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Abstract

Background Oral extended release (ER) delivery systems have quickly gained increasing importance because of their ability
to maintain drug levels in the blood more consistently, reducing side effects and improving patient compliance. The complex-
ity of ER formulation leads to additional development challenges in the fulfilment of quality-related regulatory requirements.
Despite their challenging properties, the potential of ER system formulation and process development can be better exploited
by applying quality by design (QbD) approaches and advanced modeling techniques such as machine learning (ML).

Area covered This review provides a comprehensive overview of QbD concepts applied to oral ER delivery systems, clarify-
ing the impact of raw materials and process variables on critical quality attributes (CQAs). Moreover, data science coupled
with ML algorithms is also elucidated in this article as a potential tool for predicting and optimizing ER formulation design
and manufacturing processes.

Expert opinion QbD, as a scientific and risk-based approach, provides a comprehensive understanding of oral ER drug
delivery systems improving product quality and reducing postapproval changes. Enabling QbD with ML-driven pharma-
ceutical development can provide an opportunity to move toward risk mitigation for efficient ER tablet formulation and
process development. However, there are some barriers to overcome in the way of adopting QbD concepts. The key issues
are the lack of understanding and the gap between industries and regulatory authorities concerning the scientific principles
and terms beyond QbD, which can create an obstacle during the approval process. Furthermore, it is generally believed
that the resources and time invested in applying QbD tools are not cost-effective during constant and continuous improve-
ment. Today, it is time to realize that a multidisciplinary understanding of the formulation and manufacturing process is as
important as achieving the final result.

Keywords Design of experiments - Extended release - Machine learning - Multivariate data analysis - Process analytical
technology - Quality by design

Introduction

The oral route is the most common route for drug adminis-
tration due to its clear advantages and convenience. One of
the strategies used in drug development includes the consid-
eration of using different delivery systems and technologies
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to ensure the most appropriate pharmacokinetic and phar-
macodynamic profiles (Walker 2008).

According to the generally accepted definition, modi-
fied release (MR) is a dosage form release pattern where
the time, rate and/or location of release of the drug sub-
stance are chosen to fulfil therapeutic or compliance goals
not offered by conventional dosage forms administered by
the same route (FDA 1997b; EMA 2014). MR is a slightly
ambiguous term embracing several types of formulations
with distinct release patterns. Compendial publications such
as the United States Pharmacopeia (USP) and European
Pharmacopoeia (Ph. Eur.) or regulatory agencies such as the
food and drug administration (FDA) and European medi-
cines agency (EMA) do not provide a harmonized definition
for MR or controlled release (CR) dosage forms.
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Several types of MR systems have been recognized,
including extended release (ER), delayed release (usually
gastroresistant), targeted release and orally disintegrat-
ing tablets (Ding 2016). In this review, special attention is
given to oral ER drug delivery systems. Since expressions
such as “prolonged” (an equivalent term of extended release
used by the EMA), “controlled”, “sustained”, “long-acting”
and “repeat action” have also been interchangeably used to
describe ER drug delivery systems, in the context of this
article, ER will be used when referring to “‘extended release”
and/or “modified release” formulations.

Although the concept of ER was introduced a few dec-
ades ago, its unique advantages and innovative technologies
continue to provide pharmaceutical interest. When develop-
ing and manufacturing effective ER systems, it is crucial to
ensure controlled and timed drug release with predictable
kinetics, as revealed by recent research (Khan et al. 2020;
Mohamed et al. 2020; Than et al. 2021; Akhtar et al. 2022).
Therefore, critical raw material and process properties must
be carefully selected and assessed to achieve the desired
release profile.

Although ER drug product development faces several
constraints in data acquisition, understanding of the drug
release mechanisms, robustness and reproducibility, the
potential of ER systems can be better exploited if formula-
tion and process development are performed using the qual-
ity by design (QbD) approach.

The systematic QbD approach, supported by the Inter-
national Council of Harmonisation (ICH) Q8, Q9 and Q10
guidelines, has been widely used by pharmaceutical indus-
tries to design, develop and manufacture high-quality drug
products. QbD elements include the quality target product
profile (QTPP), which enables the identification of critical
quality attributes (CQAs); identification of critical material
attributes (CMAs) and critical process parameters (CPPs),
linking to the CQAs; risk assessment (RA); definition of the
design space; and control strategy and continuous improve-
ment. The application of these concepts can ensure safety,
efficacy, and quality across the ER drug product lifecycle
and streamline regulatory processes. Understanding the
drug product and respective manufacturing process results
in quality improvement and risk reduction (ICH Q9 2005,
ICH Q10 2008, ICH Q8(R2) 2009). Design of experiments
(DoE) and process analytical technology (PAT) are two use-
ful tools applied in QbD. PAT tools could be fundamental to
support real-time release testing (RTRT) as part of a control
strategy (ICH Q8(R2) 2009).

Extended release of drugs can be achieved using
numerous manufacturing technologies. Usually, strong
efforts are allocated to eliciting the type of rate control-
ling polymers with a focus on their unique properties and
respective amount. However, the performance of ER drug
products based on their dissolution profiles can be more
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time-consuming and complex than conventional formula-
tions, as models predicting drug release from ER systems
eventually consider a high number of factors, which may
lead to a high volume of data, thus hampering their fast
and effective pharmaceutical development.

On the other hand, the increase in data volume and
complexity generated in drug discovery and development
has resulted in the growing application of efficient statis-
tical and modeling tools. From this perspective, modern
data analytics technology based on the concepts of multi-
variate data analysis (MVDA), artificial intelligence (AI)
and machine learning (ML) algorithms, frequently coupled
to the QbD approach, has guided pharmaceutical R&D
assuring the desired product quality (Banner et al. 2021;
Paul et al. 2021a).

While several previous studies have reported the critical
points related to oral ER drug delivery systems (Mader-
uelo et al. 2011) as well as the importance of the use of
the QbD strategy (Yu et al. 2014) and ML algorithms (Lou
et al. 2021) in the pharmaceutical development context,
no reviews in the literature were found comprising a mul-
tidisciplinary approach to link the three different strands:
(1) different oral ER drug delivery systems; (2) a compre-
hensive approach of a well-structured QbD framework;
and (3) application of advanced statistical modeling tools
such as ML, applied to oral ER drug delivery system
development.

The present review intends to detail the current state of
applying QbD concepts to better understand the design and
manufacture of oral ER delivery systems in pharmaceutical
development. An outline of emerging opportunities in QbD
implementation coupled to MVDA methods and AI/ML
tools applied to oral ER drug products will also be discussed.

Applying the QbD framework to oral ER
formulations

The development of ER formulations dates back to the
1960s. Since then, an increasing number of researchers
from both industry and academia have allocated significant
resources to a wide range of scientific domains to expand
the scientific knowledge in the field of ER delivery systems
(Hoffman 2008; Lee et al. 2010; Florence 2011).

The main drivers for the ground-breaking advances in
controlled release were the clinical need to prolong action
and improve patient benefit (Lee et al. 2010). Moreover,
the first mathematical models to study the dissolution of
drugs, the understanding of the behavior of delivery systems
in vivo and advances in polymer sciences have also greatly
contributed to this development in the pharmaceutical indus-
try (Hoffman 2008).
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Types of oral ER drug delivery systems

Oral ER drug delivery systems exhibit drug release patterns
that are intentionally distinct from conventional immedi-
ate release. In fact, these specialized dosage forms allow a
reduction in the dosage frequency compared to conventional
dosage forms. Sustained release (SR) and CR are both defi-
nitions for drug delivery systems that can be used to achieve
an ER pattern (FDA 1997a; Ding 2016). The emergence of
ER systems has paved the way for significant advancements
in safety and efficacy of drug release, whether by decreas-
ing the risk of “dose-dumping” or incidence of adverse side
effects or by maximizing therapeutic benefits in the main-
tenance of therapeutic blood levels and enhancement of
patient compliance (Wen et al. 2010; Bruschi 2015; Ding
2016).

In oral ER drug delivery systems, several physical,
chemical, and biological mechanisms can be strategically
employed to control drug release, e.g., dissolution, diffu-
sion, partitioning, solvent activation (osmosis and swell-
ing), erosion and targeting. They may act simultaneously
or at different stages of a delivery process. In a broad sense,
the different drug release systems can incorporate different
mechanisms. When different mechanisms take place simul-
taneously or sequentially, the dominant and rate limiting step
process is the slowest (Wen et al. 2010; Nokhodchi et al.
2012; Siepmann et al. 2012a, b; Bruschi 2015).

Diffusion is one of the most common strategies for con-
trolling drug release. It is a physical mechanism for the
transport of drug molecules through a polymer under a con-
centration gradient and can be described by Fick’s law of
diffusion. The basic designs for diffusion-controlled delivery
systems are the reservoir and matrix systems where drug
molecules are released through a polymer membrane or a
polymer matrix, respectively (Siepmann et al. 2012a; Qiu
et al. 2017; Bermejo et al. 2020).

Conversely, dissolution is the rate controlling step in
dissolution-limited systems. If the polymer is quickly dis-
solved, the solvated drug is immediately available to diffuse
from the surface, and zero-order kinetics are not achievable.
Therefore, the solubility of the polymer carrier and thickness
of the membrane (reservoir systems) are the key factors in
controlling drug release (Siegel et al. 2012; Bermejo et al.
2020).

In dissolution- and diffusion-limited release systems, both
processes often coexist. Drug release occurs by dissolution
followed by diffusion through the matrix. First, the medium
goes into the core, and hence, quick drug dissolution occurs
by allowing diffusion of the dissolved drug out of the sys-
tem. In this case, it is difficult to elicit the rate-limiting step,
but commonly, the dissolution rate is controlled by the dom-
inant mechanism—diffusion (Siegel et al. 2012; Bermejo
et al. 2020).

A significant number of mathematical models were devel-
oped to aid in understanding the drug release kinetics and
associated mechanisms. A review by Costa et al. (2001)
describes some of the most common mechanisms, such as
zero-order, first-order, Weibull, Higuchi and Korsmeyer-
Peppas. Mathematical modeling of drug release can help
researchers better understand and develop highly effective
ER drug delivery systems (Peppas et al. 2014).

The most common oral ER drug delivery systems are
matrix, reservoir polymeric and osmotic systems (Siepmann
et al. 2012a; Ding 2016; Qiu et al. 2017). A brief overview
of each system is provided below.

Matrix systems

Matrices are also defined as monolithic since the drug is
dissolved or dispersed homogeneously through a release
rate controlling polymeric matrix (Tiwari et al. 2011; Sie-
pmann et al. 2012a; Qiu et al. 2017). Depending on the ini-
tial drug loading/drug solubility ratio, monolithic devices
can be distinguished into two groups: monolithic solutions
and monolithic dispersions (Siepmann et al. 2012a; Ber-
mejo et al. 2020). The former refers to a nonsaturated drug
solution—the initial drug loading is below its solubility—in
which the release rate decreases with time, while the latter
consists of a saturated or oversaturated drug solution com-
prising a dissolved and nondissolved drug fraction. In this
case, the dissolved drug is first released, decreasing the con-
centration inside the polymer, and thereafter, the undissolved
drug solid aggregates will be slowly released by diffusion
after they are dissolved (Siepmann et al. 2012a; Bermejo
et al. 2020). Since the mean distance traveled by the drug
to the matrix surface increases with time, the geometry of
monolithic systems has a substantial impact on drug release
kinetics (Siepmann et al. 2000; Siegel et al. 2012; Bermejo
et al. 2020).

Concerning the rate-controlling polymer properties,
matrix systems may be broadly classified into hydrophilic,
inert and lipid matrices (Bruschi 2015), with hydrophilic
systems being the most widely utilized in marketed ER prod-
ucts. In these systems, the drug is dispersed or dissolved in
water-soluble and/or swellable hydrophilic polymers (Van-
hoorne et al. 2016; Parmar et al. 2018; Ilyes et al. 2021).
Upon contact with the aqueous solution (water or physi-
ological fluid), the hydrophilic matrix becomes hydrated,
resulting in relaxation of the polymer chains and lowering
of the glass transition temperature. These phenomena are
responsible for the development of a ‘gel’ layer on the sys-
tem surface controlling drug release (Colombo et al. 2000).

This process results in the formation of a series of fronts:
the swelling front between the glassy polymer and the rub-
bery state, the erosion front that separates the swollen matrix
of the surrounding solvent; and the diffusion front located
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between the swelling and erosion front, i.e., between undis-
solved and dissolved drug particles, respectively (Ford
2014). The gel layer thickness depends on several factors,
such as the type and viscosity of the polymer, the penetra-
tion rate of the medium into the matrix, and the dissolution
of drugs and excipients (Maderuelo et al. 2011; Tiwari et al.
2011; Siegel et al. 2012; Caccavo et al. 2014; Ford 2014;
Timmins et al. 2016).

In hydrophilic systems, while water-soluble drugs may
be released essentially by diffusion (Thapa et al. 2018), for
drugs with low water solubility, matrix erosion is the pre-
dominant mechanism (Kim 1998; Chakraborty et al. 2009;
Barmpalexis et al. 2018). Some examples of polymers used
in hydrophilic matrices are hydroxyl propyl methyl cellulose
(Hypromellose/HPMC) (Gavan et al. 2017; Barmpalexis
et al. 2018), hydroxyl propyl cellulose (HPC) (Iurian et al.
2017; Than et al. 2021) and polyethylene oxide (PEO) (Nagy
et al. 2019; Jang et al. 2021).

On the other hand, in inert matrix systems, the drug is
incorporated into a water-insoluble polymer (Rus et al.
2020). Drug release occurs by permeation of the liquid into
the polymeric matrix, dissolving the drug and/or creating
pores and channels that facilitate solvent front penetration
leading to dissolution and diffusion of the drug through the
matrix (Frenning 2011). The drug release rate from inert
matrix tablets is mainly governed by Higuchi’s equation.
Ethyl cellulose (Sanoufi et al. 2020), polymethacrylates
(Won et al. 2021) and polyvinyl acetate (Rus et al. 2020)
are examples of water-insoluble polymeric materials used
in inert matrices.

In lipid matrices, the rate-controlling polymers are hydro-
phobic and include waxes, glycerides, and fatty acids. Drug
release from these matrices occurs through both diffusion
and erosion (Petrovic et al. 2012; Bruschi 2015). Finally,
the matrix systems can also be classified according to their
porosity as microporous and nonporous systems (Wen et al.
2010).

Reservoir systems

In reservoir-based systems, drug diffusion is mediated by a
functional controlling membrane. A drug-containing core is
surrounded by a polymeric membrane, and the drug release
rate is controlled by its attributes, such as thickness, com-
position, and physicochemical properties (Siepmann et al.
2012a). Once dissolved, the drug molecules diffuse across
the membrane. As with monolithic systems, two types of
reservoir systems can be found based on the polymeric
membrane: nonporous, where drug molecules must diffuse
through the polymer membrane, and microporous, when
drug molecules are released through micropores (Wen et al.
2010).
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Additionally, diffusion-controlled reservoir systems are
also classified according to the drug loading as constant
activity sources and nonconstant activity sources (Siepmann
et al. 2012a). In the first case, when the reservoir comprises
a drug concentration in the core above its solubility, the drug
concentration gradient at the membrane remains constant,
the diffusion of drug through the membrane is constant, and
zero-order release kinetics can be achieved. In contrast, a
nonconstant activity is characterized by a first-order release
profile since the drug in the dosage form is completely and
rapidly dissolved and drug molecules diffuse out through
the controlling membrane (Siepmann et al. 2012a; Bermejo
et al. 2020).

Osmotic pump systems

Osmotic drug delivery systems (ODDSs) are based on the
osmosis phenomenon, where the inner core, filled with a
mixture of the drug and osmotic agent, is surrounded by a
semipermeable polymer membrane that has an orifice for
drug release. Driven by the concentration gradient, the sol-
vent tends to flow through the semipermeable membrane
from the lower-concentration to a higher-concentration solu-
tion. Then, water influx by diffusion across the membrane
dissolves the drug in an effort to achieve osmotic equilib-
rium and force the drug solution out through the orifice at a
constant rate. ODDSs are characterized by a constant drug
release with zero-order kinetics dependent on the osmotic
pressure across the membrane and independent of the drug
properties and the gastrointestinal environment (pH and
motility) (Verma et al. 2002; Wen et al. 2010; Siegel et al.
2012; Ding 2016; Qiu et al. 2017).

Felix Theeuwes and contributors from the Alza Corpo-
ration (USA) had an important role in the development of
oral osmotic devices, known as OROS® (osmotic controlled
release oral delivery system) (Theeuwes 1975; Verma et al.
2002).

The different ODDSs can be classified based on their
technology design as elementary osmotic pumps (Farooqi
et al. 2020), push—pull osmotic pumps (PPOPs) (Mala-
terre et al. 2009; Missaghi et al. 2014; Liu et al. 2021),
sandwiched osmotic pumps, push-stick osmotic pumps,
controlled porosity osmotic pumps (Akhtar et al. 2022),
asymmetric osmotic capsules (Yang et al. 2016), and liquid
osmotic capsules (Verma et al. 2002; Qiu et al. 2017).

The polymers used in membrane-controlled systems,
such as reservoir systems and ODDSs, are generally water
insoluble. As mentioned above, examples of these polymers
include cellulose acetate (Akhtar et al. 2022) and ethylcel-
lulose (Hu et al. 2020).

Due to the variety of available polymers in the market and
the significant number of drug delivery systems developed
over the years, the selection of the most suitable polymer
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and delivery system for new drug product development
requires a deep knowledge of the different controlled-release
mechanisms.

Key factors in oral ER drug delivery system
development

Based on QbD principles, the design of oral ER drug deliv-
ery systems involves consideration of potential high-impact
factors (CMAs, CPPs and CQAs) that may be critical to
product quality. Ensuring product knowledge and under-
standing the effect of such variables are essential to support
the desired quality throughout the drug product lifecycle.

Some reviews have summarized the major factors affect-
ing drug release from hydrophilic matrix tablets (Maderuelo
et al. 2011; Vanza et al. 2020). The properties of the drug
substance and polymer, formulation design and manufactur-
ing process have been considered the key factors common to
all oral ER drug delivery systems.

Drug release is influenced in different ways by physico-
chemical factors that essentially impact and determine the
mechanism and rate of drug release. Regarding drug sub-
stances, although drug solubility and dose (Kim 1998; Li
et al. 2008) are the most critical drug factors for generating
ER delivery systems, the influence of parameters such as
particle size and molecular weight should also be carefully
evaluated (Maderuelo et al. 2011).

Notwithstanding, to better control drug release, it is cru-
cial to define the polymer characteristics and understand
their variability. The substitution pattern of cellulose deriva-
tives (e.g., HPMC), which can present batch-to-batch dif-
ferences, assumes an important role in the performance of
hydrophilic matrices, and there may be a threshold where
heterogeneity becomes critical for drug release (Viriden
et al. 2009; Zhou et al. 2014). Compared to homogeneously
substituted batches, the heterogeneous substitution pattern
facilitates the formation of soluble gel-like components that
increase the viscosity and extend the release rate of the drug
(Viriden et al. 2010, 2011). Variations in the drug/polymer
ratio and viscosity grade of polymers (Hiremath et al. 2008;
Hu et al. 2020), as well as the particle size, can also affect
the drug release rate (Heng et al. 2001; Crowley et al. 2004;
Lakio et al. 2016).

An investigation of the three functionality-related char-
acteristics of the carvedilol release profile from hydrophilic
matrix tablets demonstrated that particle size plays a role in
the first part of the drug release profile, while viscosity and
degree of substitution play a determinant role in the later
part of the drug release profile. An increased drug release
can be obtained with a higher HPMC particle size, higher
degree of substitution and lower viscosity (Kosir et al. 2018).

By identifying and understanding the CMAs related
to drug substances and polymers as well as their

performance, it is possible to tailor the CQAs, namely,
the drug release rate, to achieve a robust and desired ER
formulation.

Regarding reservoir systems, as described above, poly-
meric membrane properties such as composition, thickness
and permeability have a significant impact on drug release
as well as on the occurrence of the burst effect (Siepmann
et al. 2012a; Shah et al. 2022). The osmotic pressure gra-
dient between the drug inner core and the external envi-
ronment and the size of the delivery orifice coupled to
the drug and semipermeable membrane properties are the
major factors affecting the design of ODDSs (Malaterre
et al. 2009). An increase in the tablet surface as well as
an increase in the polymer molecular weight (both in the
membrane and drug layer) showed an increase in the lag
time. Otherwise, drug release was positively affected by
the polymer proportion in the membrane and the propor-
tion of the osmotic agent. An increase in the proportion of
the osmotic agent in the tablet core increased the rate of
water hydration and then decreased the lag time (Malaterre
et al. 2009; Lin et al. 2022). On the other hand, the orifice
size with a diameter ranging from 0.40 to 0.8 mm had no
significant effect on drug release (Lin et al. 2022).

Considering the manufacturing process of oral ER
delivery systems, depending on formulation properties,
different methods can be elected. Direct compression
(Sethi et al. 2018; Farooqi et al. 2020), dry granulation
(Jang et al. 2021) and wet granulation (Kanwal et al. 2021)
are the most common techniques used for manufacturing
oral ER drug delivery systems. An increase in the applied
compression force is generally translated into a higher
degree of compactness and a greater density of the matrix,
reducing the level of porosity and leading to a slower
release rate of the drug (Crowley et al. 2004; Hiremath
et al. 2008; Abu Fara et al. 2019). Additionally, a binary
combination of two different polymers (Carbopol971P®
NF and Eudragit®E100) improved the compaction proper-
ties (crushing strength) and SR properties of paracetamol
matrix tablets (Obeidat et al. 2015).

Siepmann et al. (2000) and Reynolds et al. (2002) eval-
uated the influence of tablet size and geometry on drug
release from HPMC matrices. These studies reported that
lower values of the tablet surface area/volume (SA/Vo)
ratio, achieved by increasing the initial radius of the tab-
lets, have slower release profiles. SA/Vo, as a significant
factor in controlling drug release, can be used as a tool to
achieve target dissolution. Similar drug release profiles are
typically reached with similar values of SA/Vo.

Overall, despite the study of various critical properties
related to the drug substance by some authors, the func-
tionality of polymers is key to the successful design of ER
delivery systems.
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Bridging QbD with solid oral ER formulations:
the role in pharmaceutical development

The competitive quality environment, triggered by the emer-
gence of quality concepts, is the major factor responsible
for the high regulation of the pharmaceutical industry. The
rationale behind the evolution of the concept of QbD, first
outlined by Juran (1985) and based on three main pillars
(planning, control, and improvement), gave rise to the phar-
maceutical QbD (Davis et al. 2018).

In response to growing quality requirements and recurring
quality issues in the pharmaceutical sector, regulatory agen-
cies have implemented a new quality paradigm. The result
was the publication of a set of ICH guidelines (ICHQ8-Q12)
that make up the QbD ‘family’ and to provide a way to drive
product and manufacturing processes to achieve the required
quality (Davis et al. 2018).

According to the ICH Q8 guideline, QbD is defined as
a systematic, scientific, and risk-based approach to phar-
maceutical product development. It begins with predefined
objectives and emphasizes product and process understand-
ing and process control (ICH Q8(R2) 2009). QbD can be
applied to all product types and normally starts from the
earliest stage of development and progresses through the
manufacturing and product lifecycle (Gibson et al. 2018).

Implementing QbD in the development of pharmaceutical
products provides numerous advantages and opportunities
to both industry and the regulatory authorities. Moreover,
in-depth scientific knowledge based on the formulation and
manufacturing process helps to minimize batch-to-batch
variation and batch failures, enhances the production of a
more robust and quality product and process, and stream-
lines postapproval regulatory submissions.

For instance, the goal of this new regulatory model is the
creation of a process control strategy leading to continuous
improvement over time and resulting in cost savings and effi-
ciency for pharmaceutical industries, facilitating flexibility
by the regulatory authorities (Gibson et al. 2018).

The application of quality risk management (QRM)
principles is a valuable component of risk-based approach
development. Keeping this in mind, ICH has issued the
Q9 guideline, which describes a systematic process for the
assessment, control, communication, and review of quality
risks over the product lifecycle. The RA consists of risk
identification followed by risk analysis and risk evaluation.
The risk analysis objective is to rate the risk by linking the
probability of occurrence, severity and sometimes detect-
ability (ICH Q9 2005). The combination of QRM with
prior scientific knowledge can help to identify and prior-
itize which material attributes and process parameters have
a potential impact on product CQAs (Singh et al. 2010).

Different usefulness tools may be used for QRM. Cause
and effect diagrams (also called Ishikawa or fishbone

@ Springer

diagrams), failure mode effect analysis (FMEA), failure
mode, effect and critical analysis, hazard analysis and criti-
cal control point and hazard operability analysis are some
of the recommended risk analysis tools for use in the phar-
maceutical industry (ICH Q9 2005).

In favor of ensuring innovation and continual improve-
ment throughout the product lifecycle, the Q10 guideline,
articulated with ICH Q8 and Q9, highlighted the importance
of pharmaceutical quality systems (PQSs). Based on quality
system-related documents such as International Standards
Organization and Good Manufacturing Practices (GMP)
guidelines, ICH Q10 lays out the major requirements of what
a PQS should include. Knowledge management and QRM
(ICH Q9 2005) are the enablers to establish the control
strategy, i.e., a planned set of controls covering the process,
its inputs and outputs, assuring that the product meets the
required quality (ICH Q10 2008; Schmitt 2018).

On the whole, the comprehension of concepts depicted
by ICH Q8, Q9 and Q10 are shifting the paradigm to better
understanding, controlling and continually improving the
manufacturing quality performance and efficiency of prod-
ucts throughout the product lifecycle (ICH Q9 2005, ICH
Q10 2008, ICH Q8(R2) 2009). Figure 1 shows the relation-
ship between ICH Q8, Q9 and Q10.

ICH Q11 and Q12 are more recent and complementary
guidelines to clarify other QbD-based concepts. ICH Q11
describes approaches to develop and understand the manu-
facturing process of drug substances linked to drug prod-
ucts (ICH Q11 2012), and ICH Q12 provides guidance on

ER drug product

ICH Q8 (R2) development

QTPP

Formulation
development
CQAs l

Risk Assessment

Process
development
|

Design space v.
H Scale-up &
i Tech transfer

CMAs & CPPs

Control Strategy|

Juwabeuep ysiy Aend

Continuous
Improvement

Fig.1 ICH Q8 (R2), Q9 and Q10 guidelines work together during
the ER drug product lifecycle. ICH Q8 focuses on science and risk-
based approaches for drug and process development, while ICH Q10
describes quality systems that facilitate the establishment of a control
strategy and the continual improvement up to commercial scale man-
ufacturing. QRM, described by ICH Q9 and applied over the product
lifecycle, provides a structured way to assess and control risk (CMA
critical material attribute, CPP critical process parameter, CQA criti-
cal quality attribute, ER extended release, ICH International Council
for Harmonisation, QTPP quality target product profile)
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a framework to facilitate pharmaceutical life-cycle manage-
ment concerning postapproval change management in CMCs
(chemistry, manufacturing and controls) (ICH Q12 2019).
Hence, the development and manufacturing of oral ER
delivery systems are associated with some complex features,
and the alignment of the concepts of QbD becomes crucial
to identify the critical factors impacting the performance
of drug release (Singh et al. 2010). The ICH QS8 guideline
establishes the elements and main steps of QbD to be con-
sidered during pharmaceutical development (ICH Q8(R2)
2009). To better understand the QbD-based development and
manufacturing of ER delivery systems, the building blocks
of the QbD flowchart will be addressed in the next sections.

Definition of a quality target product profile (QTPP)

The QTPP is a prospective summary of the main quality
characteristics of pharmaceutical products that ensures the
desired quality, safety, and efficacy targets. It describes the
intended clinical use, route of administration, dosage form,
delivery system, dosage strength and others (ICH Q8(R2)
2009; Gibson et al. 2018). The QTPP forms the basis of
design for product development and should be regarded as a
starting point for identifying CQAs.

In the development of oral ER delivery systems, depend-
ing on the formulation type, different QTPPs could be
described as differentiating features of the drug to be devel-
oped. Drug product quality attributes such as the dosage
form, floating lag time (Mirani et al. 2016; Chudiwal et al.
2018), mucoadhesion time (Chappidi et al. 2019) or drug
release at the desired time (Vora et al. 2015; Desai et al.
2017; Chudiwal et al. 2018) should be set as the QTPP
elements.

Critical quality attributes (CQAs)

After defining the QTPP, the second step is to identify the
CQAs. The CQAs of ER drug products include physical,
chemical, biological, or microbiological properties or char-
acteristics of the drug substances, excipients and drug prod-
ucts that should be within an appropriate limit, range, or
distribution to ensure the desired quality in the final product
(ICH Q8(R2) 2009).

The drug product CQAs are selected to meet the QTPP
and then assure product safety and efficacy. The CQAs for
ER delivery systems are primarily associated with drug sub-
stances, polymers and other excipients and manufacturing.
The percent cumulative drug release, erosion rate and swell-
ing rate were identified as CQAs in the design and develop-
ment of a hydrophilic matrix of metoprolol succinate (Shah
et al. 2022).

The identification of the CQAs of rate controlling excipi-
ents (Parmar et al. 2018; Thapa et al. 2018) may also have

special relevance because they can influence the mechanism
and rate of drug release and allow accurate delivery of the
necessary amount of drug over time.

The assessment of criticality can be difficult, and even
when defined as critical in the initial development phase, not
all CQAs will have the same effect on the QTPP. As recom-
mended in ICH Q9, RA tools help to determine criticality
and prioritize each quality attribute (ICH Q9 2005; Gibson
et al. 2018). CQAs can be controlled through input factors
such as CMAs and CPPs of the pharmaceutical formulation
(materials) and manufacturing process, respectively. The
initial array of potential CQAs can be large but is usually
narrowed as formulation and manufacturing process activi-
ties progress, i.e., the CQA list can be dynamically modified
(ICH Q8(R2) 2009).

The analysis of high-risk variables related to ER delivery
systems could help to determine which material attributes
and process parameters are critical and need further investi-
gation to ensure drug product quality.

Linking of critical material attributes (CMAs) and critical
process parameters (CPPs) to drug product CQAs

The development of ER delivery systems is associated with
various challenges. Through the identification of potential
CQAs linked to the properties of input materials (CMAs)
and manufacturing process parameters (CPPs), it is pos-
sible to understand and identify formulation and process
parameter ranges and controls (ICH Q8(R2) 2009). Yu and
collaborators (Yu et al. 2014) reported a wide list of typi-
cal input material attributes, process parameters and quality
attributes of tablet manufacturing unit operations.

QRM is one of the tools of the QbD approach to identify,
evaluate, and control potential quality risks ICH Q9 2005).
An Ishikawa diagram is often used as a first step to identify
the potential risk factors for CQAs. It is a systematic over-
view having a horizontal line with the underling CQAs and
diagonal lines representing the major factors (Desai et al.
2017; Saydam et al. 2018; Zaborenko et al. 2019; Kovacs
et al. 2021).

Based on experience and a thorough literature review,
two examples of generalized Ishikawa diagrams for oral
ER delivery systems manufactured by direct compression
(a) and high shear wet granulation (b) were constructed
(Fig. 2). In the presented diagrams, the formulation and
process parameters, among others, are hierarchically organ-
ized to visualize and categorize the factors that may affect
the CQA:s.

The superior diagram (a) displays the cause-and-effect
relationships for the ER matrix tablet formulation with the
direct compression method. The major categories of factors
included are environmental factors, raw material properties
and process variables.
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Fig.2 Typical Ishikawa dia-
gram for a direct compression

a. Direct compression - ER matrix tablets
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Compression speed
Punch penetration depth
Compression

rial

b. High shear wet granulation - Bilayer osmotic pump

High Shear Wet Granulation
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Weight gain
Exhaust air
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Process Time Pattern air pressure Orifice
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Environment Water Amount Spray rate Pore formers
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Humidity Impeller Speed Pan rotation speed Mechanical drill
Temperature Batch size Pan load level Laser drill

Osmotic agen
Osmotic agent
Lubricant
Diluent
Matrix Polymer
Drug Substance

Raw material

In ER matrix tablets, the excipient physical and chemi-
cal properties, mainly the polymer characteristics, have a
significant impact on product manufacturing and perfor-
mance. In fact, the variability of raw materials has been
described by some authors (Dave et al. 2015; Zarmpi
et al. 2017) and can lead to quality compliance issues. By
studying the HPMC batch-to-batch and source-to-source
variability through the determination of polymer charac-
teristics (methoxy and hydroxypropyl substitution range,
particle size and viscosity), it was possible to verify that
the chemical heterogeneity of HPMC has an important
effect on the drug release and erosion rate of a niacin CR
formulation (Zhou et al. 2014).

The inferior diagram (b) is related to a complex dosage
form, i.e., a bilayer osmotic pump tablet. As already men-
tioned above, in membrane-controlled systems, the coating
composition and thickness are the factors that impact drug
release, media uptake and push—pull patterns (Missaghi et al.
2014). Related to the orifice perforation, there are several
types of processes that can be used to affect the osmotic
pressure in the system and, consequently, the release kinet-
ics. Laser drill (Kushner et al. 2020) modified punches (Liu
et al. 2008) and pore formers (Yang et al. 2016; Yu et al.

@ Springer
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Tamping force
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Dew Point
Weight gain
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Fluid Bed Drying

2021; Akhtar et al. 2022) are some of the most well-known
perforation techniques.

This tool is frequently associated with other RA tech-
niques, such as the risk estimation matrix (REM) and
FMEA. REM provides a simple color coding scheme and
is commonly used on a summary chart to set priorities in
risk management. The raw material, formulation and process
properties can be categorized as critical or high risk (red),
medium risk (yellow) and noncritical or low risk (green)
to the product quality attributes (Mirani et al. 2016; Par-
mar et al. 2018). This classification can be justified based
on prior knowledge, the literature, experience, preliminary
screening results, and stability studies (Gibson et al. 2018).
Alternatively, FMEA is a more formal risk management tool
supported by the multiplication of three criteria: severity (S),
probability (P) and detectability (D). The rank for risk quan-
tification is defined through the risk priority number (RPN)
score, which indicates the relative risk of each formulation
and process variable (Vora et al. 2015; Gibson et al. 2018).

An FMEA could be performed to identify which formula-
tion and process parameters have the highest impact on drug
product attributes. To develop and optimize an ER enteric-
coated tablet of isoniazid, the amount of PEO WSR 303,
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hardness and amount of ethyl cellulose exhibiting RPN >40
were considered high-risk factors that affect the core tablet
formulation (Vora et al. 2015). In another study, the polymer
and drug concentrations were considered high-risk factors
in a formulation of a differential release fixed-dose matrix
tablet of amlodipine besylate and simvastatin with an RPN
above 15 (Kanwal et al. 2021). Thus, these main factors
require further investigation and optimization by DoE to
easily assess the interactions between factors. DoE should
be performed to further establish the design space and define
control strategies. Likewise, the application of tools such as
the DoE and PAT can support the decision-making approach
based on QRM (ICH Q9 2005).

Design of experiments (DoE)

DoE is a structured and useful tool in pharmaceutical devel-
opment that applies statistical analysis to deploy the QbD
framework in pharmaceutical industries. Experimental
design establishes the relationship between formulation-
and process-related input factors and output responses with
a mathematical model. DoE enables the assessment of the
statistical significance of input variables and the elucidation
of mathematical interactions and helps to identify optimal
conditions to improve product quality (Politis et al. 2017).
Selection of the type of experimental design should consider
some aspects, such as the main objective of the design, num-
ber of input factors, interactions to be studied and the avail-
able resources (Politis et al. 2017; Owen et al. 2018). Some
examples of classical experimental designs are fractional or
full factorial designs, screening designs and response surface
designs (Owen et al. 2018).

Through DoE techniques, the controlled input factors
(independent variables) are varied to determine their effects
on the output responses (dependent variables), which allows
the identification and determination of individual and inter-
active effects of factors on output results. As noted, the
selection of the best experimental design should consider
the defined objective. Based on the reported data in Table 1,
DoE is applied both to screening (Ilyes et al. 2021) and opti-
mization (Qazi et al. 2020; Gowthami et al. 2021; Won et al.
2021) purposes in oral ER drug delivery systems, although
most of the literature studies described refer to optimiza-
tion designs. Whereas screening designs, often used in the
first part of drug development, allow the identification of
CMAs and CPPs affecting the CQAs, the application of
optimizing designs in QbD-based ER development allows
the achievement of an optimized output response by chang-
ing the factors. Central composite designs (CCDs) (Saydam
et al. 2018; Chappidi et al. 2019; Mohamed et al. 2020)
and Box—Behnken designs (BBDs) (Thapa et al. 2018; Jang
et al. 2021), i.e., two response surface methodology mod-
els, and D-optimal designs (Lakio et al. 2016; Vanhoorne

et al. 2016; Sanoufi et al. 2020) are the most commonly used
optimization designs in ER drug product development. Fac-
tors such as the polymer amount and ratio, orifice size (for
ODDSs) or compression pressure are optimized using DoE.
The output responses include drug release over a period of
time and tablet properties.

Although all the independent variables studied in the
experimental designs are described in Table 1, only the rel-
evant factors, i.e., the factors that showed an impact on the
dependent variables, are depicted in the table results, which
could be important in future studies.

The development of an ER formulation with paliperidone
using a mixture of hydrophilic and hydrophobic polymers
was studied by Iurian et al. (2017). After drug addition to an
inert matrix made of Kollidon® SR, hydrophilic polymers
were also included (NaCMC, sodium carboxymethyl cel-
lulose; HPC; or HPMC). The mixture of these two types of
polymers allowed a combined release mechanism through
the formation of pores in the matrix and a gelled layer gener-
ated by the insoluble polymer and the hydrophilic polymer,
respectively. In the study presented by Won et al. (2021), a
bilayer tablet containing a high dose of metformin HCI in an
SR layer and a low dose of evogliptin tartrate in an immedi-
ate release layer was developed. The appearance, friability,
hardness, identification, assay, content uniformity, dissolu-
tion, degradation products, residual solvents and microbial
limits were considered as potential CQAs. RA was used to
determine which CMAs and CPPs were critical to the CQAs.
Since the formulation and granulation process of each layer
was based on the marketed tablet dosage form containing
each single component, all formulation parameters were
classified as low risk. Afterward, an REM was performed
for the bilayer tableting process parameters, and those whose
risk was identified as high were optimized through a face-
centered CCD including five independent variables.

Therefore, the implementation of a DoE to optimize the
formulation and/or process parameters has become an effec-
tive and successful QbD strategy to develop oral ER drug
delivery systems. The evaluation of the DoE outcomes can
justify predictions of the formulation and process behavior
within the design space.

Design space and control strategy

The design space is a key concept in QbD defined by ICH
Q8 as “the multidimensional combination and interaction
of input variables (e.g., material attributes) and process
parameters) that have been demonstrated to provide assur-
ance of quality”. The design space describes the relationship
between process inputs and CQAs (ICH Q8(R2) 2009) and
begins with the definition of the QTPP. RA, as part of QRM
(described above) and deep knowledge gained from process

@ Springer
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development experiments, can support the design space and
guide the establishment of a control strategy.

The assessment of which variables are critical or not will
help ensure consistent ER drug product quality. These criti-
cal factors are a very important tool to define the accept-
able ranges of material attributes and process parameters
and then limit and establish the design space. According to
ICH Q8, operating within the design space is not considered
a change from the regulatory point of view but a part of the
control strategy, since it is expected that the final product has
the same quality (ICH Q8(R2) 2009). The normal operating
range or control space is a subset of the design space and is
defined as the upper and/or lower limits for the CMAs and
CPPs, i.e., a demarked region of the design space where
parameters and materials are systematically controlled
throughout production to assure reproducibility (Yu 2008).
A design space can be established independently for one
or more unit operations or constructed for the whole pro-
cess through multidimensional interactions between CPPs
(ICH Q8(R2) 2009).

Although the design space is optional and not required by
regulatory authorities, it is an asset to the applicant, provid-
ing accurate and reliable product quality within specifica-
tions. Furthermore, the design space can be updated over the
lifecycle of the product as additional knowledge is gained
(ICH 2010).

Once the product and process understanding is achieved
through the design space, the next step is the development of
a control strategy to control the CMAs and CPPs. A control
strategy is a planned set of controls derived from the current
product and process understanding that ensures process per-
formance and product quality. This can include parameters
and attributes related to the drug substance and drug product
materials and components, facility and equipment operating
conditions, in-process controls, finished product specifica-
tions, and the associated methods and frequency of monitor-
ing and control (ICH Q10 2008). A high level of process and
product understanding and consequent identification of the
sources of variability that can impact product quality will
support the control of critical steps and can enable the shift
of controls upstream.

A suitable control strategy justifies the use of PAT tools
and RTRT, minimizing the need for end product testing
(ICH Q8(R2) 2009). The control strategy model could
include three levels of controls.

The design space, associated with the control strategy, is
a driver for understanding the product and process, explain-
ing and controlling the variability and ensuring that a given
manufacturing process is robust enough to produce a product
that meets the QTPP and CQAs (ICH 2010).

In the case of the design of inert and hydrophilic matrices,
some critical factors must be considered, such as the poly-
mer properties, drug particle size and compression pressure.

The application of percolation theory along with critical
points has been shown to be an important tool to establish
the design space, based on ICH Q8 requirements, of this
type of ER formulation (Aguilar-De-Leyva et al. 2017).

PAT and RTRT as part of a control strategy

The implementation of PAT tools helps to ensure a suitable
level of risk control. PAT is a system for designing, analyz-
ing, and controlling manufacturing through timely meas-
urements of critical quality and performance attributes of
raw and in-process materials and processes with the goal of
ensuring final product quality. This definition is consistent
with the FDA current drug quality system: “quality can-
not be tested into products, it should be built-in or should
be by design” (FDA 2004; ICH Q8(R2) 2009). A focus on
raw materials, formulation and process control can reduce
product and process variability and improve the robustness
of product development and manufacturing with significant
time and cost savings (FDA 2004; Lundsberg-Nielsen et al.
2018).

The PAT framework includes four key elements to facili-
tate process understanding and control throughout the prod-
uct lifecycle: multivariate tools for design, data acquisition
and analysis, process analyzers, process control tools and
continuous improvement and knowledge management tools
(FDA 2004; Yu et al. 2014).

The introduction of PAT tools should be extended, begin-
ning at development and continuing at commercial manu-
facturing. During the development phase, PAT can help in
the identification of CPPs, CMAs and their interactions to
control product CQAs and create opportunities to improve
the scientific basis for setting regulatory specifications. The
understanding and experience acquired at the laboratory
scale can further aid in achieving reliable scale-up and tech-
nology transfer. In commercial manufacturing, the purpose
of PAT is mainly process control and improvement and to
provide the opportunity for RTRT application (FDA 2004;
Lundsberg-Nielsen et al. 2018).

Some authors have performed studies showing the appli-
cability of different PAT tools in the design and development
of ER tablets. Table 2 provides a summary of recent PAT
applications in the development of oral ER drug delivery
systems. Near infrared (NIR) and Raman spectroscopies
have been used as in-line process analyzers in various appli-
cations, including the estimation of drug content (Sirbu et al.
2014; Muntean et al. 2017; Porfire et al. 2017; Rus et al.
2020; Gavan et al. 2022), tablet characterization (Porfire
et al. 2017; Gavan et al. 2022), and coating operation end-
point and drug release determination (Gendre et al. 2011;
Muller et al. 2012; Wirges et al. 2013; Wu et al. 2015). The
obtained data were modulated using multivariate statisti-
cal tools such as principal component analysis (PCA) and/

@ Springer
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Table 2 Examples of PAT framework application for formulation and process understanding in the development of ER drug delivery systems

CQA Unit operation and/ PAT method Statistical tools Measurement References
or Processing form
Assay Blending NIR PCA Drug content (paliperi- Gavan et al. (2022)
Tablet hardness Powder blend PLS done)
Mixture homogeneity
DR Core tablet NIR PLS Drug content (drotaver- Galata et al. (2021)
ANN ine)
HPMC amount
Water uptake PPOP coated tablet NIR (aquaphotomics) PCA Water content (6 types of Liu et al. (2021)
PLS water)
Assay Core tablet NIR PCA Drug content (diclofenac  Rus et al. (2020)
PLS sodium)
Kollidon® SR
Lactose DC amount
DR Core tablet NIR PCA Drug content (anhydrous  Nagy et al. (2019)
Raman PLS caffeine)
ANN PEO amount
Assay Powder blend NIR PLS Drug content (paraceta- ~ Muntean et al. (2017)
mol and anhydrous
caffeine)
Residence time distribu-  Blending NIR PLS Drug content (naproxen  Van Snick et al. (2017)
tion Powder blend sodium)
Blend uniformity
Assay Core tablet NIR PLS Drug content (indapa- Porfire et al. (2017)
DR mide)
Hardness HPMC and lactose
amount
DR Coating NIR PCA Mass of coating materials Wu et al. (2015)
Endpoint of coating Coated tablet PCR
operation PLS
DR Hot-melt extrusion NIR PCA Drug content (paraceta- Islam et al. (2014)
Extrudates PLS mol)
Assay Blending NIR PLS Drug content (indapa- Sirbu et al. (2014)
Powder blend mide)
HPMC and lactose
amount
Endpoint of coating Coating Raman PLS Coating amount (cande-  Wirges et al. (2013)
operation Coated tablet sartan cilexetil)
Endpoint of coating Coating Raman PLS Functional coating Muller et al. (2012)
operation Coated tablet Terahertz pulsed imaging amount
Coating thickness
DR Coating NIR PLS Mass of coating materials Gendre et al. (2011)
Endpoint of coating Coated tablet
operation

DC direct compressible, DR drug release, HPMC hydroxyl propyl methyl cellulose, NIR near-infrared, PCA principal component analysis, PCR
principal component regression, PEO polyethylene oxide, PLS partial least squares, PPOP push—pull osmotic pump

or partial least squares (PLS) (Van Snick et al. 2017; Nagy
et al. 2019; Gavan et al. 2022).

For example, NIR-chemometric methods were used to
chemically and pharmaceutically characterize indapamide
SR tablets (Porfire et al. 2017). The combination of data
provided by NIR spectrometry and off-line tablet press and
PSD of the drug substance (drotaverine) and HPMC sup-
ported the development and implementation of an dissolu-
tion prediction model for matrix sustained-release tablets

@ Springer

(Galata et al. 2021). The investigation of water penetration
during the dissolution of nifedipine from CR PPOP by col-
lection of NIR spectra allowed the researchers to understand
the time dependency of water in different stages along the
tablet dissolution process (Liu et al. 2021).

RTRT is the ability to evaluate and ensure the quality of
in-process and/or final products based on process data (mate-
rial attributes and process controls) (ICH Q8(R2) 2009).
In other words, RTRT is a strategy implemented by some
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pharmaceutical companies where the process (manufactur-
ing steps or unit operations) is continuously monitored—in
real-time quality control—without the need for end-product
quality tests. The basis for establishing an RTRT system
involves the combination of ICH Q8, Q9 and Q10 principles
and provides an opportunity for enhancing product and pro-
cess understanding and increasing product quality assurance
(EMA 2012).

Pawar et al. (2016) demonstrated for the first time the
RTRT possibilities in the continuous manufacturing of an
SR formulation. This study presented a method for dissolu-
tion prediction in direct compression continuous manufac-
turing with at-line transmission mode using NIR spectros-
copy. The API concentration, compression force, blender
speed and feed frame speed were the formulation and pro-
cess variables included in the experimental design. PCA was
performed between the NIR spectral data obtained for the
DoE samples and the dissolution profile parameters (model
dependent and model independent). The results obtained by
the multilinear regression model showed the potential of
NIR spectroscopy to predict tablet dissolution.

A recent review highlights the main challenges and
opportunities of RTRT, focusing on the most prevalent
CQAs for different manufacturing processes (direct com-
pression and dry and wet granulation). The mixing homoge-
neity, tablet content and uniformity, moisture content, drug
release, granule particle size, tablet porosity, tablet strength
and coating thickness were published in the literature as
drug product CQAs measured by PAT methods (Markl et al.
2020).

A control strategy for drug content and tablet uniformity
on a commercial scale was recently developed, and three
different options were considered in the development. The
content uniformity methods included the use of individual
tablet weight data (in process control); the use of estimated
individual tablet content data (weight variation); and the
application of at-line NIR spectroscopy to predict individual
tablet content. At-line testing of the tablet content by NIR
spectroscopy was selected as the most appropriate approach
and could be applied as part of RTRT (Goodwin et al. 2018).

There is already a workflow available for developing and
implementing a PAT strategy that supports real-time process
control in continuous pharmaceutical manufacturing. From
process analysis and the definition of monitoring tasks to
technology selection, process integration and data acquisi-
tion, all these steps seem to be crucial to develop a robust
continuous manufacturing process and to control the quality
of drug products (Sacher et al. 2022).

Although it is clear that there is still a long way to go
to achieve RTRT in solid oral ER tablets, the wide range
of established in-line PAT applications to monitor CQAs
and control, in real time, the CMAs and CPPs (Galata
et al. 2021) confirms its potential to enable RTRT. The

application of the QbD approach, based on deep scientific
knowledge built through product development coupled
with in-process monitoring of process parameters, should
result in a robust control strategy to promote reproducible
product quality and mitigate potential risks. The process
understanding and control, method development and vali-
dation, and application of the method within the product
control strategy are the basis for supporting RTRT devel-
opment methods (Markl et al. 2020; Sacher et al. 2022).

Product lifecycle management and continual improvement

QbD strongly underlines the principle of continuous
improvement in which the development must be updated
as the understanding of the product and process increases
during the product lifecycle. The combination of PAT
methods, knowledge management and use of multivariate
analysis can enhance the identification and understand-
ing of CMAs and CPPs. Accordingly, product-related
data acquired during routine commercial manufacturing
should be considered and analyzed to refine knowledge
and control strategies, improve statistical confidence, and
consequently improve product quality in compliance with
GMP regulations (ICH 2011). These strategies will help
pharmaceutical industries minimize the risk of not meet-
ing quality requirements by controlling the sources of raw
material and process variability.

In summary, QbD tools are a crucial part of the modern
approach to pharmaceutical quality. However, the pharma-
ceutical industry has not yet embraced QbD implementa-
tion, which has been facing some barriers. Currently, QbD is
often implemented during late stages of development only to
optimize the formulation and process, according to what was
defined in the QTPP, or to generate data to support regula-
tory submission. Implementing QbD technologies as PAT
involves a high level of investment in material and human
resources. The lack of technology to execute and the need for
an interdisciplinary strategy using different areas of exper-
tise are key limitations. Furthermore, the lack of clarification
regarding the scientific principles and terms beyond QbD
causes a gap between industries and regulatory authorities
that can be an obstacle during the approval process.

Although a trial-and-error approach can lead to the
same results as a QbD-based approach, it does not gener-
ate product knowledge. Without an intrinsic knowledge of
the process, problems can arise at the scale-up level and
even throughout the product lifecycle. Therefore, using the
QbD approach from the beginning of product development
brings advantages when choosing the strategy to adopt next.
In addition, since the results concerning oral ER drug deliv-
ery systems are more time-consuming, the implementation
of these tools becomes even more relevant.
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Insights on data science—MVDA, ML
and ANN as tools to foster ER tablet
development and lifecycle management

The QbD framework is based on the continuous improve-
ment principle and provides a holistic understanding of
the product and its manufacturing processes throughout
the entire cycle, using risk management methodologies
to ensure that the product fulfills the quality requirements
(ICH Q8(R2) 2009). A deep understanding of the product
and its manufacturing parameters mitigates the risk and
enables a growing knowledge collection to offer a robust
and reliable drug product. As considered by ICH Q10,
knowledge management is one of the key enablers of a
robust QRM and must be managed from development until
the end of the product lifecycle (ICH Q10 2008). However,
the emergence of a data-driven era and advancements in
manufacturing sciences and technologies should be used to
improve knowledge and risk management, providing a real
opportunity to intensify process robustness and efficiency
as well as increase time and cost savings. Accordingly,
leveraging prior knowledge toward data-driven risk man-
agement is a key factor for a successful QbD application
(Steinwandter et al. 2019).

As a consequence of scientific and technological
advances and the resulting vast amount of data, the phar-
maceutical industry continues to struggle to improve the
processes used in drug development. Therefore, based on
large complex datasets, tools offered by data science pro-
vide useful information to optimize processes, acceler-
ate drug development and boost performance and results
(Reinhardt et al. 2020). Data science is mainly referred to
as the statistical field that applies advanced tools to derive
useful information from complex data. Its process encom-
passes the identification of a problem, data collection,
preparation and analysis, and model building through the
combination of different fields, including statistics, data
analytics and AI (Steinwandter et al. 2019). Therefore,
data science and Al are strongly interconnected (Fig. 3).

Al concepts have been increasingly used since the
mid-twentieth century with a focus on mimicking human
behavior (Haenlein et al. 2019) and have recently started
to gear up its applications in different pharmaceutical
areas, from drug discovery to clinical trials and postmarket
product management (Vamathevan et al. 2019; Paul et al.
2021a). Al-related subfields can include ML, neural net-
works (one of the most important tools in ML), and expert
systems (Fig. 3) (Haenlein et al. 2019). The focus of this
topic is to discuss the potential of different ML models to
predict solid oral ER tablet performance.
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Fig.3 The role of artificial intelligence in the data science lifecycle.
The basic steps of data science from problem identification to model
building using artificial intelligence

Conventional and multivariate statistical
approaches in ER tablet QbD-based development

As mentioned earlier (Table 1), DoE is an efficient meth-
odology used in QbD to understand the main effects and
interactions and determine the relationship between mul-
tiple input variables and outputs. With a minimum number
of experiments, it can be possible to gain formulation and
process knowledge and define the design space.

In the context of oral ER drug delivery systems, their
manufacturing processes are generally complex and can only
be described by multifactorial relationships. Additionally,
the introduction of PAT during the manufacturing process
is associated with the generation of a large amount of data.
Because huge amounts of data are generated, specialized
data analysis tools, such as MVDA, are required to fully
explore the multivariate outputs generated from DoE data-
sets or, for example, data acquired by PAT.

Integrated multivariate analysis methods have been
widely implemented by pharmaceutical companies. These
methods are data-driven statistical techniques to simulta-
neously analyze several variables in large/complex datasets
and identify critical parameters that can then be controlled
to improve process and product quality.

The majority of published research studies reporting the
application of MVDA techniques in oral ER drug products is
supported by PAT, dealing with the development of calibra-
tion models to predict and monitor CPPs and CQAs in real
time (Wu et al. 2015; Rus et al. 2020; Gavan et al. 2022).
Among the various MVDA techniques, MLR, PCA and PLS
are the most common methods used in ER pharmaceutical
development (Islam et al. 2014; Kosir et al. 2018; Diab et al.
2021).

PCA and PLS, as linear dimensionality reduction ML
algorithms, are useful in pharmaceutical development to
extract meaningful information from datasets. PCA orthog-
onally transforms the original dataset of observations of
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possible correlated variables into a lower dimensional
set of axes named principal components. This conversion
allows us to maximize the variance and find patterns in
large datasets. On the other hand, PLS takes into account
the covariance between the variables being applied based
on correlation. PLS regression is also a projection technique
where the original dataset is projected onto a low-dimen-
sional set, followed by linear regression. Then, it is possi-
ble to identify and establish correlations between variables
in the manufacturing of oral ER drug products based on
QbD. The linear combination of variables is referred to as
latent variables (Rajalahti et al. 2011; Lopes et al. 2018). A
comparison between MLR and PLS multivariate regression
models showed PLS as a more suitable model to determine
which HPMC properties had the most significant role on
the carvedilol release rate from hydrophilic matrix tablets
(Kosir et al. 2018). However, each multivariate tool should
be explored depending on the dataset and objective. While
the PCA model might be a great choice for data exploration,
PLS can be a better option for predictive purposes.

For pharmaceutical product and process development,
although MVDA methods have started to be more applied,
they are essentially used at the upstream phase of drug
development either applied to analyze the historical data
from the raw materials or combined with the DoE (Huang
et al. 2009; Grangeia et al. 2020; Shi et al. 2021).

Various studies have selected PCA and PLS as comple-
mentary tools of DoE to evaluate the relationships between
the input variables (CPPs and CMAs) and their impact on
CQAs in oral ER drug delivery systems (Huang et al. 2009;
Porfire et al. 2017; Rus et al. 2020). Other studies have
used MVDA in PAT (Wu et al. 2015; Gavan et al. 2022) for
interpreting the in-line measurements in ER drug product
development and/or manufacturing (as depicted in Table 2).
Overall, PCA has been used to visualize the relationships
between the independent variables and classify the PAT
spectral data files, whereas PLS is used to develop a cali-
bration model to predict CQAs such as drug release (Banner
et al. 2021). Diab et al. (2021) described the application of

chemometric methods (PCA and PLS) to predict dissolution
variation based on historical industrial batch data produced
at the commercial scale. In this paper, the input data related
to API and excipient attributes and each unit operation were
correlated with ER tablet dissolution (output variable) via
PLS. The PCA model was applied to evaluate the variability
of the input dataset.

Despite the advantages of MDVA techniques in modeling
complex relationships between CMAs/CPPs and CQAs in
ER oral drug delivery systems, the dimensional reduction of
data could lead to loss of some information from the origi-
nal dataset. Moreover, since the formulation and process of
oral ER drug delivery systems can be complex, these linear
models could be insufficient when nonlinear relationships
between CMAs/CPPs-CQAs are involved (Nagy et al. 2019).
Therefore, more advanced and sophisticated approaches
based on ML could be a good option to bridge these barriers.

Looking forward to advanced statistical models—
ML

ML is a branch of Al technologies and a data science tool
that focuses on using algorithms to automate the building of
predictive models for data analysis. Coupled with AI, ML
provides substantial advantages, enabling the recognition
and identification of patterns within a large volume of data-
sets and the production of reliable results with continuous
improvement (Ashenden et al. 2021; Paul et al. 2021a). The
storage and processing of the massive amount of data gave
rise to the term ‘big data’. Its definition is commonly based
on the 5 V properties: Volume, Variety, Velocity, Veracity
and Value (Demchenko et al. 2013).

Although drug discovery is the major field of applica-
tion of ML in pharmaceuticals (Vamathevan et al. 2019;
Reda et al. 2020; Paul et al. 2021a), ML strategies have
emerged as a powerful solution for pharmaceutical scien-
tists to improve the success rate and foster the development
of high-quality products. A SWOT analysis of ML in phar-
maceutical development is provided in Table 3, revealing

Table 3 SWOT analysis of ML implementation in the context of pharmaceutical development

Strengths

Weaknesses

Handle large and complex datasets
Model non-linear relationships

Variety, quality and amount of data required
Lack of interpretability and reproducibility

Consistent formulation and process development leading to better-quality products

Opportunities

Threats

Save costs and time

Accelerate drug product development
Continuous manufacturing
Regulatory flexibility

Continuous improvement

Initial cost and time consumption
Resources (computational power/ program performance)

SWOT strengths, weaknesses, opportunities and threats, ML machine learning
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the internal strengths and weaknesses coupled with the
opportunities and threats faced by ML. Despite the ability
to handle large datasets and model nonlinear relationships,
the required amount and quality of data can be a limitation
(Steinwandter et al. 2019). Insufficient and poor-quality data
can limit the model’s accuracy, leading to a lack of interpret-
ability and reproducibility.

The investment in new resources and technologies is gen-
erally a costly and time-consuming process that can limit
the implementation of ML. However, the long-term applica-
tion of these automated and efficient methods will acceler-
ate product development and potentially save hefty costs.
Moreover, ML is an opportunity to optimize manufacturing
processes, where several PAT tools are used to enable real-
time monitoring in continuous manufacturing. Therefore, the
use of ML allows computing systems to identify patterns in
data collected across the process and continuously improve
the outcomes, following the QbD workplace.

As summarized in a recent review, the growing trend
toward solid oral dosage form development guided by
QbD principles has been supported using ML methods to
understand and relate CMAs and CPPs as input variables
to achieve the desired outputs (CQAs) (Lou et al. 2021).
Figure 4 provides an overview of how ML and other data
analytics tools can transform raw big data providing useful
models that can accurately ensure specification compliance
to satisfy the CQAs with significant time and cost savings.

In a typical ML approach, the datasets can be integrated
for training, validation and testing. To address the question/
problem, the process can be roughly divided into the fol-
lowing steps: (1) input the data collection (from various

Integrated approach

H A
i CMAs e CPPs

CQAs PAT Statistical
tools | analysis

Design

space
Data Analytics tools ?

Increasing Product and Process Knowledge

Fig.4 Overview of an integrated approach with QbD elements, PAT
tools and different data analytics tools. Schematic visual representa-
tion of overlay and contour plots to understand the impact of CMAs
and CPPs on drug product CQAs (CMA critical material attribute,
CPP critical process parameter, CQA critical quality attribute, DoE
design of experiments, ML machine learning, MVDA multivariate
data analysis, PAT process analytical technology, PCA principal com-
ponent analysis, PLS partial least squares)

@ Springer

sources); (2) prepare, process and understand the dataset; (3)
choose and build the ML model; (4) train the learning model
on the training set; (5) tune and evaluate the ML model on
the validation set; and (6) evaluate the final performance on
the test set to confirm the results (Fig. 5) (Bannigan et al.
2021). The steps of gathering data and building a model by
selecting the right ML algorithm are of special relevance to
pharmaceutical development because the quality and quan-
tity of the data as well as the selection of the most suitable
algorithm will determine the accuracy and predictability of
the ML model.

Types of ML approaches

ML includes three types of approaches: supervised learning,
unsupervised learning, and reinforcement learning, differing
in the way the models are trained. Figure 6 shows an over-
view of the ML methods.

Supervised learning comprises a set of labeled input
data (training data). These already tagged data (historical
learning and original input data) are used to train algorithms
to find the specific structure for predicting the correct out-
comes (Banner et al. 2021; Bannigan et al. 2021). Then,
the test data are applied to validate the model and assess its
predictive accuracy. Supervised learning can be performed
in the context of classification or regression, depending on
whether the output variable is discrete and qualitative or
continuous and quantitative, respectively (Bannigan et al.
2021). Support vector machine (SVM) (Al-Zoubi et al.
2011), tree-based methods (decision tree, random forest and
boosting) (Petrovic et al. 2012), K-nearest neighbors (k-NN)
(Yang et al. 2019) and artificial neural networks (ANNs)
(Galata et al. 2021) are some types of classification and
regression algorithms used in oral ER drug delivery system
development.

Input raw data

Training + Validation

Predictive
Model 5 model
learning ad
ML algorithms

@ Output

Fig.5 Basic steps involved in the ML process flow. Splitting data to
training, validation and testing sets (ML machine learning)
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Machine Learning Techniques

- Unlabeled data
- Algorithms learn to
identify patterns in the

Supervised

- Labeled data
- Algorithms learn to
predict outputs from

- Rewards system
- Algorithms learn
through a feedback loop

input data input data
E.g. Q-learning
Classification Dimensionality
reduction

Output variable is a
discrete value (category)

Re§ ression

Output variable is a
continuous value

Finds patterns in dataset
and summarise in a
reduced number of
dimensions

E.g. PCA

Clustering

Assignment dataset to

E.g. Linear regression,
clusters

SVM, Decision tree,

Random forest, k-NN, E.g. K-Means,
ANN Hierarchical clustering,
ANN

Fig.6 Brief explanation of supervised, unsupervised and reinforce-
ment ML approaches (ML machine learning, SVM support vector
machine, k-NN k-nearest neighbors, ANN artificial neural network,
PCA principal component analysis)

Two supervised regression ML models (MLR and
SVM) were applied to the optimization of ER pentoxifyl-
line matrix tablets based on a 32 full factorial experimental
design where the drug weight ratio and percentage of the
matrix former were selected as the independent variables
and the drug release at four time points was selected as the
dependent variables. Using SVM concepts, the training
data comprising 11 experiments (32 + 2 replicated central
points) were normalized by feature scaling, and these nor-
malized factors were used as inputs for the SVM model
construction. The suggested SVM model was externally
validated with 6 checkpoints, and the experimental and
predicted values were compared. The overall prediction
ability was better for SVM than for MLR; thus, it is more
suitable for optimizing drug release from ER matrix tab-
lets (Al-Zoubi et al. 2011).

On the other hand, unsupervised learning algorithms
can identify patterns, similarities and differences from a
hidden structure in unlabeled data without any prior train-
ing or supervision. Clustering and dimensionality reduc-
tion are the key ML tasks used in unsupervised learning
(Ashenden et al. 2021). As mentioned before, PCA has
been used as an important unsupervised data analysis
technique for reducing dimensionality in addressing the
complex process data in oral ER drug delivery systems.
Finally, the third type of ML is reinforcement learning,
which works through the correlation between actions and
delayed outcomes based on a reward system (Arden et al.
2021).

What does ML bring to the pharmaceutical industry?

In general, the application of ML algorithms can be a
crucial tool to aid in deciding suitable starting materials,
understanding formulations, product properties and pro-
cesses (Akseli et al. 2017; Benedetti et al. 2019; Hayashi
etal. 2019, 2021; Lou et al. 2019; Van Hauwermeiren et al.
2020; Djuris et al. 2021; Maki-Lohiluoma et al. 2021; Paul
et al. 2021b; Thomas et al. 2021), and predicting dissolution
(Galata et al. 2021) and drug stability (Ibric et al. 2007).

Hayashi et al. (2021) built a material library including
81 types of APIs, 20 types of API material properties, one
type of process parameter and two types of tablet properties.
Boosted tree (BT), random forest (RF) and PLS were applied
to model relationships between the input variables (material
properties and three levels of compression pressure) and out-
put variables (tensile strength and disintegration time). BT
and RF were demonstrated to be more suitable for modeling
than multivariate models. The high R? and low root mean
square error (RMSE) values reported for the tree-based algo-
rithms indicated accurate predictions. With regard to the
input variables, the diameters at the tenth percentile of the
cumulative percent undersize distribution (d10) and total
surface energy (ys) were found to strongly impact on the
tensile strength and disintegration time, respectively.

It has been confirmed that ML algorithms have the
potential to help the pharmaceutical scientific community
in the assessment and prediction of several factors involving
large amounts of data and requiring more flexible analysis.
Although there are few articles in which ML is applied to
ER formulation development, Table 4 provides a summary
of some of the available research.

In the future, additional scientific efforts are expected to
understand and interpret ML models when handling large
datasets. Likewise, the traditional models used in DoE are
well established, and the high prediction accuracy of ML
does not mean the end of using them. Traditional tools could
remain a good approach for linear relationships between
inputs and outputs.

Artificial neural networks (ANNs)

Artificial neural networks (ANNs) are the first and most
widely used ML model in the study of ER formulations,
frequently with the objective of characterizing and optimiz-
ing the formulations and modeling the dissolution (Lou et al.
2021).

ANNSs are a useful tool for modeling input/output nonlin-
ear functions inspired by the way neurons work in the human
nervous system. In one of the simplest forms of ANN (called
the feedforward neural network—FFNN), the data travel
in one direction (Simoes et al. 2020; Wang et al. 2022).
Multilayer perceptron (MLP) has been commonly used in
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pharmaceutical development, and the framework comprises
three types of essential layers: input, hidden and output lay-
ers. Once the input layer receives the external data for the
neural network, the hidden layer, located in the middle of
the ANN, processes the information through several types of
mathematical computation. Then, the output layer produces
the final results for the given inputs (Wang et al. 2022).

FFNNSs, including MLP and the generalized regression
neural network (GRNN), with radial and regression layers
are just some examples of common neural network architec-
tures summarized elsewhere (Lou et al. 2021; Wang et al.
2022).

In the midst of other ML methods, ANNs have proven
to be accurate in assessing tablet properties (Khan et al.
2020) and swelling and erosion mechanisms (Barmpalexis
et al. 2018) as well as predicting the in vitro drug release
(Al-Zoubi et al. 2015; Lefnaoui et al. 2018; Saracoglu et al.
2020; Galata et al. 2021) of oral solid ER tablets. For input
variables, numerous CMAs and/or CPPs have been used to
build multiple ML models to predict CQAs. Input materials
such as drug (Yang et al. 2019) and polymer properties (Sar-
acoglu et al. 2020) and process parameters (e.g., compres-
sion force (Galata et al. 2019), roller pressure (Pishnamazi
et al. 2019) or crushing strength (Ivic et al. 2010)) were
identified to predict the in vitro dissolution profile of ER
tablets.

Nagy et al. (2019) built three-layer ANN models to
predict the dissolution of ER anhydrous caffeine tablets
and compared them to traditional PLS regression. In this
work, the effects of the API and PEO content and compres-
sion force on drug dissolution were assessed. The scores
obtained by the dimension reduction PCA from the FT-NIR
and Raman spectra of each intact tablet were defined as the
input variables, and the dissolution values at 35 sampling
points were considered the output variables. The NIR and
Raman spectroscopic tools demonstrated a complementary
relationship. While NIR methods provide information on the
effect of compression force, Raman provides better predic-
tion of the effect of API and PEO on drug release. ANN-
based models provided a lower RMSE for prediction than
PLS. This is due to the ANN capability to determine the
complex and nonlinear relationship between the input and
output parameters.

Deep learning (DL)

Deep learning (DL), as a specific and more advanced subset
of ML, engages ANNs in most cases (Paul et al. 2021a).
When applied to DL, the architecture of ANN models can be
very deep, with more than three layers—called deep neural
networks (Ashenden et al. 2021). Due to the suitability of
DL to deal with complex datasets, it could be a powerful tool

@ Springer

in the future of ER delivery system development to improve
the control strategy.

Yang et al. (2019) applied a deep neural network to pre-
dict the disintegration time and cumulative drug release of
oral fast disintegrating films (OFDF) and oral SR matrix tab-
lets (SRMT), respectively. For this purpose, the experimen-
tal dataset extracted from Web of Science was split into three
datasets: training, validation, and testing. Six conventional
ML methods (MLR, PLSR, SVM, ANNs, random forest
and k-NN) were considered for comparison with DL. Deep
neural networks showed higher accuracy (over 80%) on the
OFDF and SRMT training, validation and test datasets com-
pared to the ML algorithms. Two years later, based on these
models, Yoo et al. (2022) proposed new DL approaches,
using PCA and the Wasserstein generative adversarial net-
work (WGAN), to maximize the prediction performance
for OFDF and SRMT, respectively. The proposed models
showed significantly higher performance than the existing
models.

From QbD to pharma 4.0

In the last decade, the pharmaceutical industry has adopted
several emerging technologies, techniques and processes,
which offer high potential to change the landscape of drug
development and production (Reinhardt et al. 2020; Arden
et al. 2021; Wang et al. 2021).

To achieve high-quality and high-efficiency patterns, the
pharmaceutical industry employs Pharma 4.0 (Arden et al.
2021), a concept that emerged to represent the era where
different technologies and/or machines are converging to
improve product quality through renewed digital solutions
(Reinhardt et al. 2020). Additionally, “Smart Factories”
are structures in which machines communicate with each
other dealing autonomously with emerging problems and
unexpected changes (Barenji et al. 2019). The essential
technologies for data science, a cornerstone of Pharma 4.0,
have already been established and are well known, aiming
to control the process and product quality data in real time.

QbD, together with ICH guidelines, enables the require-
ments of Pharma 4.0 through a holistic development and
manufacturing control strategy. The implementation of
QbD, RTRT and PAT has provided several advances, offer-
ing systematic and quantitative approaches, reducing human
interventions and therefore sharply reducing costs and time.

However, their application in industry is far from the
potential presented by this new concept (Barenji et al. 2019;
Steinwandter et al. 2019; Wang et al. 2021). The bigger chal-
lenges are related to technological gaps, namely, the lack of
independence facing unexpected changes, the low level of
interoperability and the low computational power (Barenji
et al. 2019). To implement smart manufacturing systems, a
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cyber-physical-based PAT (CPbPAT) framework was pro-
posed by Barenji et al. (2019). This framework, designed to
obtain, record and monitor real-time data, combines several
technologies, such as QbD and RTRT, to make autonomous
decisions and determine improvement strategies. CPbPAT
is developed in multiple levels, enabling the collection and
continuous integration in the cloud of large amounts of data.
Due to the complex development and manufacturing of
ER systems, the implementation of the Pharma 4.0 concept
in pharmaceutical companies with continuous monitoring
of product manufacturing will decrease product and process
variability and consistently improve quality requirements.

Conclusion

Pharmaceutical companies have already started applying
QbD concepts to the development of pharmaceutical prod-
ucts instead of traditional trial-and-error-based approaches,
although their application remains far from what is expected.
Because of the complexity of oral ER drug delivery system
development and the relevance of polymer properties on
drug product performance, the implementation of QbD tools
is crucial to provide a better and complete understanding of
the product and process parameters and optimize a control
strategy. A design space can be established defining allow-
able operational ranges and providing flexible regulatory
approaches. Furthermore, QbD is a cost-effective time-sav-
ing strategy that can be used throughout the product lifecycle
ensuring compliance with regulatory quality requirements.

The increasing amount of generated data requires a
greater ability to optimize formulations and processing
parameters as well as accurately predict drug product per-
formance. ML and DL algorithms will progressively be rec-
ognized, and we can be sure that they will be more widely
used for effective pharmaceutical development through a
Pharma 4.0 strategy to achieve greater robustness and help
meet regulatory compliance. Certainly, these tools will allow
us to move toward the possibility of RTRT application in the
pharmaceutical industry.

Acknowledgements This work was financially supported by the
Drugs R&D Doctoral Program assigned by FCT (Fundacdo para a
Ciéncia e Tecnologia), Portugal and Tecnimede Group [grant PD/
BDE/150736/2020].

Author contributions SS: Conceptualization, Writing—original draft,
Visualization. JS: Conceptualization, Supervision. CE: Writing—orig-
inal draft. RC: Writing—review & editing. AR: Conceptualization,
Writing—review & editing, Supervision.

Declarations

Conflict of interest All authors (A.S. Sousa, J. Serra, C. Estevens, R.
Costa, and A.J. Ribeiro) declare that they have no conflicts of interest.

Research involving human and animal particpants This article does
not contain any studies with human and animal subjects performed by
any of the authors.

References

Abu Fara D, Dadou SM, Rashid I, Al-Obeidi R, Antonijevic MD et al
(2019) A direct compression matrix made from xanthan gum and
low molecular weight chitosan designed to improve compress-
ibility in controlled release tablets. Pharmaceutics 11:603

Aguilar-De-Leyva A, Campinez MD, Casas M, Caraballo I (2017)
Design space and critical points in solid dosage forms. J Drug
Deliv Sci Technol 42:134-143

Akhtar MF, Ashraf H, Uzair M, Ahmad S, Rasul A et al (2022) Devel-
opment of leachable enalapril tablets by controlled porosity
osmotic pump technique; a unique approach to enhance its sus-
tained release effect. J Coat Technol Res 19:497-507

Akseli I, Xie JJ, Schultz L, Ladyzhynsky N, Bramante T et al (2017) A
practical framework toward prediction of breaking force and dis-
integration of tablet formulations using machine learning tools.
J Pharm Sci 106:234-247

Aktas E, Eroglu H, Kockan U, Oner L (2013) Systematic development
of pH-independent controlled release tablets of carvedilol using
central composite design and artificial neural networks. Drug
Dev Ind Pharm 39:1207-1216

Al-Zoubi N, Kachrimanis K, Younis K, Malamataris S (2011) Optimi-
zation of extended-release hydrophilic matrix tablets by support
vector regression. Drug Dev Ind Pharm 37:80-87

Al-Zoubi N, Alkhatib HS, Alobaidi G, Abdel-Rahim S, Obeidat W
et al (2015) Optimization of pH-independent chronotherapeutic
release of verapamil HCI from three-layer matrix tablets. Int J
Pharm 494:296-303

Arden S, Fisher AC, Tyner K, Yu LCX, Lee SL et al (2021) Industry
4.0 for pharmaceutical manufacturing: preparing for the smart
factories of the future. Int J Pharm 602:120554

Ashenden SK, Bartosik A, Agapow P-M, Semenova E (2021) Introduc-
tion to artificial intelligence and machine learning. In: Ashenden
S (ed) The era of artificial intelligence, machine learning, and
data science in the pharmaceutical industry, 1st edn. Academic
Press, United Kingdom, pp 15-26

Banner M, Alosert H, Spencer C, Cheeks M, Farid SS et al (2021) A
decade in review: use of data analytics within the biopharmaceu-
tical sector. Curr Opin Chem Eng 34:100758

Bannigan P, Aldeghi M, Bao ZQ, Hase F, Aspuru-Guzik A et al (2021)
Machine learning directed drug formulation development. Adv
Drug Deliv Rev 175:113806

Barenji RV, Akdag Y, Yet B, Oner L (2019) Cyber-physical-based PAT
(CPbPAT) framework for Pharma 4.0. Int J Pharm 567:118445

Barmpalexis P, Kanaze FI, Kachrimanis K, Georgarakis E (2010)
Artificial neural networks in the optimization of a nimodipine
controlled release tablet formulation. Eur J Pharm Biopharm
74:316-323

Barmpalexis P, Kachrimanis K, Malamataris S (2018) Statistical
moments in modelling of swelling, erosion and drug release of
hydrophilic matrix-tablets. Int J] Pharm 540:1-10

Benedetti A, Khoo J, Sharma S, Facco P, Barolo M et al (2019) Data
analytics on raw material properties to accelerate pharmaceutical
drug development. Int J Pharm 563:122-134

Bermejo M, Sanchez-Dengra B, Gonzalez-Alvarez M, Gonzalez-Alva-
rez 1 (2020) Oral controlled release dosage forms: dissolution
versus diffusion. Expert Opin Drug Deliv 17:791-803

Bruschi ML (2015) Strategies to modify the drug release from pharma-
ceutical systems. Woodhead Publishing, United Kingdom

@ Springer



302

Journal of Pharmaceutical Investigation (2023) 53:269-306

Caccavo D, Cascone S, Lamberti G, Barba AA (2014) Modeling
the drug release from hydrogel-based matrices. Mol Pharm
12:474-483

Chakraborty S, Khandai M, Sharma A, Patra CN, Patro VJ et al
(2009) Effects of drug solubility on the release kinetics of
water soluble and insoluble drugs from HPMC based matrix
formulations. Acta Pharm 59:313-323

Chappidi SR, Bhargav E, Marikunte V, Chinthaginjala H, Vijaya
Jyothi M et al (2019) A cost effective (QbD) approach in
the development and optimization of rosiglitazone maleate
mucoadhesive extended release tablets—in vitro and ex vivo.
Adv Pharm Bull 9:281-288

Chudiwal VS, Shahi S, Chudiwal S (2018) Development of sus-
tained release gastro-retentive tablet formulation of nicardipine
hydrochloride using quality by design (QbD) approach. Drug
Dev Ind Pharm 44:787-799

Colombo P, Bettini R, Santi P, Peppas NA (2000) Swellable matrices
for controlled drug delivery: gel-layer behaviour, mechanisms
and optimal performance. Pharm Sci Technol Today 3:198-204

Costa P, Manuel J, Lobo S (2001) Modeling and comparison of dis-
solution profiles. Eur J Pharm Sci 13:123-133

Crowley MM, Schroeder B, Fredersdorf A, Obara S, Talarico M et al
(2004) Physicochemical properties and mechanism of drug
release from ethyl cellulose matrix tablets prepared by direct
compression and hot-melt extrusion. Int J Pharm 269:509-522

Dave VS, Saoji SD, Raut NA, Haware RV (2015) Excipient vari-
ability and its impact on dosage form functionality. J] Pharm
Sci 104:906-915

Davis B, Schlindwein WS (2018) Introduction to quality by design
(QbD). In: Schlindwein WS, Gibson M (eds) Pharmaceutical
quality by design: a practical approach, 1st edn. John Wiley &
Sons, United States, pp 1-9

Demchenko Y, Grosso P, de Laat C, Membrey P (2013) Addressing
big data issues in scientific data infrastructure. International
Conference on Collaboration Technologies and Systems (CTS),
San Diego

Desai N, Purohit R (2017) Design and development of clopidogrel
bisulfate gastroretentive osmotic formulation using quality by
design tools. AAPS PharmSciTech 18:2626-2638

Diab S, Bano G, Dhenge RM, Taylor J (2021) Impact of process
parameters and formulation properties on dissolution perfor-
mance of an extended release tablet: a multivariate analysis. J
Pharm Innov 17:892-910

Ding H (2016) Modified-release drug products and drug devices.
In: Shargel L, Yu AB (eds) Applied biopharmaceutics and
pharmacokinetics, 7th edn. McGraw-Hill Education, New York

Djuris J, Cirin-Varadjan S, Aleksic I, Djuris M, Cvijic S et al (2021)
Application of machine-learning algorithms for better under-
standing of tableting properties of lactose co-processed with
lipid excipients. Pharmaceutics 13:663

European Medicines Agency (2012) Guideline on real time release
testing (formerly guideline on parametric release). https://
www.ema.europa.eu/en/documents/scientific-guideline/guide
line-real-time-release-testing-formerly-guideline-parametric-
release-revision-1_en.pdf. Accessed 03 May 2022

European Medicines Agency (2014) Guideline on quality of oral
modified release products. https://www.ema.europa.eu/en/
documents/scientific-guideline/guideline-quality-oral-modif
ied-release-products_en.pdf. Accessed 05 May 2022

Farooqi S, Yousuf RI, Shoaib MH, Ahmed K, Ansar S et al (2020)
Quality by design (QbD)-based numerical and graphical opti-
mization technique for the development of osmotic pump
controlled-release metoclopramide HCI tablets. Drug Des Dev
Ther 14:5217-5234

@ Springer

Florence AT (2011) A short history of controlled drug release and an
introduction. In: Wilson C, Crowley P (eds) Controlled release
in oral drug delivery, 1st edn. Springer, pp 1-26

Food and Drug Administration (1997a) Extended release oral dosage
forms: development, evaluation, and application of in vitro/
in vivo correlations. https://www.fda.gov/media/70939/downl
oad. Accessed 03 May 2022

Food and Drug Administration (1997b) SUPAC-MR: modified
release solid oral dosage forms - scale-up and postapproval
changes: chemistry, manufacturing, and controls; in vitro dis-
solution testing and in vivo bioequivalence documentation.
https://www.fda.gov/media/70956/download. Accessed 03
May 2022

Food and Drug Administration (2004) PAT—A framework for inno-
vative pharmaceutical development, manufacturing, and qual-
ity assurance. https://www.fda.gov/media/71012/download.
Accessed 03 May 2022

Ford JL (2014) Design and evaluation of hydroxypropyl methylcellu-
lose matrix tablets for oral controlled release: A historical per-
spective. In: Timmins P, Pygall SR, Melia CD (eds) Hydrophilic
matrix tablets for oral controlled release. Springer, pp 17-51

Frenning G (2011) Modelling drug release from inert matrix systems:
from moving-boundary to continuous-field descriptions. Int J
Pharm 418:88-99

Galata DL, Farkas A, Konyves Z, Meszaros LA, Szabo E et al (2019)
Fast, spectroscopy-based prediction of in vitro dissolution pro-
file of extended release tablets using artificial neural networks.
Pharmaceutics 11:400

Galata DL, Konyves Z, Nagy B, Novak M, Meszaros LA et al (2021)
Real-time release testing of dissolution based on surrogate mod-
els developed by machine learning algorithms using NIR spectra,
compression force and particle size distribution as input data. Int
J Pharm 597:120338

Gavan A, Porfire A, Marina C, Tomuta I (2017) Original research
paper. Formulation and pharmaceutical development of que-
tiapine fumarate sustained release matrix tablets using a QbD
approach. Acta Pharm 67:53-70

Gavan A, Sylvester B, Porfire A, Iurian S, Casian T et al (2022) NIR
spectroscopy for monitoring of the critical manufacturing steps
and quality attributes of paliperidone prolonged release tablets.
J Mol Struct 1247:131326

Gendre C, Boiret M, Genty M, Chaminade P, Pean JM (2011) Real-
time predictions of drug release and end point detection of a
coating operation by in-line near infrared measurements. Int J
Pharm 421:237-243

Gibson M, Carmody A, Weaver R (2018) Development and manu-
facture of drug product. In: Schlindwein WS, Gibson M (eds)
Pharmaceutical quality by design: a practical approach, 1st edn.
John Wiley & Sons, United States, p 117

Goodwin DJ, van den Ban S, Denham M, Barylski I (2018) Real time
release testing of tablet content and content uniformity. Int J
Pharm 537:183-192

Gowthami B, Krishna SVG, Rao DS (2021) Formulation of tablets
in capsule system: statistical optimization for chronotherapeutic
drug delivery of propranolol hydrochloride. J Drug Deliv Sci
Technol 63:102398

Grangeia HB, Silva C, Simoes SP, Reis MS (2020) Quality by design
in pharmaceutical manufacturing: a systematic review of current
status, challenges and future perspectives. Eur J] Pharm Biopharm
147:19-37

Guler GK, Eroglu H, Oner L (2017) Development and formulation of
floating tablet formulation containing rosiglitazone maleate using
Artificial neural network. J Drug Deliv Sci Technol 39:385-397

Haenlein M, Kaplan A (2019) A brief history of artificial intelligence:
on the past, present, and future of artificial intelligence. Calif
Manage Rev 61:5-14


https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-real-time-release-testing-formerly-guideline-parametric-release-revision-1_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-real-time-release-testing-formerly-guideline-parametric-release-revision-1_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-real-time-release-testing-formerly-guideline-parametric-release-revision-1_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-real-time-release-testing-formerly-guideline-parametric-release-revision-1_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-quality-oral-modified-release-products_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-quality-oral-modified-release-products_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-quality-oral-modified-release-products_en.pdf
https://www.fda.gov/media/70939/download
https://www.fda.gov/media/70939/download
https://www.fda.gov/media/70956/download
https://www.fda.gov/media/71012/download

Journal of Pharmaceutical Investigation (2023) 53:269-306

303

Hayashi Y, Marumo Y, Takahashi T, Nakano Y, Kosugi A et al (2019)
In silico predictions of tablet density using a quantitative struc-
ture-property relationship model. Int J Pharm 558:351-356

Hayashi Y, Nakano Y, Marumo Y, Kumada S, Okada K et al (2021)
Application of machine learning to a material library for mod-
eling of relationships between material properties and tablet
properties. Int J Pharm 609:121158

Heiman J, Tajarobi F, Gururajan B, Juppo A, Abrahmsen-Alami S
(2015) Roller compaction of hydrophilic extended release tab-
lets-combined effects of processing variables and drug/matrix
former particle size. AAPS PharmSciTech 16:267-277

Heng PWS, Chan LW, Easterbrook MG, Li XM (2001) Investigation of
the influence of mean HPMC particle size and number of poly-
mer particles on the release of aspirin from swellable hydrophilic
matrix tablets. J Control Release 76:39-49

Hiremath PS, Saha RN (2008) Controlled release hydrophilic matrix
tablet formulations of isoniazid: design and in vitro studies.
AAPS PharmSciTech 9:1171-1178

Hoffman AS (2008) The origins and evolution of “controlled” drug
delivery systems. J Control Release 132:153-163

HuM, Zhu Z, Wu Y, Meng Q, Luo J et al (2020) Exploring the poten-
tial of hydrophilic matrix combined with insoluble film coating:
preparation and evaluation of ambroxol hydrochloride extended
release tablets. AAPS PharmSciTech 21:93

Huang J, Kaul G, Cai CS, Chatlapalli R, Hernandez-Abad P et al
(2009) Quality by design case study: an integrated multivariate
approach to drug product and process development. Int J Pharm
382:23-32

Ibric S, Jovanovic M, Djuric Z, Parojcic J, Solomun L et al (2007)
Generalized regression neural networks in prediction of drug
stability. J Pharm Pharmacol 59:745-750

International Conference on Harmonisation (2009) ICH guideline Q8
(R2) on pharmaceutical development. https://database.ich.org/
sites/default/files/Q8_R2_Guideline.pdf. Accessed 03 May 2022

International Conference on Harmonisation (2010) Q8, Q9 and Q10:
Questions and answers. https://database.ich.org/sites/default/
files/Q8_Q9_Q10_Q%26As_R4_Q%26As_0.pdf. Accessed 06
May 2022

International Conference on Harmonisation (2011) Q8, Q9 and Q10:
Points to consider. https://database.ich.org/sites/default/files/Q8_
Q9_Q10_Q%26As_R4_Points_to_Consider_2.pdf. Accessed 06
May 2022

International Conference on Harmonisation (2012) ICH guideline Q11
on development and manufacture of drug substances (chemical
entities and biotechnological/biological entities). https://datab
ase.ich.org/sites/default/files/Q11%20Guideline.pdf. Accessed
03 May 2022

Ilic M, Duris J, Kovacevic I, Ibric S, Parojcic J (2014) In vitro—in
silico—in vivo drug absorption model development based on
mechanistic gastrointestinal simulation and artificial neural net-
works: Nifedipine osmotic release tablets case study. Eur J Pharm
Sci 62:212-218

Ilyes K, Casian T, Hales D, Borodi G, Rus L et al (2021) Applying the
principles of quality by design (Qbd) coupled with multivariate
data analysis (MVDA) in establishing the impact of raw material
variability for extended release tablets. Farmacia 69:481-497

International Conference on Harmonisation (2005) ICH guideline Q9
on quality risk management. https://database.ich.org/sites/defau
1t/files/Q9%20Guideline.pdf. Accessed 03 May 2022

International Conference on Harmonisation (2008) ICH guideline Q10
on pharmaceutical quality system. https://database.ich.org/sites/
default/files/Q10%20Guideline.pdf. Accessed 03 May 2022

International Conference on Harmonisation (2019) ICH guideline Q12
on technical and regulatory considerations for pharmaceutical
product lifecycle management. https://database.ich.org/sites/

default/files/Q12_Guideline_Step4_2019_1119.pdf. Accessed
03 May 2022

Islam MT, Maniruzzaman M, Halsey SA, Chowdhry BZ, Douroumis D
(2014) Development of sustained-release formulations processed
by hot-melt extrusion by using a quality-by-design approach.
Drug Deliv Transl Res 4:377-387

Turian S, Turdean L, Tomuta I (2017) Risk assessment and experimen-
tal design in the development of a prolonged release drug deliv-
ery system with paliperidone. Drug Des Dev Ther 11:733-746

Ivic B, Ibric S, Betz G, Djuric Z (2010) Optimization of drug release
from compressed multi unit particle system (MUPS) using gen-
eralized regression neural network (GRNN). Arch Pharm Res
33:103-113

Jang EH, Park YS, Choi D (2021) Investigation of the effects of mate-
rials and dry granulation process on the mirabegron tablet by
integrated QbD approach with multivariate analysis. Powder
Technol 382:23-39

Kanwal U, Mukhtar S, Waheed M, Mehreen A, Abbas N et al (2021)
Fixed dose single tablet formulation with differential release of
amlodipine besylate and simvastatin and its pharmacokinetic
profile: QbD and risk assessment approach. Drug Des Dev Ther
15:2193-2210

Khan AM, Hanif M, Bukhari NI, Shamim R, Rasool F et al (2020)
Artificial neural network (ANN) approach to predict an opti-
mized pH-dependent mesalamine matrix tablet. Drug Des Dev
Ther 14:2435-2448

Kim CJ (1998) Effects of drug solubility, drug loading, and polymer
molecular weight on drug release from polyox (R) tablets. Drug
Dev Ind Pharm 24:645-651

Kosir D, Ojstersek T, Baumgartner S, Vrecer F (2018) A study of criti-
cal functionality-related characteristics of HPMC for sustained-
release tablets. Pharm Dev Technol 23:865-873

Kovacs B, Peterfi O, Kovacs-Deak B, Szekely-Szentmiklosi I, Fulop I
et al (2021) Quality-by-design in pharmaceutical development:
from current perspectives to practical applications. Acta Pharm
71:497-526

Kushner J, Lamba M, Stock T, Wang R, Nemeth MA et al (2020)
Development and validation of a Level A in vitro in vivo cor-
relation for tofacitinib modified -release tablets using extrud-
able core system osmotic delivery technology. Eur J Pharm Sci
147:105200

Lakio S, Tajarobi P, Wikstrom H, Fransson M, Arnehed J et al (2016)
Achieving a robust drug release from extended release tablets
using an integrated continuous mixing and direct compression
line. Int J Pharm 511:659-668

Lee PI, Li JX (2010) Evolution of oral controlled release dosage forms.
In: Wen H, Park K (eds) Oral controlled release formulation
design and drug delivery: theory to practice, 1st edn. John Wiley
& Sons, New Jersey, pp 21-31

Lefnaoui S, Rebouh S, Bouhedda M, Yahoum MM, Hanini S (2018)
Artificial neural network modeling of sustained antihypertensive
drug delivery using polyelectrolyte complex based on carboxy-
methyl-kappa-carrageenan and chitosan as prospective carriers.
International conference on applied smart systems (ICASS),
USA

Li H, Hardy RJ, Gu X (2008) Effect of drug solubility on polymer
hydration and drug dissolution from polyethylene oxide (PEO)
matrix tablets. AAPS PharmSciTech 9:437—443

Lin W, Li YK, Shi QZ, Liao XR, Zeng Y et al (2022) Preparation
and evaluation of bilayer-core osmotic pump tablets contained
topiramate. PLoS ONE 17:¢0264457

Liu LX, Xu XN (2008) Preparation of bilayer-core osmotic pump tablet
by coating the indented core tablet. Int J Pharm 352:225-230

Liu LL, Zhang KF, Sun ZY, Dong Q, Li L et al (2021) A new per-
spective in understanding the dissolution behavior of nifedipine

@ Springer


https://database.ich.org/sites/default/files/Q8_R2_Guideline.pdf
https://database.ich.org/sites/default/files/Q8_R2_Guideline.pdf
https://database.ich.org/sites/default/files/Q8_Q9_Q10_Q%26As_R4_Q%26As_0.pdf
https://database.ich.org/sites/default/files/Q8_Q9_Q10_Q%26As_R4_Q%26As_0.pdf
https://database.ich.org/sites/default/files/Q8_Q9_Q10_Q%26As_R4_Points_to_Consider_2.pdf
https://database.ich.org/sites/default/files/Q8_Q9_Q10_Q%26As_R4_Points_to_Consider_2.pdf
https://database.ich.org/sites/default/files/Q11%20Guideline.pdf
https://database.ich.org/sites/default/files/Q11%20Guideline.pdf
https://database.ich.org/sites/default/files/Q9%20Guideline.pdf
https://database.ich.org/sites/default/files/Q9%20Guideline.pdf
https://database.ich.org/sites/default/files/Q10%20Guideline.pdf
https://database.ich.org/sites/default/files/Q10%20Guideline.pdf
https://database.ich.org/sites/default/files/Q12_Guideline_Step4_2019_1119.pdf
https://database.ich.org/sites/default/files/Q12_Guideline_Step4_2019_1119.pdf

304

Journal of Pharmaceutical Investigation (2023) 53:269-306

controlled release tablets by NIR spectroscopy with aquapho-
tomics. ] Mol Struct 1230:129872

Lopes JA, Sarraguca MC (2018) Data processing in multivariate
analysis of pharmaceutical processes. In: Ferreira A, Menezes
J, Tobyn M (eds) Multivariate analysis in the pharmaceutical
industry, 1st edn. Elsevier, United Kingdom, pp 35-51

Lou H, Chung JI, Kiang YH, Xiao LY, Hageman MJ (2019) The
application of machine learning algorithms in understanding
the effect of core/shell technique on improving powder com-
pactability. Int J Pharm 555:368-379

Lou H, Lian B, Hageman MJ (2021) Applications of machine
learning in solid oral dosage form development. J Pharm Sci
110:3150-3165

Lundsberg-Nielsen L, Schlindwein WS, Berghaus A (2018) Process
analytical technology (PAT). In: Schlindwein WS, Gibson M
(eds) Pharmaceutical quality by design: a practical approach,
1st edn. John Wiley & Sons, United States, pp 227-255

Maderuelo C, Zarzuelo A, Lanao JM (2011) Critical factors in the
release of drugs from sustained release hydrophilic matrices.
J Control Release 154:2-19

Maki-Lohiluoma E, Sakkinen N, Palomaki M, Winberg O, Ta HX
et al (2021) Use of machine learning in prediction of granule
particle size distribution and tablet tensile strength in commer-
cial pharmaceutical manufacturing. Int J Pharm 609:121146

Malaterre V, Ogorka J, Loggia N, Gurny R (2009) Approach to
design push-pull osmotic pumps. Int J Pharm 376:56-62

Markl D, Warman M, Dumarey M, Bergman EL, Folestad S et al
(2020) Review of real-time release testing of pharmaceutical
tablets: state-of-the art, challenges and future perspective. Int
J Pharm 582:119353

Mirani AG, Patankar SP, Kadam VJ (2016) Risk-based approach
for systematic development of gastroretentive drug delivery
system. Drug Deliv Transl Res 6:579-596

Missaghi S, Patel P, Farrell TP, Huatan H, Rajabi-Siahboomi AR
(2014) Investigation of critical core formulation and process
parameters for osmotic pump oral drug delivery. AAPS Pharm-
SciTech 15:149-160

Mohamed MI, Al-Mahallawi AM, Awadalla SM (2020) Develop-
ment and optimization of osmotically controlled drug delivery
system for poorly aqueous soluble diacerein to improve its bio-
availability. Drug Dev Ind Pharm 46:814-825

Momin MM, Kane S, Abhang P (2015) Formulation and evaluation
of bilayer tablet for bimodal release of venlafaxine hydrochlo-
ride. Front Pharmacol 6:144

Muller J, Brock D, Knop K, Zeitler JA, Kleinebudde P (2012) Pre-
diction of dissolution time and coating thickness of sustained
release formulations using Raman spectroscopy and terahertz
pulsed imaging. Eur J Pharm Biopharm 80:690-697

Muntean DM, Alecu C, Tomuta I (2017) Simultaneous quantification
of paracetamol and caffeine in powder blends for tableting by
NIR-chemometry. J Spectrosc 2017:7160675

Nagy B, Petra D, Galata DL, Demuth B, Borbas E et al (2019)
Application of artificial neural networks for process analytical
technology-based dissolution testing. Int J Pharm 567:118464

Nokhodchi A, Raja S, Patel P, Asare-Addo K (2012) The role of
oral controlled release matrix tablets in drug delivery systems.
Bioimpacts 2:175-187

Obeidat WM, Nokhodchi A, Alkhatib H (2015) Evaluation of matrix
tablets based on Eudragit®E100/Carbopol®971P combinations
for controlled release and improved compaction properties of
water soluble model drug paracetamol. AAPS PharmSciTech
16:1169-1179

Owen M, Cox I (2018) Design of experiments. In: Schlindwein WS,
Gibson M (eds) Pharmaceutical quality by design: a practi-
cal approach, 1st edn. John Wiley & Sons, United States, pp
157-199

@ Springer

Parmar C, Parikh K, Mundada P, Bhavsar D, Sawant K (2018) For-
mulation and optimization of enteric coated bilayer tablets of
mesalamine by RSM: In vitro—In vivo investigations and roen-
togenographic study. J Drug Deliv Sci Technol 44:388-398

Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K et al (2021a) Artificial
intelligence in drug discovery and development. Drug Discov
Today 26:80-93

Paul S, Baranwal Y, Tseng YC (2021b) An insight into predictive
parameters of tablet capping by machine learning and multivari-
ate tools. Int J Pharm 599:120439

Pawar P, Wang YF, Keyvan G, Callegari G, Cuitino A et al (2016)
Enabling real time release testing by NIR prediction of dissolu-
tion of tablets made by continuous direct compression (CDC).
Int J Pharm 512:96-107

Peppas NA, Narasimhan B (2014) Mathematical models in drug deliv-
ery: how modeling has shaped the way we design new drug deliv-
ery systems. J Control Release 190:75-81

Petrovic J, Ibric S, Betz G, Duric Z (2012) Optimization of matrix
tablets controlled drug release using Elman dynamic neural net-
works and decision trees. Int J Pharm 428:57-67

Pishnamazi M, Ismail HY, Shirazian S, Igbal J, Walker GM et al (2019)
Application of lignin in controlled release: development of pre-
dictive model based on artificial neural network for API release.
Cellulose 26:6165-6178

Politis SN, Colombo P, Colombo G (2017) Design of experiments
(DoE) in pharmaceutical development. Drug Dev Ind Pharm
43:889-901

Porfire A, Filip C, Tomuta I (2017) High-throughput NIR-chemometric
methods for chemical and pharmaceutical characterization of
sustained release tablets. J] Pharm Biomed Anal 138:1-13

Qazi F, Shoaib MH, Yousuf RI, Siddiqui F, Nasiri MI et al (2020) QbD
based Eudragit coated meclizine HCl immediate and extended
release multiparticulates: formulation, characterization and
pharmacokinetic evaluation using HPLC-Fluorescence detec-
tion method. Sci Rep 10:14765

Qiu Y, Lee P (2017) Rational design of oral modified-release drug
delivery systems. In: Qiu Y, Chen Y, Zhang G, Yu L, Mantri R
(eds) Developing solid oral dosage forms, 2nd edn. Academic
Press, London, pp 519-554

Rajalahti T, Kvalheim OM (2011) Multivariate data analysis in phar-
maceutics: a tutorial review. Int J Pharm 417:280-290

Reda C, Kaufmann E, Delahaye-Duriez A (2020) Machine learning
applications in drug development. Comput Struct Biotechnol J
18:241-252

Reinhardt IC, Oliveira JC, Ring DT (2020) Current perspectives on the
development of industry 4.0 in the pharmaceutical sector. J Ind
Inf Integr 18:100131

Reynolds TD, Mitchell SA, Balwinski KM (2002) Investigation of
the effect of tablet surface area/volume on drug release from
hydroxypropylmethylcellulose controlled-release matrix tablets.
Drug Dev Ind Pharm 28:457-466

Rus LL, Casian T, Iovanov RI, Orzea RM, Onisor I et al (2020) Quanti-
tative characterization of sustained release tablets with diclofenac
sodium by means of near-infrares spectroscopy and chemometry.
Farmacia 68:728-739

Sacher S, Poms J, Rehrl J, Khinast JG (2022) PAT implementation
for advanced process control in solid dosage manufacturing-A
practical guide. Int J Pharm 613:121408

Sanoufi MR, Aljaberi A, Hamdan I, Al-Zoubi N (2020) The use
of design of experiments to develop hot melt extrudates for
extended release of diclofenac sodium. Pharm Dev Technol
25:187-196

Saracoglu OK, Uludag MO, Ozdemir ED, Degim IT (2020) Develop-
ment of controlled release dexketoprofen tablets and prediction
of drug release using artificial neural network (ANN) modelling.
Braz J Pharm Sci 56:¢18540



Journal of Pharmaceutical Investigation (2023) 53:269-306

305

Saydam M, Takka S (2018) Development and in vitro evaluation of
pH-independent release matrix tablet of weakly acidic drug
valsartan using quality by design tools. Drug Dev Ind Pharm
44:1905-1917

Schmitt S (2018) Quality systems and knowledge management. In:
Schlindwein WS, Gibson M (eds) Pharmaceutical quality by
design: a practical approach, 1st edn. John Wiley & Sons,
United States, pp 47-60

Sethi S, Mangla B, Kamboj S, Rana V (2018) A QbD approach for
the fabrication of immediate and prolong buoyant cinnarizine
tablet using polyacrylamide-g-corn fibre gum. Int J Biol Mac-
romol 117:350-361

Shah V, Khambhla E, Nivsarkar M, Trivedi R, Patel RK (2022) An
Integrative QbD approach for the development and optimiza-
tion of controlled release compressed coated formulation of
water-soluble drugs. AAPS PharmSciTech 23:120

Shi GL, Lin LF, Liu YL, Chen GS, Luo YT et al (2021) Pharmaceuti-
cal application of multivariate modelling techniques: a review
on the manufacturing of tablets. RSC Adv 11:8323-8345

Siegel RA, Rathbone MJ (2012) Overview of controlled release
mechanisms. In: Siepmann J, Siegel RA, Rathbone MJ (eds)
Fundamentals and applications of controlled release drug
delivery, 1st edn. Springer, New York, pp 19-43

Siepmann J, Siepmann F (2012b) Swelling controlled drug delivery
systems. In: Rathbone MJ, Siepmann J, Siegel RA (eds) Fun-
damentals and applications of controlled release drug delivery,
1st edn. Springer, New York, pp 153-170

Siepmann J, Kranz H, Peppas NA, Bodmeier R (2000) Calculation of
the required size and shape of hydroxypropyl methylcellulose
matrices to achieve desired drug release profiles. Int J] Pharm
201:151-164

Siepmann J, Siegel RA, Siepmann F (2012a) Diffusion controlled
drug delivery systems. In: Rathbone MJ, Siepmann J, Siegel
RA (eds) Fundamentals and applications of controlled release
drug delivery, 1st edn. Springer, New York, pp 127-152

Simoes MF, Silva G, Pinto AC, Fonseca M, Silva NE et al (2020)
Artificial neural networks applied to quality-by-design: From
formulation development to clinical outcome. Eur J Pharm
Biopharm 152:282-295

Singh SK, Venkateshwarn T, Simmons SP (2010) Oral controlled
drug delivery: quality by design (QbD) approach to drug devel-
opment. In: Wen H, Park K (eds) Oral controlled release for-
mulation design and drug delivery: theory to practice, 1st edn.
John Wiley & Sons, New Jersey, pp 279-303

Sirbu C, Tomuta I, Achim M, Rus LL, Vonica L et al (2014) Quan-
titative characterization of powder blends for tablets with
Indapamide by near-infrared spectrocopy and chemometry.
Farmacia 62:48-57

Steinwandter V, Borchert D, Herwig C (2019) Data science tools and
applications on the way to Pharma 4.0. Drug Discov Today
24:1795-1805

Than YM, Titapiwatanakun V (2021) Statistical design of experi-
ment-based formulation development and optimization of 3D
printed oral controlled release drug delivery with multi target
product profile. J Pharm Investig 51:715-734

Thapa P, Jeong SH (2018) Effects of formulation and process varia-
bles on gastroretentive floating tablets with a high-dose soluble
drug and experimental design approach. Pharmaceutics 10:161

Theeuwes F (1975) Elementary osmotic pumps. J Pharm Sci
64:1987-1991

Thomas S, Palahnuk H, Amini H, Akseli I (2021) Data-smart
machine learning methods for predicting composition-depend-
ent Young’s modulus of pharmaceutical compacts. Int J Pharm
592:120049

Timmins P, Desai D, Chen W, Wray P, Brown J et al (2016) Advances
in mechanistic understanding of release rate control mechanisms

of extended-release hydrophilic matrix tablets. Ther Deliv
7:553-572

Tiwari SB, DiNunzio J, Rajabi-Siahboomi A (2011) Drug—polymer
matrices for extended release. In: Wilson CG, Crowley PJ (eds)
Controlled release in oral drug delivery, 1st edn. Springer, New
York, pp 131-159

Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E et al (2019)
Applications of machine learning in drug discovery and develop-
ment. Nat Rev Drug Discov 18:463—477

Van Hauwermeiren D, Stock M, De Beer T, Nopens I (2020) Predict-
ing pharmaceutical particle size distributions using kernel mean
embedding. Pharmaceutics 12:271

Van Snick B, Holman J, Cunningham C, Kumar A, Vercruysse J et al
(2017) Continuous direct compression as manufacturing platform
for sustained release tablets. Int J Pharm 519:390-407

Vanhoorne V, Vanbillemont B, Vercruysse J, De Leersnyder F, Gomes
P et al (2016) Development of a controlled release formulation
by continuous twin screw granulation: Influence of process and
formulation parameters. Int J Pharm 505:61-68

Vanza JD, Patel RB, Dave RR, Patel MR (2020) Polyethylene oxide and
its controlled release properties in hydrophilic matrix tablets for
oral administration. Pharm Dev Technol 25:1-19

Verma RK, Krishna DM, Garg S (2002) Formulation aspects in the
development of osmotically controlled oral drug delivery sys-
tems. J Control Release 79:7-27

Viriden A, Wittgren B, Andersson T, Larsson A (2009) The effect
of chemical heterogeneity of HPMC on polymer release from
matrix tablets. Eur J Pharm Sci 36:392-400

Viriden A, Larsson A, Wittgren B (2010) The effect of substitution
pattern of HPMC on polymer release from matrix tablets. Int J
Pharm 389:147-156

Viriden A, Abrahmsen-Alami S, Wittgren B, Larsson A (2011) Release
of theophylline and carbamazepine from matrix tablets—conse-
quences of HPMC chemical heterogeneity. Eur J Pharm Biop-
harm 78:470—479

Vora C, Patadia R, Mittal K, Mashru R (2015) Risk based approach for
design and optimization of site specific delivery of isoniazid. J
Pharm Investig 45:249-264

Walker RB (2008) Modified-release delivery systems for oral use. In:
Rathbone M, Hadgraft J, Roberts MS, Lane ME (eds) Modified-
release drug delivery technology, 2nd edn. CRC Press, New
York, pp 131-141

Wang W, Ye ZYF, Gao HL, Ouyang DF (2021) Computational phar-
maceutics-A new paradigm of drug delivery. J Control Release
338:119-136

Wang S, Di JW, Wang D, Dai XD, Hua YB et al (2022) State-of-the-
art review of artificial neural networks to predict. Characterize
and optimize pharmaceutical formulation. Pharmaceutics 14:183

Wen H, Park K (2010) Introduction and overview of oral controlled
release formulation design. In: Wen H, Park K (eds) Oral Con-
trolled release formulation design and drug delivery: theory to
practice, 1st edn. John Wiley & Sons, New Jersey, pp 1-19

Wirges M, Funke A, Serno P, Knop K, Kleinebudde P (2013) Moni-
toring of an active coating process for two-layer tablets-model
development strategies. J Pharm Sci 102:556-564

Won DH, Park H, Ha ES, Kim HH, Jang SW et al (2021) Optimization
of bilayer tablet manufacturing process for fixed dose combina-
tion of sustained release high-dose drug and immediate release
low-dose drug based on quality by design (QbD). Int J Pharm
605:120838

Wu HQ, Lyon RC, Khan MA, Voytilla RJ, Drennen JK (2015) Inte-
gration of near-infrared spectroscopy and mechanistic modeling
for predicting film-coating and dissolution of modified release
tablets. Ind Eng Chem Res 54:6012-6023

Yang Y, Zhao ZN, Wang YF, Yang L, Liu DD et al (2016) A novel
asymmetric membrane osmotic pump capsule with in situ formed

@ Springer



306

Journal of Pharmaceutical Investigation (2023) 53:269-306

delivery orifices for controlled release of gliclazide solid disper-
sion system. Int J Pharm 506:340-350

Yang YL, Ye ZYF, Su Y, Zhao QQ, Li XS et al (2019) Deep learn-
ing for in vitro prediction of pharmaceutical formulations. Acta
Pharm Sin B 9:177-185

Yoo S, Kim J, Choi GJ (2022) Drug properties prediction based on
deep learning. Pharmaceutics 14:467

Yu LX (2008) Pharmaceutical quality by design: product and process
development, understanding, and control. Pharm Res 25:781-791

Yu LX, Amidon G, Khan MA, Hoag SW, Polli J et al (2014) Under-
standing pharmaceutical quality by design. AAPS J 16:771-783

Yu JJ, Meng X, Dong X, Han MF, Li GT et al (2021) Synthesis and
characterization of osmotic pump capsules containing polyoxy-
ethylene and pH modifier to control the release of nifedipine. Eur
J Pharm Biopharm 163:102-108

Zaborenko N, Shi Z, Corredor CC, Smith-Goettler BM, Zhang L et al
(2019) First-principles and empirical approaches to predicting
in vitro dissolution for pharmaceutical formulation and process
development and for product release testing. AAPS J 21:32

@ Springer

Zarmpi P, Flanagan T, Meehan E, Mann J, Fotaki N (2017) Biopharma-
ceutical aspects and implications of excipient variability in drug
product performance. Eur J Pharm Biopharm 111:1-15

Zhou DL, Law D, Reynolds J, Davis L, Smith C et al (2014) Under-
standing and managing the impact of HPMC variability on
drug release from controlled release formulations. J Pharm Sci
103:1664-1672

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.



	A quality by design approach in oral extended release drug delivery systems: where we are and where we are going?
	Abstract
	Background 
	Area covered 
	Expert opinion 

	Introduction
	Applying the QbD framework to oral ER formulations
	Types of oral ER drug delivery systems
	Matrix systems
	Reservoir systems
	Osmotic pump systems

	Key factors in oral ER drug delivery system development
	Bridging QbD with solid oral ER formulations: the role in pharmaceutical development
	Definition of a quality target product profile (QTPP)
	Critical quality attributes (CQAs)
	Linking of critical material attributes (CMAs) and critical process parameters (CPPs) to drug product CQAs
	Design of experiments (DoE)
	Design space and control strategy
	PAT and RTRT as part of a control strategy
	Product lifecycle management and continual improvement


	Insights on data science—MVDA, ML and ANN as tools to foster ER tablet development and lifecycle management
	Conventional and multivariate statistical approaches in ER tablet QbD-based development
	Looking forward to advanced statistical models—ML
	Types of ML approaches
	What does ML bring to the pharmaceutical industry?
	Artificial neural networks (ANNs)
	Deep learning (DL)


	From QbD to pharma 4.0
	Conclusion
	Acknowledgements 
	References




