014). The gel layer thickness depends on several factors, 
such as the type and viscosity of the polymer, the penetra-
tion rate of the medium into the matrix, and the dissolution 
of drugs and excipients (Maderuelo et al. 2011; Tiwari et al. 
2011; Siegel et al. 2012; Caccavo et al. 2014; Ford 2014; 
Timmins et al. 2016).

In hydrophilic systems, while water-soluble drugs may 
be released essentially by diffusion (Thapa et al. 2018), for 
drugs with low water solubility, matrix erosion is the pre-
dominant mechanism (Kim 1998; Chakraborty et al. 2009; 
Barmpalexis et al. 2018). Some examples of polymers used 
in hydrophilic matrices are hydroxyl propyl methyl cellulose 
(Hypromellose/HPMC) (Gavan et al. 2017; Barmpalexis 
et al. 2018), hydroxyl propyl cellulose (HPC) (Iurian et al. 
2017; Than et al. 2021) and polyethylene oxide (PEO) (Nagy 
et al. 2019; Jang et al. 2021).

On the other hand, in inert matrix systems, the drug is 
incorporated into a water-insoluble polymer (Rus et  al. 
2020). Drug release occurs by permeation of the liquid into 
the polymeric matrix, dissolving the drug and/or creating 
pores and channels that facilitate solvent front penetration 
leading to dissolution and diffusion of the drug through the 
matrix (Frenning 2011). The drug release rate from inert 
matrix tablets is mainly governed by Higuchi’s equation. 
Ethyl cellulose (Sanoufi et al. 2020), polymethacrylates 
(Won et al. 2021) and polyvinyl acetate (Rus et al. 2020) 
are examples of water-insoluble polymeric materials used 
in inert matrices.

In lipid matrices, the rate-controlling polymers are hydro-
phobic and include waxes, glycerides, and fatty acids. Drug 
release from these matrices occurs through both diffusion 
and erosion (Petrovic et al. 2012; Bruschi 2015). Finally, 
the matrix systems can also be classified according to their 
porosity as microporous and nonporous systems (Wen et al. 
2010).

Reservoir systems

In reservoir-based systems, drug diffusion is mediated by a 
functional controlling membrane. A drug-containing core is 
surrounded by a polymeric membrane, and the drug release 
rate is controlled by its attributes, such as thickness, com-
position, and physicochemical properties (Siepmann et al. 
2012a). Once dissolved, the drug molecules diffuse across 
the membrane. As with monolithic systems, two types of 
reservoir systems can be found based on the polymeric 
membrane: nonporous, where drug molecules must diffuse 
through the polymer membrane, and microporous, when 
drug molecules are released through micropores (Wen et al. 
2010).

Additionally, diffusion-controlled reservoir systems are 
also classified according to the drug loading as constant 
activity sources and nonconstant activity sources (Siepmann 
et al. 2012a). In the first case, when the reservoir comprises 
a drug concentration in the core above its solubility, the drug 
concentration gradient at the membrane remains constant, 
the diffusion of drug through the membrane is constant, and 
zero-order release kinetics can be achieved. In contrast, a 
nonconstant activity is characterized by a first-order release 
profile since the drug in the dosage form is completely and 
rapidly dissolved and drug molecules diffuse out through 
the controlling membrane (Siepmann et al. 2012a; Bermejo 
et al. 2020).

Osmotic pump systems

Osmotic drug delivery systems (ODDSs) are based on the 
osmosis phenomenon, where the inner core, filled with a 
mixture of the drug and osmotic agent, is surrounded by a 
semipermeable polymer membrane that has an orifice for 
drug release. Driven by the concentration gradient, the sol-
vent tends to flow through the semipermeable membrane 
from the lower-concentration to a higher-concentration solu-
tion. Then, water influx by diffusion across the membrane 
dissolves the drug in an effort to achieve osmotic equilib-
rium and force the drug solution out through the orifice at a 
constant rate. ODDSs are characterized by a constant drug 
release with zero-order kinetics dependent on the osmotic 
pressure across the membrane and independent of the drug 
properties and the gastrointestinal environment (pH and 
motility) (Verma et al. 2002; Wen et al. 2010; Siegel et al. 
2012; Ding 2016; Qiu et al. 2017).

Felix Theeuwes and contributors from the Alza Corpo-
ration (USA) had an important role in the development of 
oral osmotic devices, known as OROS® (osmotic controlled 
release oral delivery system) (Theeuwes 1975; Verma et al. 
2002).

The different ODDSs can be classified based on their 
technology design as elementary osmotic pumps (Farooqi 
et  al. 2020), push–pull osmotic pumps (PPOPs) (Mala-
terre et al. 2009; Missaghi et al. 2014; Liu et al. 2021), 
sandwiched osmotic pumps, push-stick osmotic pumps, 
controlled porosity osmotic pumps (Akhtar et al. 2022), 
asymmetric osmotic capsules (Yang et al. 2016), and liquid 
osmotic capsules (Verma et al. 2002; Qiu et al. 2017).

The polymers used in membrane-controlled systems, 
such as reservoir systems and ODDSs, are generally water 
insoluble. As mentioned above, examples of these polymers 
include cellulose acetate (Akhtar et al. 2022) and ethylcel-
lulose (Hu et al. 2020).

Due to the variety of available polymers in the market and 
the significant number of drug delivery systems developed 
over the years, the selection of the most suitable polymer 
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and delivery system for new drug product development 
requires a deep knowledge of the different controlled-release 
mechanisms.

Key factors in oral ER drug delivery system 
development

Based on QbD principles, the design of oral ER drug deliv-
ery systems involves consideration of potential high-impact 
factors (CMAs, CPPs and CQAs) that may be critical to 
product quality. Ensuring product knowledge and under-
standing the effect of such variables are essential to support 
the desired quality throughout the drug product lifecycle.

Some reviews have summarized the major factors affect-
ing drug release from hydrophilic matrix tablets (Maderuelo 
et al. 2011; Vanza et al. 2020). The properties of the drug 
substance and polymer, formulation design and manufactur-
ing process have been considered the key factors common to 
all oral ER drug delivery systems.

Drug release is influenced in different ways by physico-
chemical factors that essentially impact and determine the 
mechanism and rate of drug release. Regarding drug sub-
stances, although drug solubility and dose (Kim 1998; Li 
et al. 2008) are the most critical drug factors for generating 
ER delivery systems, the influence of parameters such as 
particle size and molecular weight should also be carefully 
evaluated (Maderuelo et al. 2011).

Notwithstanding, to better control drug release, it is cru-
cial to define the polymer characteristics and understand 
their variability. The substitution pattern of cellulose deriva-
tives (e.g., HPMC), which can present batch-to-batch dif-
ferences, assumes an important role in the performance of 
hydrophilic matrices, and there may be a threshold where 
heterogeneity becomes critical for drug release (Viriden 
et al. 2009; Zhou et al. 2014). Compared to homogeneously 
substituted batches, the heterogeneous substitution pattern 
facilitates the formation of soluble gel-like components that 
increase the viscosity and extend the release rate of the drug 
(Viriden et al. 2010, 2011). Variations in the drug/polymer 
ratio and viscosity grade of polymers (Hiremath et al. 2008; 
Hu et al. 2020), as well as the particle size, can also affect 
the drug release rate (Heng et al. 2001; Crowley et al. 2004; 
Lakio et al. 2016).

An investigation of the three functionality-related char-
acteristics of the carvedilol release profile from hydrophilic 
matrix tablets demonstrated that particle size plays a role in 
the first part of the drug release profile, while viscosity and 
degree of substitution play a determinant role in the later 
part of the drug release profile. An increased drug release 
can be obtained with a higher HPMC particle size, higher 
degree of substitution and lower viscosity (Kosir et al. 2018).

By identifying and understanding the CMAs related 
to drug substances and polymers as well as their 

performance, it is possible to tailor the CQAs, namely, 
the drug release rate, to achieve a robust and desired ER 
formulation.

Regarding reservoir systems, as described above, poly-
meric membrane properties such as composition, thickness 
and permeability have a significant impact on drug release 
as well as on the occurrence of the burst effect (Siepmann 
et al. 2012a; Shah et al. 2022). The osmotic pressure gra-
dient between the drug inner core and the external envi-
ronment and the size of the delivery orifice coupled to 
the drug and semipermeable membrane properties are the 
major factors affecting the design of ODDSs (Malaterre 
et al. 2009). An increase in the tablet surface as well as 
an increase in the polymer molecular weight (both in the 
membrane and drug layer) showed an increase in the lag 
time. Otherwise, drug release was positively affected by 
the polymer proportion in the membrane and the propor-
tion of the osmotic agent. An increase in the proportion of 
the osmotic agent in the tablet core increased the rate of 
water hydration and then decreased the lag time (Malaterre 
et al. 2009; Lin et al. 2022). On the other hand, the orifice 
size with a diameter ranging from 0.40 to 0.8 mm had no 
significant effect on drug release (Lin et al. 2022).

Considering the manufacturing process of oral ER 
delivery systems, depending on formulation properties, 
different methods can be elected. Direct compression 
(Sethi et al. 2018; Farooqi et al. 2020), dry granulation 
(Jang et al. 2021) and wet granulation (Kanwal et al. 2021) 
are the most common techniques used for manufacturing 
oral ER drug delivery systems. An increase in the applied 
compression force is generally translated into a higher 
degree of compactness and a greater density of the matrix, 
reducing the level of porosity and leading to a slower 
release rate of the drug (Crowley et al. 2004; Hiremath 
et al. 2008; Abu Fara et al. 2019). Additionally, a binary 
combination of two different polymers (Carbopol971P® 
NF and Eudragit®E100) improved the compaction proper-
ties (crushing strength) and SR properties of paracetamol 
matrix tablets (Obeidat et al. 2015).

Siepmann et al. (2000) and Reynolds et al. (2002) eval-
uated the influence of tablet size and geometry on drug 
release from HPMC matrices. These studies reported that 
lower values of the tablet surface area/volume (SA/Vo) 
ratio, achieved by increasing the initial radius of the tab-
lets, have slower release profiles. SA/Vo, as a significant 
factor in controlling drug release, can be used as a tool to 
achieve target dissolution. Similar drug release profiles are 
typically reached with similar values of SA/Vo.

Overall, despite the study of various critical properties 
related to the drug substance by some authors, the func-
tionality of polymers is key to the successful design of ER 
delivery systems.
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Bridging QbD with solid oral ER formulations: 
the role in pharmaceutical development

The competitive quality environment, triggered by the emer-
gence of quality concepts, is the major factor responsible 
for the high regulation of the pharmaceutical industry. The 
rationale behind the evolution of the concept of QbD, first 
outlined by Juran (1985) and based on three main pillars 
(planning, control, and improvement), gave rise to the phar-
maceutical QbD (Davis et al. 2018).

In response to growing quality requirements and recurring 
quality issues in the pharmaceutical sector, regulatory agen-
cies have implemented a new quality paradigm. The result 
was the publication of a set of ICH guidelines (ICHQ8-Q12) 
that make up the QbD ‘family’ and to provide a way to drive 
product and manufacturing processes to achieve the required 
quality (Davis et al. 2018).

According to the ICH Q8 guideline, QbD is defined as 
a systematic, scientific, and risk-based approach to phar-
maceutical product development. It begins with predefined 
objectives and emphasizes product and process understand-
ing and process control (ICH Q8(R2) 2009). QbD can be 
applied to all product types and normally starts from the 
earliest stage of development and progresses through the 
manufacturing and product lifecycle (Gibson et al. 2018).

Implementing QbD in the development of pharmaceutical 
products provides numerous advantages and opportunities 
to both industry and the regulatory authorities. Moreover, 
in-depth scientific knowledge based on the formulation and 
manufacturing process helps to minimize batch-to-batch 
variation and batch failures, enhances the production of a 
more robust and quality product and process, and stream-
lines postapproval regulatory submissions.

For instance, the goal of this new regulatory model is the 
creation of a process control strategy leading to continuous 
improvement over time and resulting in cost savings and effi-
ciency for pharmaceutical industries, facilitating flexibility 
by the regulatory authorities (Gibson et al. 2018).

The application of quality risk management (QRM) 
principles is a valuable component of risk-based approach 
development. Keeping this in mind, ICH has issued the 
Q9 guideline, which describes a systematic process for the 
assessment, control, communication, and review of quality 
risks over the product lifecycle. The RA consists of risk 
identification followed by risk analysis and risk evaluation. 
The risk analysis objective is to rate the risk by linking the 
probability of occurrence, severity and sometimes detect-
ability (ICH Q9 2005). The combination of QRM with 
prior scientific knowledge can help to identify and prior-
itize which material attributes and process parameters have 
a potential impact on product CQAs (Singh et al. 2010).

Different usefulness tools may be used for QRM. Cause 
and effect diagrams (also called Ishikawa or fishbone 

diagrams), failure mode effect analysis (FMEA), failure 
mode, effect and critical analysis, hazard analysis and criti-
cal control point and hazard operability analysis are some 
of the recommended risk analysis tools for use in the phar-
maceutical industry (ICH Q9 2005).

In favor of ensuring innovation and continual improve-
ment throughout the product lifecycle, the Q10 guideline, 
articulated with ICH Q8 and Q9, highlighted the importance 
of pharmaceutical quality systems (PQSs). Based on quality 
system-related documents such as International Standards 
Organization and Good Manufacturing Practices (GMP) 
guidelines, ICH Q10 lays out the major requirements of what 
a PQS should include. Knowledge management and QRM 
(ICH Q9 2005) are the enablers to establish the control 
strategy, i.e., a planned set of controls covering the process, 
its inputs and outputs, assuring that the product meets the 
required quality (ICH Q10 2008; Schmitt 2018).

On the whole, the comprehension of concepts depicted 
by ICH Q8, Q9 and Q10 are shifting the paradigm to better 
understanding, controlling and continually improving the 
manufacturing quality performance and efficiency of prod-
ucts throughout the product lifecycle (ICH Q9 2005, ICH 
Q10 2008, ICH Q8(R2) 2009). Figure 1 shows the relation-
ship between ICH Q8, Q9 and Q10.

ICH Q11 and Q12 are more recent and complementary 
guidelines to clarify other QbD-based concepts. ICH Q11 
describes approaches to develop and understand the manu-
facturing process of drug substances linked to drug prod-
ucts (ICH Q11 2012), and ICH Q12 provides guidance on 

Fig. 1   ICH Q8 (R2), Q9 and Q10 guidelines work together during 
the ER drug product lifecycle. ICH Q8 focuses on science and risk-
based approaches for drug and process development, while ICH Q10 
describes quality systems that facilitate the establishment of a control 
strategy and the continual improvement up to commercial scale man-
ufacturing. QRM, described by ICH Q9 and applied over the product 
lifecycle, provides a structured way to assess and control risk (CMA 
critical material attribute, CPP critical process parameter, CQA criti-
cal quality attribute, ER extended release, ICH International Council 
for Harmonisation, QTPP quality target product profile)
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a framework to facilitate pharmaceutical life-cycle manage-
ment concerning postapproval change management in CMCs 
(chemistry, manufacturing and controls) (ICH Q12 2019).

Hence, the development and manufacturing of oral ER 
delivery systems are associated with some complex features, 
and the alignment of the concepts of QbD becomes crucial 
to identify the critical factors impacting the performance 
of drug release (Singh et al. 2010). The ICH Q8 guideline 
establishes the elements and main steps of QbD to be con-
sidered during pharmaceutical development (ICH Q8(R2) 
2009). To better understand the QbD-based development and 
manufacturing of ER delivery systems, the building blocks 
of the QbD flowchart will be addressed in the next sections.

Definition of a quality target product profile (QTPP)

The QTPP is a prospective summary of the main quality 
characteristics of pharmaceutical products that ensures the 
desired quality, safety, and efficacy targets. It describes the 
intended clinical use, route of administration, dosage form, 
delivery system, dosage strength and others (ICH Q8(R2) 
2009; Gibson et al. 2018). The QTPP forms the basis of 
design for product development and should be regarded as a 
starting point for identifying CQAs.

In the development of oral ER delivery systems, depend-
ing on the formulation type, different QTPPs could be 
described as differentiating features of the drug to be devel-
oped. Drug product quality attributes such as the dosage 
form, floating lag time (Mirani et al. 2016; Chudiwal et al. 
2018), mucoadhesion time (Chappidi et al. 2019) or drug 
release at the desired time (Vora et al. 2015; Desai et al. 
2017; Chudiwal et al. 2018) should be set as the QTPP 
elements.

Critical quality attributes (CQAs)

After defining the QTPP, the second step is to identify the 
CQAs. The CQAs of ER drug products include physical, 
chemical, biological, or microbiological properties or char-
acteristics of the drug substances, excipients and drug prod-
ucts that should be within an appropriate limit, range, or 
distribution to ensure the desired quality in the final product 
(ICH Q8(R2) 2009).

The drug product CQAs are selected to meet the QTPP 
and then assure product safety and efficacy. The CQAs for 
ER delivery systems are primarily associated with drug sub-
stances, polymers and other excipients and manufacturing. 
The percent cumulative drug release, erosion rate and swell-
ing rate were identified as CQAs in the design and develop-
ment of a hydrophilic matrix of metoprolol succinate (Shah 
et al. 2022).

The identification of the CQAs of rate controlling excipi-
ents (Parmar et al. 2018; Thapa et al. 2018) may also have 

special relevance because they can influence the mechanism 
and rate of drug release and allow accurate delivery of the 
necessary amount of drug over time.

The assessment of criticality can be difficult, and even 
when defined as critical in the initial development phase, not 
all CQAs will have the same effect on the QTPP. As recom-
mended in ICH Q9, RA tools help to determine criticality 
and prioritize each quality attribute (ICH Q9 2005; Gibson 
et al. 2018). CQAs can be controlled through input factors 
such as CMAs and CPPs of the pharmaceutical formulation 
(materials) and manufacturing process, respectively. The 
initial array of potential CQAs can be large but is usually 
narrowed as formulation and manufacturing process activi-
ties progress, i.e., the CQA list can be dynamically modified 
(ICH Q8(R2) 2009).

The analysis of high-risk variables related to ER delivery 
systems could help to determine which material attributes 
and process parameters are critical and need further investi-
gation to ensure drug product quality.

Linking of critical material attributes (CMAs) and critical 
process parameters (CPPs) to drug product CQAs

The development of ER delivery systems is associated with 
various challenges. Through the identification of potential 
CQAs linked to the properties of input materials (CMAs) 
and manufacturing process parameters (CPPs), it is pos-
sible to understand and identify formulation and process 
parameter ranges and controls (ICH Q8(R2) 2009). Yu and 
collaborators (Yu et al. 2014) reported a wide list of typi-
cal input material attributes, process parameters and quality 
attributes of tablet manufacturing unit operations.

QRM is one of the tools of the QbD approach to identify, 
evaluate, and control potential quality risks (ICH Q9 2005). 
An Ishikawa diagram is often used as a first step to identify 
the potential risk factors for CQAs. It is a systematic over-
view having a horizontal line with the underling CQAs and 
diagonal lines representing the major factors (Desai et al. 
2017; Saydam et al. 2018; Zaborenko et al. 2019; Kovacs 
et al. 2021).

Based on experience and a thorough literature review, 
two examples of generalized Ishikawa diagrams for oral 
ER delivery systems manufactured by direct compression 
(a) and high shear wet granulation (b) were constructed 
(Fig. 2). In the presented diagrams, the formulation and 
process parameters, among others, are hierarchically organ-
ized to visualize and categorize the factors that may affect 
the CQAs.

The superior diagram (a) displays the cause-and-effect 
relationships for the ER matrix tablet formulation with the 
direct compression method. The major categories of factors 
included are environmental factors, raw material properties 
and process variables.
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In ER matrix tablets, the excipient physical and chemi-
cal properties, mainly the polymer characteristics, have a 
significant impact on product manufacturing and perfor-
mance. In fact, the variability of raw materials has been 
described by some authors (Dave et  al. 2015; Zarmpi 
et al. 2017) and can lead to quality compliance issues. By 
studying the HPMC batch-to-batch and source-to-source 
variability through the determination of polymer charac-
teristics (methoxy and hydroxypropyl substitution range, 
particle size and viscosity), it was possible to verify that 
the chemical heterogeneity of HPMC has an important 
effect on the drug release and erosion rate of a niacin CR 
formulation (Zhou et al. 2014).

The inferior diagram (b) is related to a complex dosage 
form, i.e., a bilayer osmotic pump tablet. As already men-
tioned above, in membrane-controlled systems, the coating 
composition and thickness are the factors that impact drug 
release, media uptake and push–pull patterns (Missaghi et al. 
2014). Related to the orifice perforation, there are several 
types of processes that can be used to affect the osmotic 
pressure in the system and, consequently, the release kinet-
ics. Laser drill (Kushner et al. 2020) modified punches (Liu 
et al. 2008) and pore formers (Yang et al. 2016; Yu et al. 

2021; Akhtar et al. 2022) are some of the most well-known 
perforation techniques.

This tool is frequently associated with other RA tech-
niques, such as the risk estimation matrix (REM) and 
FMEA. REM provides a simple color coding scheme and 
is commonly used on a summary chart to set priorities in 
risk management. The raw material, formulation and process 
properties can be categorized as critical or high risk (red), 
medium risk (yellow) and noncritical or low risk (green) 
to the product quality attributes (Mirani et al. 2016; Par-
mar et al. 2018). This classification can be justified based 
on prior knowledge, the literature, experience, preliminary 
screening results, and stability studies (Gibson et al. 2018). 
Alternatively, FMEA is a more formal risk management tool 
supported by the multiplication of three criteria: severity (S), 
probability (P) and detectability (D). The rank for risk quan-
tification is defined through the risk priority number (RPN) 
score, which indicates the relative risk of each formulation 
and process variable (Vora et al. 2015; Gibson et al. 2018).

An FMEA could be performed to identify which formula-
tion and process parameters have the highest impact on drug 
product attributes. To develop and optimize an ER enteric-
coated tablet of isoniazid, the amount of PEO WSR 303, 

Fig. 2   Typical Ishikawa dia-
gram for a direct compression 
of ER matrix tablets and b high 
shear wet granulation of ODDSs 
(CQA critical quality attribute, 
ER extended release)
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hardness and amount of ethyl cellulose exhibiting RPN ≥ 40 
were considered high-risk factors that affect the core tablet 
formulation (Vora et al. 2015). In another study, the polymer 
and drug concentrations were considered high-risk factors 
in a formulation of a differential release fixed-dose matrix 
tablet of amlodipine besylate and simvastatin with an RPN 
above 15 (Kanwal et al. 2021). Thus, these main factors 
require further investigation and optimization by DoE to 
easily assess the interactions between factors. DoE should 
be performed to further establish the design space and define 
control strategies. Likewise, the application of tools such as 
the DoE and PAT can support the decision-making approach 
based on QRM (ICH Q9 2005).

Design of experiments (DoE)

DoE is a structured and useful tool in pharmaceutical devel-
opment that applies statistical analysis to deploy the QbD 
framework in pharmaceutical industries. Experimental 
design establishes the relationship between formulation- 
and process-related input factors and output responses with 
a mathematical model. DoE enables the assessment of the 
statistical significance of input variables and the elucidation 
of mathematical interactions and helps to identify optimal 
conditions to improve product quality (Politis et al. 2017). 
Selection of the type of experimental design should consider 
some aspects, such as the main objective of the design, num-
ber of input factors, interactions to be studied and the avail-
able resources (Politis et al. 2017; Owen et al. 2018). Some 
examples of classical experimental designs are fractional or 
full factorial designs, screening designs and response surface 
designs (Owen et al. 2018).

Through DoE techniques, the controlled input factors 
(independent variables) are varied to determine their effects 
on the output responses (dependent variables), which allows 
the identification and determination of individual and inter-
active effects of factors on output results. As noted, the 
selection of the best experimental design should consider 
the defined objective. Based on the reported data in Table 1, 
DoE is applied both to screening (Ilyes et al. 2021) and opti-
mization (Qazi et al. 2020; Gowthami et al. 2021; Won et al. 
2021) purposes in oral ER drug delivery systems, although 
most of the literature studies described refer to optimiza-
tion designs. Whereas screening designs, often used in the 
first part of drug development, allow the identification of 
CMAs and CPPs affecting the CQAs, the application of 
optimizing designs in QbD-based ER development allows 
the achievement of an optimized output response by chang-
ing the factors. Central composite designs (CCDs) (Saydam 
et al. 2018; Chappidi et al. 2019; Mohamed et al. 2020) 
and Box‒Behnken designs (BBDs) (Thapa et al. 2018; Jang 
et al. 2021), i.e., two response surface methodology mod-
els, and D-optimal designs (Lakio et al. 2016; Vanhoorne 

et al. 2016; Sanoufi et al. 2020) are the most commonly used 
optimization designs in ER drug product development. Fac-
tors such as the polymer amount and ratio, orifice size (for 
ODDSs) or compression pressure are optimized using DoE. 
The output responses include drug release over a period of 
time and tablet properties.

Although all the independent variables studied in the 
experimental designs are described in Table 1, only the rel-
evant factors, i.e., the factors that showed an impact on the 
dependent variables, are depicted in the table results, which 
could be important in future studies.

The development of an ER formulation with paliperidone 
using a mixture of hydrophilic and hydrophobic polymers 
was studied by Iurian et al. (2017). After drug addition to an 
inert matrix made of Kollidon® SR, hydrophilic polymers 
were also included (NaCMC, sodium carboxymethyl cel-
lulose; HPC; or HPMC). The mixture of these two types of 
polymers allowed a combined release mechanism through 
the formation of pores in the matrix and a gelled layer gener-
ated by the insoluble polymer and the hydrophilic polymer, 
respectively. In the study presented by Won et al. (2021), a 
bilayer tablet containing a high dose of metformin HCl in an 
SR layer and a low dose of evogliptin tartrate in an immedi-
ate release layer was developed. The appearance, friability, 
hardness, identification, assay, content uniformity, dissolu-
tion, degradation products, residual solvents and microbial 
limits were considered as potential CQAs. RA was used to 
determine which CMAs and CPPs were critical to the CQAs. 
Since the formulation and granulation process of each layer 
was based on the marketed tablet dosage form containing 
each single component, all formulation parameters were 
classified as low risk. Afterward, an REM was performed 
for the bilayer tableting process parameters, and those whose 
risk was identified as high were optimized through a face-
centered CCD including five independent variables.

Therefore, the implementation of a DoE to optimize the 
formulation and/or process parameters has become an effec-
tive and successful QbD strategy to develop oral ER drug 
delivery systems. The evaluation of the DoE outcomes can 
justify predictions of the formulation and process behavior 
within the design space.

Design space and control strategy

The design space is a key concept in QbD defined by ICH 
Q8 as “the multidimensional combination and interaction 
of input variables (e.g., material attributes) and process 
parameters) that have been demonstrated to provide assur-
ance of quality”. The design space describes the relationship 
between process inputs and CQAs (ICH Q8(R2) 2009) and 
begins with the definition of the QTPP. RA, as part of QRM 
(described above) and deep knowledge gained from process 
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development experiments, can support the design space and 
guide the establishment of a control strategy.

The assessment of which variables are critical or not will 
help ensure consistent ER drug product quality. These criti-
cal factors are a very important tool to define the accept-
able ranges of material attributes and process parameters 
and then limit and establish the design space. According to 
ICH Q8, operating within the design space is not considered 
a change from the regulatory point of view but a part of the 
control strategy, since it is expected that the final product has 
the same quality (ICH Q8(R2) 2009). The normal operating 
range or control space is a subset of the design space and is 
defined as the upper and/or lower limits for the CMAs and 
CPPs, i.e., a demarked region of the design space where 
parameters and materials are systematically controlled 
throughout production to assure reproducibility (Yu 2008). 
A design space can be established independently for one 
or more unit operations or constructed for the whole pro-
cess through multidimensional interactions between CPPs 
(ICH Q8(R2) 2009).

Although the design space is optional and not required by 
regulatory authorities, it is an asset to the applicant, provid-
ing accurate and reliable product quality within specifica-
tions. Furthermore, the design space can be updated over the 
lifecycle of the product as additional knowledge is gained 
(ICH 2010).

Once the product and process understanding is achieved 
through the design space, the next step is the development of 
a control strategy to control the CMAs and CPPs. A control 
strategy is a planned set of controls derived from the current 
product and process understanding that ensures process per-
formance and product quality. This can include parameters 
and attributes related to the drug substance and drug product 
materials and components, facility and equipment operating 
conditions, in-process controls, finished product specifica-
tions, and the associated methods and frequency of monitor-
ing and control (ICH Q10 2008). A high level of process and 
product understanding and consequent identification of the 
sources of variability that can impact product quality will 
support the control of critical steps and can enable the shift 
of controls upstream.

A suitable control strategy justifies the use of PAT tools 
and RTRT, minimizing the need for end product testing 
(ICH  Q8(R2) 2009). The control strategy model could 
include three levels of controls.

The design space, associated with the control strategy, is 
a driver for understanding the product and process, explain-
ing and controlling the variability and ensuring that a given 
manufacturing process is robust enough to produce a product 
that meets the QTPP and CQAs (ICH 2010).

In the case of the design of inert and hydrophilic matrices, 
some critical factors must be considered, such as the poly-
mer properties, drug particle size and compression pressure. 

The application of percolation theory along with critical 
points has been shown to be an important tool to establish 
the design space, based on ICH Q8 requirements, of this 
type of ER formulation (Aguilar-De-Leyva et al. 2017).

PAT and RTRT as part of a control strategy

The implementation of PAT tools helps to ensure a suitable 
level of risk control. PAT is a system for designing, analyz-
ing, and controlling manufacturing through timely meas-
urements of critical quality and performance attributes of 
raw and in-process materials and processes with the goal of 
ensuring final product quality. This definition is consistent 
with the FDA current drug quality system: “quality can-
not be tested into products, it should be built-in or should 
be by design” (FDA 2004; ICH Q8(R2) 2009). A focus on 
raw materials, formulation and process control can reduce 
product and process variability and improve the robustness 
of product development and manufacturing with significant 
time and cost savings (FDA 2004; Lundsberg‐Nielsen et al. 
2018).

The PAT framework includes four key elements to facili-
tate process understanding and control throughout the prod-
uct lifecycle: multivariate tools for design, data acquisition 
and analysis, process analyzers, process control tools and 
continuous improvement and knowledge management tools 
(FDA 2004; Yu et al. 2014).

The introduction of PAT tools should be extended, begin-
ning at development and continuing at commercial manu-
facturing. During the development phase, PAT can help in 
the identification of CPPs, CMAs and their interactions to 
control product CQAs and create opportunities to improve 
the scientific basis for setting regulatory specifications. The 
understanding and experience acquired at the laboratory 
scale can further aid in achieving reliable scale-up and tech-
nology transfer. In commercial manufacturing, the purpose 
of PAT is mainly process control and improvement and to 
provide the opportunity for RTRT application (FDA 2004; 
Lundsberg‐Nielsen et al. 2018).

Some authors have performed studies showing the appli-
cability of different PAT tools in the design and development 
of ER tablets. Table 2 provides a summary of recent PAT 
applications in the development of oral ER drug delivery 
systems. Near infrared (NIR) and Raman spectroscopies 
have been used as in-line process analyzers in various appli-
cations, including the estimation of drug content (Sirbu et al. 
2014; Muntean et al. 2017; Porfire et al. 2017; Rus et al. 
2020; Gavan et al. 2022), tablet characterization (Porfire 
et al. 2017; Gavan et al. 2022), and coating operation end-
point and drug release determination (Gendre et al. 2011; 
Muller et al. 2012; Wirges et al. 2013; Wu et al. 2015). The 
obtained data were modulated using multivariate statisti-
cal tools such as principal component analysis (PCA) and/
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or partial least squares (PLS) (Van Snick et al. 2017; Nagy 
et al. 2019; Gavan et al. 2022).

For example, NIR-chemometric methods were used to 
chemically and pharmaceutically characterize indapamide 
SR tablets (Porfire et al. 2017). The combination of data 
provided by NIR spectrometry and off-line tablet press and 
PSD of the drug substance (drotaverine) and HPMC sup-
ported the development and implementation of an dissolu-
tion prediction model for matrix sustained-release tablets 

(Galata et al. 2021). The investigation of water penetration 
during the dissolution of nifedipine from CR PPOP by col-
lection of NIR spectra allowed the researchers to understand 
the time dependency of water in different stages along the 
tablet dissolution process (Liu et al. 2021).

RTRT is the ability to evaluate and ensure the quality of 
in-process and/or final products based on process data (mate-
rial attributes and process controls) (ICH Q8(R2) 2009). 
In other words, RTRT is a strategy implemented by some 

Table 2   Examples of PAT framework application for formulation and process understanding in the development of ER drug delivery systems

DC direct compressible, DR drug release, HPMC hydroxyl propyl methyl cellulose, NIR near-infrared, PCA principal component analysis, PCR 
principal component regression, PEO polyethylene oxide, PLS partial least squares, PPOP push–pull osmotic pump

CQA Unit operation and/
or Processing form

PAT method Statistical tools Measurement References

Assay
Tablet hardness

Blending
Powder blend

NIR PCA
PLS

Drug content (paliperi-
done)

Mixture homogeneity

Gavan et al. (2022)

DR Core tablet NIR PLS
ANN

Drug content (drotaver-
ine)

HPMC amount

Galata et al. (2021)

Water uptake PPOP coated tablet NIR (aquaphotomics) PCA
PLS

Water content (6 types of 
water)

Liu et al. (2021)

Assay Core tablet NIR PCA
PLS

Drug content (diclofenac 
sodium)

Kollidon® SR
Lactose DC amount

Rus et al. (2020)

DR Core tablet NIR
Raman

PCA
PLS
ANN

Drug content (anhydrous 
caffeine)

PEO amount

Nagy et al. (2019)

Assay Powder blend NIR PLS Drug content (paraceta-
mol and anhydrous 
caffeine)

Muntean et al. (2017)

Residence time distribu-
tion

Blending
Powder blend

NIR PLS Drug content (naproxen 
sodium)

Blend uniformity

Van Snick et al. (2017)

Assay
DR
Hardness

Core tablet NIR PLS Drug content (indapa-
mide)

HPMC and lactose 
amount

Porfire et al. (2017)

DR
Endpoint of coating 

operation

Coating
Coated tablet

NIR PCA
PCR
PLS

Mass of coating materials Wu et al. (2015)

DR Hot-melt extrusion
Extrudates

NIR PCA
PLS

Drug content (paraceta-
mol)

Islam et al. (2014)

Assay Blending
Powder blend

NIR PLS Drug content (indapa-
mide)

HPMC and lactose 
amount

Sirbu et al. (2014)

Endpoint of coating 
operation

Coating
Coated tablet

Raman PLS Coating amount (cande-
sartan cilexetil)

Wirges et al. (2013)

Endpoint of coating 
operation

Coating thickness

Coating
Coated tablet

Raman
Terahertz pulsed imaging

PLS Functional coating 
amount

Muller et al. (2012)

DR
Endpoint of coating 

operation

Coating
Coated tablet

NIR PLS Mass of coating materials Gendre et al. (2011)



291Journal of Pharmaceutical Investigation (2023) 53:269–306	

1 3

pharmaceutical companies where the process (manufactur-
ing steps or unit operations) is continuously monitored—in 
real-time quality control—without the need for end-product 
quality tests. The basis for establishing an RTRT system 
involves the combination of ICH Q8, Q9 and Q10 principles 
and provides an opportunity for enhancing product and pro-
cess understanding and increasing product quality assurance 
(EMA 2012).

Pawar et al. (2016) demonstrated for the first time the 
RTRT possibilities in the continuous manufacturing of an 
SR formulation. This study presented a method for dissolu-
tion prediction in direct compression continuous manufac-
turing with at-line transmission mode using NIR spectros-
copy. The API concentration, compression force, blender 
speed and feed frame speed were the formulation and pro-
cess variables included in the experimental design. PCA was 
performed between the NIR spectral data obtained for the 
DoE samples and the dissolution profile parameters (model 
dependent and model independent). The results obtained by 
the multilinear regression model showed the potential of 
NIR spectroscopy to predict tablet dissolution.

A recent review highlights the main challenges and 
opportunities of RTRT, focusing on the most prevalent 
CQAs for different manufacturing processes (direct com-
pression and dry and wet granulation). The mixing homoge-
neity, tablet content and uniformity, moisture content, drug 
release, granule particle size, tablet porosity, tablet strength 
and coating thickness were published in the literature as 
drug product CQAs measured by PAT methods (Markl et al. 
2020).

A control strategy for drug content and tablet uniformity 
on a commercial scale was recently developed, and three 
different options were considered in the development. The 
content uniformity methods included the use of individual 
tablet weight data (in process control); the use of estimated 
individual tablet content data (weight variation); and the 
application of at-line NIR spectroscopy to predict individual 
tablet content. At-line testing of the tablet content by NIR 
spectroscopy was selected as the most appropriate approach 
and could be applied as part of RTRT (Goodwin et al. 2018).

There is already a workflow available for developing and 
implementing a PAT strategy that supports real-time process 
control in continuous pharmaceutical manufacturing. From 
process analysis and the definition of monitoring tasks to 
technology selection, process integration and data acquisi-
tion, all these steps seem to be crucial to develop a robust 
continuous manufacturing process and to control the quality 
of drug products (Sacher et al. 2022).

Although it is clear that there is still a long way to go 
to achieve RTRT in solid oral ER tablets, the wide range 
of established in-line PAT applications to monitor CQAs 
and control, in real time, the CMAs and CPPs (Galata 
et al. 2021) confirms its potential to enable RTRT. The 

application of the QbD approach, based on deep scientific 
knowledge built through product development coupled 
with in-process monitoring of process parameters, should 
result in a robust control strategy to promote reproducible 
product quality and mitigate potential risks. The process 
understanding and control, method development and vali-
dation, and application of the method within the product 
control strategy are the basis for supporting RTRT devel-
opment methods (Markl et al. 2020; Sacher et al. 2022).

Product lifecycle management and continual improvement

QbD strongly underlines the principle of continuous 
improvement in which the development must be updated 
as the understanding of the product and process increases 
during the product lifecycle. The combination of PAT 
methods, knowledge management and use of multivariate 
analysis can enhance the identification and understand-
ing of CMAs and CPPs. Accordingly, product-related 
data acquired during routine commercial manufacturing 
should be considered and analyzed to refine knowledge 
and control strategies, improve statistical confidence, and 
consequently improve product quality in compliance with 
GMP regulations (ICH 2011). These strategies will help 
pharmaceutical industries minimize the risk of not meet-
ing quality requirements by controlling the sources of raw 
material and process variability.

In summary, QbD tools are a crucial part of the modern 
approach to pharmaceutical quality. However, the pharma-
ceutical industry has not yet embraced QbD implementa-
tion, which has been facing some barriers. Currently, QbD is 
often implemented during late stages of development only to 
optimize the formulation and process, according to what was 
defined in the QTPP, or to generate data to support regula-
tory submission. Implementing QbD technologies as PAT 
involves a high level of investment in material and human 
resources. The lack of technology to execute and the need for 
an interdisciplinary strategy using different areas of exper-
tise are key limitations. Furthermore, the lack of clarification 
regarding the scientific principles and terms beyond QbD 
causes a gap between industries and regulatory authorities 
that can be an obstacle during the approval process.

Although a trial-and-error approach can lead to the 
same results as a QbD-based approach, it does not gener-
ate product knowledge. Without an intrinsic knowledge of 
the process, problems can arise at the scale-up level and 
even throughout the product lifecycle. Therefore, using the 
QbD approach from the beginning of product development 
brings advantages when choosing the strategy to adopt next. 
In addition, since the results concerning oral ER drug deliv-
ery systems are more time-consuming, the implementation 
of these tools becomes even more relevant.
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Insights on data science—MVDA, ML 
and ANN as tools to foster ER tablet 
development and lifecycle management

The QbD framework is based on the continuous improve-
ment principle and provides a holistic understanding of 
the product and its manufacturing processes throughout 
the entire cycle, using risk management methodologies 
to ensure that the product fulfills the quality requirements 
(ICH Q8(R2) 2009). A deep understanding of the product 
and its manufacturing parameters mitigates the risk and 
enables a growing knowledge collection to offer a robust 
and reliable drug product. As considered by ICH Q10, 
knowledge management is one of the key enablers of a 
robust QRM and must be managed from development until 
the end of the product lifecycle (ICH Q10 2008). However, 
the emergence of a data-driven era and advancements in 
manufacturing sciences and technologies should be used to 
improve knowledge and risk management, providing a real 
opportunity to intensify process robustness and efficiency 
as well as increase time and cost savings. Accordingly, 
leveraging prior knowledge toward data-driven risk man-
agement is a key factor for a successful QbD application 
(Steinwandter et al. 2019).

As a consequence of scientific and technological 
advances and the resulting vast amount of data, the phar-
maceutical industry continues to struggle to improve the 
processes used in drug development. Therefore, based on 
large complex datasets, tools offered by data science pro-
vide useful information to optimize processes, acceler-
ate drug development and boost performance and results 
(Reinhardt et al. 2020). Data science is mainly referred to 
as the statistical field that applies advanced tools to derive 
useful information from complex data. Its process encom-
passes the identification of a problem, data collection, 
preparation and analysis, and model building through the 
combination of different fields, including statistics, data 
analytics and AI (Steinwandter et al. 2019). Therefore, 
data science and AI are strongly interconnected (Fig. 3).

AI concepts have been increasingly used since the 
mid-twentieth century with a focus on mimicking human 
behavior (Haenlein et al. 2019) and have recently started 
to gear up its applications in different pharmaceutical 
areas, from drug discovery to clinical trials and postmarket 
product management (Vamathevan et al. 2019; Paul et al. 
2021a). AI-related subfields can include ML, neural net-
works (one of the most important tools in ML), and expert 
systems (Fig. 3) (Haenlein et al. 2019). The focus of this 
topic is to discuss the potential of different ML models to 
predict solid oral ER tablet performance.

Conventional and multivariate statistical 
approaches in ER tablet QbD‑based development

As mentioned earlier (Table 1), DoE is an efficient meth-
odology used in QbD to understand the main effects and 
interactions and determine the relationship between mul-
tiple input variables and outputs. With a minimum number 
of experiments, it can be possible to gain formulation and 
process knowledge and define the design space.

In the context of oral ER drug delivery systems, their 
manufacturing processes are generally complex and can only 
be described by multifactorial relationships. Additionally, 
the introduction of PAT during the manufacturing process 
is associated with the generation of a large amount of data. 
Because huge amounts of data are generated, specialized 
data analysis tools, such as MVDA, are required to fully 
explore the multivariate outputs generated from DoE data-
sets or, for example, data acquired by PAT.

Integrated multivariate analysis methods have been 
widely implemented by pharmaceutical companies. These 
methods are data-driven statistical techniques to simulta-
neously analyze several variables in large/complex datasets 
and identify critical parameters that can then be controlled 
to improve process and product quality.

The majority of published research studies reporting the 
application of MVDA techniques in oral ER drug products is 
supported by PAT, dealing with the development of calibra-
tion models to predict and monitor CPPs and CQAs in real 
time (Wu et al. 2015; Rus et al. 2020; Gavan et al. 2022). 
Among the various MVDA techniques, MLR, PCA and PLS 
are the most common methods used in ER pharmaceutical 
development (Islam et al. 2014; Kosir et al. 2018; Diab et al. 
2021).

PCA and PLS, as linear dimensionality reduction ML 
algorithms, are useful in pharmaceutical development to 
extract meaningful information from datasets. PCA orthog-
onally transforms the original dataset of observations of 

Fig. 3   The role of artificial intelligence in the data science lifecycle. 
The basic steps of data science from problem identification to model 
building using artificial intelligence
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possible correlated variables into a lower dimensional 
set of axes named principal components. This conversion 
allows us to maximize the variance and find patterns in 
large datasets. On the other hand, PLS takes into account 
the covariance between the variables being applied based 
on correlation. PLS regression is also a projection technique 
where the original dataset is projected onto a low-dimen-
sional set, followed by linear regression. Then, it is possi-
ble to identify and establish correlations between variables 
in the manufacturing of oral ER drug products based on 
QbD. The linear combination of variables is referred to as 
latent variables (Rajalahti et al. 2011; Lopes et al. 2018). A 
comparison between MLR and PLS multivariate regression 
models showed PLS as a more suitable model to determine 
which HPMC properties had the most significant role on 
the carvedilol release rate from hydrophilic matrix tablets 
(Kosir et al. 2018). However, each multivariate tool should 
be explored depending on the dataset and objective. While 
the PCA model might be a great choice for data exploration, 
PLS can be a better option for predictive purposes.

For pharmaceutical product and process development, 
although MVDA methods have started to be more applied, 
they are essentially used at the upstream phase of drug 
development either applied to analyze the historical data 
from the raw materials or combined with the DoE (Huang 
et al. 2009; Grangeia et al. 2020; Shi et al. 2021).

Various studies have selected PCA and PLS as comple-
mentary tools of DoE to evaluate the relationships between 
the input variables (CPPs and CMAs) and their impact on 
CQAs in oral ER drug delivery systems (Huang et al. 2009; 
Porfire et al. 2017; Rus et al. 2020). Other studies have 
used MVDA in PAT (Wu et al. 2015; Gavan et al. 2022) for 
interpreting the in-line measurements in ER drug product 
development and/or manufacturing (as depicted in Table 2). 
Overall, PCA has been used to visualize the relationships 
between the independent variables and classify the PAT 
spectral data files, whereas PLS is used to develop a cali-
bration model to predict CQAs such as drug release (Banner 
et al. 2021). Diab et al. (2021) described the application of 

chemometric methods (PCA and PLS) to predict dissolution 
variation based on historical industrial batch data produced 
at the commercial scale. In this paper, the input data related 
to API and excipient attributes and each unit operation were 
correlated with ER tablet dissolution (output variable) via 
PLS. The PCA model was applied to evaluate the variability 
of the input dataset.

Despite the advantages of MDVA techniques in modeling 
complex relationships between CMAs/CPPs and CQAs in 
ER oral drug delivery systems, the dimensional reduction of 
data could lead to loss of some information from the origi-
nal dataset. Moreover, since the formulation and process of 
oral ER drug delivery systems can be complex, these linear 
models could be insufficient when nonlinear relationships 
between CMAs/CPPs-CQAs are involved (Nagy et al. 2019). 
Therefore, more advanced and sophisticated approaches 
based on ML could be a good option to bridge these barriers.

Looking forward to advanced statistical models—
ML

ML is a branch of AI technologies and a data science tool 
that focuses on using algorithms to automate the building of 
predictive models for data analysis. Coupled with AI, ML 
provides substantial advantages, enabling the recognition 
and identification of patterns within a large volume of data-
sets and the production of reliable results with continuous 
improvement (Ashenden et al. 2021; Paul et al. 2021a). The 
storage and processing of the massive amount of data gave 
rise to the term ‘big data’. Its definition is commonly based 
on the 5 V properties: Volume, Variety, Velocity, Veracity 
and Value (Demchenko et al. 2013).

Although drug discovery is the major field of applica-
tion of ML in pharmaceuticals (Vamathevan et al. 2019; 
Reda et al. 2020; Paul et al. 2021a), ML strategies have 
emerged as a powerful solution for pharmaceutical scien-
tists to improve the success rate and foster the development 
of high-quality products. A SWOT analysis of ML in phar-
maceutical development is provided in Table 3, revealing 

Table 3   SWOT analysis of ML implementation in the context of pharmaceutical development

SWOT strengths, weaknesses, opportunities and threats, ML machine learning

Strengths Weaknesses

Handle large and complex datasets
Model non-linear relationships
Consistent formulation and process development leading to better-quality products

Variety, quality and amount of data required
Lack of interpretability and reproducibility

Opportunities Threats

Save costs and time
Accelerate drug product development
Continuous manufacturing
Regulatory flexibility
Continuous improvement

Initial cost and time consumption
Resources (computational power/ program performance)
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the internal strengths and weaknesses coupled with the 
opportunities and threats faced by ML. Despite the ability 
to handle large datasets and model nonlinear relationships, 
the required amount and quality of data can be a limitation 
(Steinwandter et al. 2019). Insufficient and poor-quality data 
can limit the model’s accuracy, leading to a lack of interpret-
ability and reproducibility.

The investment in new resources and technologies is gen-
erally a costly and time-consuming process that can limit 
the implementation of ML. However, the long-term applica-
tion of these automated and efficient methods will acceler-
ate product development and potentially save hefty costs. 
Moreover, ML is an opportunity to optimize manufacturing 
processes, where several PAT tools are used to enable real-
time monitoring in continuous manufacturing. Therefore, the 
use of ML allows computing systems to identify patterns in 
data collected across the process and continuously improve 
the outcomes, following the QbD workplace.

As summarized in a recent review, the growing trend 
toward solid oral dosage form development guided by 
QbD principles has been supported using ML methods to 
understand and relate CMAs and CPPs as input variables 
to achieve the desired outputs (CQAs) (Lou et al. 2021). 
Figure 4 provides an overview of how ML and other data 
analytics tools can transform raw big data providing useful 
models that can accurately ensure specification compliance 
to satisfy the CQAs with significant time and cost savings.

In a typical ML approach, the datasets can be integrated 
for training, validation and testing. To address the question/
problem, the process can be roughly divided into the fol-
lowing steps: (1) input the data collection (from various 

sources); (2) prepare, process and understand the dataset; (3) 
choose and build the ML model; (4) train the learning model 
on the training set; (5) tune and evaluate the ML model on 
the validation set; and (6) evaluate the final performance on 
the test set to confirm the results (Fig. 5) (Bannigan et al. 
2021). The steps of gathering data and building a model by 
selecting the right ML algorithm are of special relevance to 
pharmaceutical development because the quality and quan-
tity of the data as well as the selection of the most suitable 
algorithm will determine the accuracy and predictability of 
the ML model.

Types of ML approaches

ML includes three types of approaches: supervised learning, 
unsupervised learning, and reinforcement learning, differing 
in the way the models are trained. Figure 6 shows an over-
view of the ML methods.

Supervised learning comprises a set of labeled input 
data (training data). These already tagged data (historical 
learning and original input data) are used to train algorithms 
to find the specific structure for predicting the correct out-
comes (Banner et al. 2021; Bannigan et al. 2021). Then, 
the test data are applied to validate the model and assess its 
predictive accuracy. Supervised learning can be performed 
in the context of classification or regression, depending on 
whether the output variable is discrete and qualitative or 
continuous and quantitative, respectively (Bannigan et al. 
2021). Support vector machine (SVM) (Al-Zoubi et  al. 
2011), tree-based methods (decision tree, random forest and 
boosting) (Petrovic et al. 2012), K-nearest neighbors (k-NN) 
(Yang et al. 2019) and artificial neural networks (ANNs) 
(Galata et al. 2021) are some types of classification and 
regression algorithms used in oral ER drug delivery system 
development.

Fig. 4   Overview of an integrated approach with QbD elements, PAT 
tools and different data analytics tools. Schematic visual representa-
tion of overlay and contour plots to understand the impact of CMAs 
and CPPs on drug product CQAs (CMA critical material attribute, 
CPP critical process parameter, CQA critical quality attribute, DoE 
design of experiments, ML machine learning, MVDA multivariate 
data analysis, PAT process analytical technology, PCA principal com-
ponent analysis, PLS partial least squares)

Fig. 5   Basic steps involved in the ML process flow. Splitting data to 
training, validation and testing sets (ML machine learning)



295Journal of Pharmaceutical Investigation (2023) 53:269–306	

1 3

Two supervised regression ML models (MLR and 
SVM) were applied to the optimization of ER pentoxifyl-
line matrix tablets based on a 32 full factorial experimental 
design where the drug weight ratio and percentage of the 
matrix former were selected as the independent variables 
and the drug release at four time points was selected as the 
dependent variables. Using SVM concepts, the training 
data comprising 11 experiments (32 + 2 replicated central 
points) were normalized by feature scaling, and these nor-
malized factors were used as inputs for the SVM model 
construction. The suggested SVM model was externally 
validated with 6 checkpoints, and the experimental and 
predicted values were compared. The overall prediction 
ability was better for SVM than for MLR; thus, it is more 
suitable for optimizing drug release from ER matrix tab-
lets (Al-Zoubi et al. 2011).

On the other hand, unsupervised learning algorithms 
can identify patterns, similarities and differences from a 
hidden structure in unlabeled data without any prior train-
ing or supervision. Clustering and dimensionality reduc-
tion are the key ML tasks used in unsupervised learning 
(Ashenden et al. 2021). As mentioned before, PCA has 
been used as an important unsupervised data analysis 
technique for reducing dimensionality in addressing the 
complex process data in oral ER drug delivery systems. 
Finally, the third type of ML is reinforcement learning, 
which works through the correlation between actions and 
delayed outcomes based on a reward system (Arden et al. 
2021).

What does ML bring to the pharmaceutical industry?

In general, the application of ML algorithms can be a 
crucial tool to aid in deciding suitable starting materials, 
understanding formulations, product properties and pro-
cesses (Akseli et al. 2017; Benedetti et al. 2019; Hayashi 
et al. 2019, 2021; Lou et al. 2019; Van Hauwermeiren et al. 
2020; Djuris et al. 2021; Maki-Lohiluoma et al. 2021; Paul 
et al. 2021b; Thomas et al. 2021), and predicting dissolution 
(Galata et al. 2021) and drug stability (Ibric et al. 2007).

Hayashi et al. (2021) built a material library including 
81 types of APIs, 20 types of API material properties, one 
type of process parameter and two types of tablet properties. 
Boosted tree (BT), random forest (RF) and PLS were applied 
to model relationships between the input variables (material 
properties and three levels of compression pressure) and out-
put variables (tensile strength and disintegration time). BT 
and RF were demonstrated to be more suitable for modeling 
than multivariate models. The high R2 and low root mean 
square error (RMSE) values reported for the tree-based algo-
rithms indicated accurate predictions. With regard to the 
input variables, the diameters at the tenth percentile of the 
cumulative percent undersize distribution (d10) and total 
surface energy (γs) were found to strongly impact on the 
tensile strength and disintegration time, respectively.

It has been confirmed that ML algorithms have the 
potential to help the pharmaceutical scientific community 
in the assessment and prediction of several factors involving 
large amounts of data and requiring more flexible analysis. 
Although there are few articles in which ML is applied to 
ER formulation development, Table 4 provides a summary 
of some of the available research.

In the future, additional scientific efforts are expected to 
understand and interpret ML models when handling large 
datasets. Likewise, the traditional models used in DoE are 
well established, and the high prediction accuracy of ML 
does not mean the end of using them. Traditional tools could 
remain a good approach for linear relationships between 
inputs and outputs.

Artificial neural networks (ANNs)

Artificial neural networks (ANNs) are the first and most 
widely used ML model in the study of ER formulations, 
frequently with the objective of characterizing and optimiz-
ing the formulations and modeling the dissolution (Lou et al. 
2021).

ANNs are a useful tool for modeling input/output nonlin-
ear functions inspired by the way neurons work in the human 
nervous system. In one of the simplest forms of ANN (called 
the feedforward neural network—FFNN), the data travel 
in one direction (Simoes et al. 2020; Wang et al. 2022). 
Multilayer perceptron (MLP) has been commonly used in 

Fig. 6   Brief explanation of supervised, unsupervised and reinforce-
ment ML approaches (ML machine learning, SVM support vector 
machine, k-NN k-nearest neighbors, ANN artificial neural network, 
PCA principal component analysis)
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pharmaceutical development, and the framework comprises 
three types of essential layers: input, hidden and output lay-
ers. Once the input layer receives the external data for the 
neural network, the hidden layer, located in the middle of 
the ANN, processes the information through several types of 
mathematical computation. Then, the output layer produces 
the final results for the given inputs (Wang et al. 2022).

FFNNs, including MLP and the generalized regression 
neural network (GRNN), with radial and regression layers 
are just some examples of common neural network architec-
tures summarized elsewhere (Lou et al. 2021; Wang et al. 
2022).

In the midst of other ML methods, ANNs have proven 
to be accurate in assessing tablet properties (Khan et al. 
2020) and swelling and erosion mechanisms (Barmpalexis 
et al. 2018) as well as predicting the in vitro drug release 
(Al-Zoubi et al. 2015; Lefnaoui et al. 2018; Saracoglu et al. 
2020; Galata et al. 2021) of oral solid ER tablets. For input 
variables, numerous CMAs and/or CPPs have been used to 
build multiple ML models to predict CQAs. Input materials 
such as drug (Yang et al. 2019) and polymer properties (Sar-
acoglu et al. 2020) and process parameters (e.g., compres-
sion force (Galata et al. 2019), roller pressure (Pishnamazi 
et al. 2019) or crushing strength (Ivic et al. 2010)) were 
identified to predict the in vitro dissolution profile of ER 
tablets.

Nagy et  al. (2019) built three-layer ANN models to 
predict the dissolution of ER anhydrous caffeine tablets 
and compared them to traditional PLS regression. In this 
work, the effects of the API and PEO content and compres-
sion force on drug dissolution were assessed. The scores 
obtained by the dimension reduction PCA from the FT-NIR 
and Raman spectra of each intact tablet were defined as the 
input variables, and the dissolution values at 35 sampling 
points were considered the output variables. The NIR and 
Raman spectroscopic tools demonstrated a complementary 
relationship. While NIR methods provide information on the 
effect of compression force, Raman provides better predic-
tion of the effect of API and PEO on drug release. ANN-
based models provided a lower RMSE for prediction than 
PLS. This is due to the ANN capability to determine the 
complex and nonlinear relationship between the input and 
output parameters.

Deep learning (DL)

Deep learning (DL), as a specific and more advanced subset 
of ML, engages ANNs in most cases (Paul et al. 2021a). 
When applied to DL, the architecture of ANN models can be 
very deep, with more than three layers—called deep neural 
networks (Ashenden et al. 2021). Due to the suitability of 
DL to deal with complex datasets, it could be a powerful tool 

in the future of ER delivery system development to improve 
the control strategy.

Yang et al. (2019) applied a deep neural network to pre-
dict the disintegration time and cumulative drug release of 
oral fast disintegrating films (OFDF) and oral SR matrix tab-
lets (SRMT), respectively. For this purpose, the experimen-
tal dataset extracted from Web of Science was split into three 
datasets: training, validation, and testing. Six conventional 
ML methods (MLR, PLSR, SVM, ANNs, random forest 
and k-NN) were considered for comparison with DL. Deep 
neural networks showed higher accuracy (over 80%) on the 
OFDF and SRMT training, validation and test datasets com-
pared to the ML algorithms. Two years later, based on these 
models, Yoo et al. (2022) proposed new DL approaches, 
using PCA and the Wasserstein generative adversarial net-
work (WGAN), to maximize the prediction performance 
for OFDF and SRMT, respectively. The proposed models 
showed significantly higher performance than the existing 
models.

From QbD to pharma 4.0

In the last decade, the pharmaceutical industry has adopted 
several emerging technologies, techniques and processes, 
which offer high potential to change the landscape of drug 
development and production (Reinhardt et al. 2020; Arden 
et al. 2021; Wang et al. 2021).

To achieve high-quality and high-efficiency patterns, the 
pharmaceutical industry employs Pharma 4.0 (Arden et al. 
2021), a concept that emerged to represent the era where 
different technologies and/or machines are converging to 
improve product quality through renewed digital solutions 
(Reinhardt et al. 2020). Additionally, “Smart Factories” 
are structures in which machines communicate with each 
other dealing autonomously with emerging problems and 
unexpected changes (Barenji et al. 2019). The essential 
technologies for data science, a cornerstone of Pharma 4.0, 
have already been established and are well known, aiming 
to control the process and product quality data in real time.

QbD, together with ICH guidelines, enables the require-
ments of Pharma 4.0 through a holistic development and 
manufacturing control strategy. The implementation of 
QbD, RTRT and PAT has provided several advances, offer-
ing systematic and quantitative approaches, reducing human 
interventions and therefore sharply reducing costs and time.

However, their application in industry is far from the 
potential presented by this new concept (Barenji et al. 2019; 
Steinwandter et al. 2019; Wang et al. 2021). The bigger chal-
lenges are related to technological gaps, namely, the lack of 
independence facing unexpected changes, the low level of 
interoperability and the low computational power (Barenji 
et al. 2019). To implement smart manufacturing systems, a 
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cyber-physical-based PAT (CPbPAT) framework was pro-
posed by Barenji et al. (2019). This framework, designed to 
obtain, record and monitor real-time data, combines several 
technologies, such as QbD and RTRT, to make autonomous 
decisions and determine improvement strategies. CPbPAT 
is developed in multiple levels, enabling the collection and 
continuous integration in the cloud of large amounts of data.

Due to the complex development and manufacturing of 
ER systems, the implementation of the Pharma 4.0 concept 
in pharmaceutical companies with continuous monitoring 
of product manufacturing will decrease product and process 
variability and consistently improve quality requirements.

Conclusion

Pharmaceutical companies have already started applying 
QbD concepts to the development of pharmaceutical prod-
ucts instead of traditional trial-and-error-based approaches, 
although their application remains far from what is expected. 
Because of the complexity of oral ER drug delivery system 
development and the relevance of polymer properties on 
drug product performance, the implementation of QbD tools 
is crucial to provide a better and complete understanding of 
the product and process parameters and optimize a control 
strategy. A design space can be established defining allow-
able operational ranges and providing flexible regulatory 
approaches. Furthermore, QbD is a cost-effective time-sav-
ing strategy that can be used throughout the product lifecycle 
ensuring compliance with regulatory quality requirements.

The increasing amount of generated data requires a 
greater ability to optimize formulations and processing 
parameters as well as accurately predict drug product per-
formance. ML and DL algorithms will progressively be rec-
ognized, and we can be sure that they will be more widely 
used for effective pharmaceutical development through a 
Pharma 4.0 strategy to achieve greater robustness and help 
meet regulatory compliance. Certainly, these tools will allow 
us to move toward the possibility of RTRT application in the 
pharmaceutical industry.
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