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Abstract
Despite enormous success in biomedical science and technology, as well as increased research and development spending, 
pharmaceutical productivity has faced challenges. The success rates in drug development remain low and have shown a 
declining trend in the last two decades. The US FDA has also recognized the inefficiency in drug development and proposed 
model-based drug development (MBDD) to improve pharmaceutical productivity and decision making. Modeling and simu-
lation provide a powerful tool to summarize and integrate information from different studies. Application of modeling and 
simulation can help decision making, design better studies, reduce costs, save time, and ultimately improve success rates. 
Beyond traditional types of modeling techniques or applications, MBDD is a paradigm that covers the entire spectrum of 
the drug development process. This review aims to provide an overview of modeling and simulation and their application 
to various drug development processes, from early discovery to preclinical and clinical stages, as well as formulation opti-
mization. Several types of models will be discussed, and illustrative examples of their applications in the drug development 
process will be highlighted.
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Introduction

Although the cost and time invested in pharmaceutical 
research and development (R&D) has been steadily increas-
ing, the number of newly developed medicines continues to 
decline. It has been reported that around 90% of all potential 
drugs that enter Phase I clinical trials fail in later phases, and 
less than 10% ultimately reach the market (Smietana et al. 
2016). Moreover, the success rates in drug development 

have largely declined for more than a decade (Smietana 
et al. 2016). This means that recent drug development efforts 
remain costly and inefficient.

To increase the efficiency of pharmaceutical R&D, intro-
duction of a new methodology may be necessary. The need 
for improved productivity in the pharmaceutical industry has 
also been recognized by the United States Food and Drug 
Administration (US FDA). The US FDA has established 
the “Critical Path Initiative,” which proposed the utilization 
of model-based drug development (MBDD) in 2004 (FDA 
2004) and identified innovations in clinical evaluations as a 
major scientific priority area (Huang et al. 2013).

MBDD is an approach to improve drug development by 
using pharmacokinetic (PK) and pharmacodynamic (PD) 
models to describe and predict drug and trial behavior, 
thereby improving drug development and decision making 
(FDA 2004). While PK describes the time course of drug 
concentrations, PD refers the characterization of the drug 
effect resulting from drug concentrations at the effect site. 
The relationship between drug dose and plasma concentra-
tion and drug effect or side-effects is characterized in the 
PK and PD model, respectively (FDA 2004). Although they 
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have long been used in the critical phases of drug develop-
ment process, systemic application of the models into the 
drug development process has the potential to significantly 
improve it. Decisions taken during a drug development pro-
gram to improve drug performance include go/no-go deci-
sions, dosing levels, end points, timing of trials, and many 
more factors, both clinical and nonclinical. Other decisions 
that affect the chances of success and the commercial feasi-
bility of a drug candidate include trial design considerations, 
such as country selection, site selection, patient enrollment, 
drug supply, staffing for monitors, among others. Each of 
these decisions could benefit from appropriate statistical 
models and trial simulation technologies (Reeve et al. 2015).

The drug development process is a stepwise process start-
ing with in vitro biochemical and pharmacology studies, 
followed by in vivo animal studies, small healthy human 
volunteer studies, and finally large patient efficacy and safety 
studies (Leil and Bertz 2014). As confidence in the prob-
ability of success of a test molecule increases following this 
process, the investment in further characterizing a candidate 
molecule is incrementally increased (Leil and Bertz 2014). 
After a drug is successfully marketed, life cycle manage-
ment, such as new formulation development, new routes of 
delivery, new indications, expansion of the indicated popula-
tion, or development of combination products (Modi 2017; 
Moon and Oh 2016), also requires investment of time and 
resources. Modeling and simulation techniques can be uti-
lized from early drug discovery to development, commer-
cialization, and even life cycle management. This review 
intends to provide an overview of the utility of modeling 
and simulation across drug development processes. Several 
examples of the applications of modeling and simulation 
will be highlighted.

Modeling and simulation

Modeling is the process of interpreting multifactorial data 
including disease, mechanisms, and compound character-
istics, and their interplay in the form of mathematical rela-
tionships based on certain assumptions (Zhang et al. 2008; 
Workgroup et al. 2016). The complexity of a model is deter-
mined by its intended use, and the value of the model is 
determined by how useful it is for its intended purpose.

Modeling involves cycles of development and valida-
tion to find the best model that helps predict how a system 
will behave without real-life testing. Once initial data are 
obtained, the first and most critical step of the modeling 
procedure is designing of a model structure that can describe 
the obtained data. Next, the structural model is translated 
into a series of mathematical equations using various mod-
eling software, followed by finding the optimal parameters 
for the observed data. Once the parameters are estimated, the 

data predicted by the model are compared with the observed 
data, which is called “model validation.” If the predictions 
do not properly describe the observed data, the structural 
model should be modified, and the process repeated until 
the model is successfully validated. The model can be fur-
ther validated by evaluating its predictions by simulation 
compared to data not used in model development. If the 
model finally passes validation, the model can be utilized 
for simulation and prediction.

Pharmacokinetic models (compartment model vs. 
physiologically based PK models)

PK models describe the time-course of drug concentrations. 
The most commonly employed approach in PK models is to 
represent the body as a system of compartments. A com-
partment is a group of tissues or organs in which the drug is 
well-mixed and kinetically homogenous, and serves as the 
building block for many PK models. Therefore, compart-
ments are usually conceptual and do not have any physiolog-
ical or anatomical relevance. Mammillary models generally 
have a central compartment with one or two peripheral com-
partments linked by rate constants (Wagner 1975; Mould 
and Upton 2012). As model parameters are defined by rate 
constants, they are not directly interpreted for any physi-
ological meaning, but can provide more interpretable PK 
descriptors such as clearance and volume of distribution 
(Jones and Rowland-Yeo 2013).

Although compartmental models are pragmatic, they 
are mainly empirical and descriptive without mechanistic 
insights. In cases where diversity in chemical structures 
and species and high inter-individual PK variabilities exist, 
physiological models have enormous potential. Compared 
with compartment models, physiologically-based pharma-
cokinetic (PBPK) models usually consist of a larger number 
of compartments, which correspond to the different organs 
or tissues in the body connected by circulating blood flow 
(Fig. 1). Each compartment is defined by tissue volume 
(or weight) and tissue blood flow rate, which differ across 
species.

PBPK models comprise physiological parameters, drug-
specific parameters, and the structural model (Rowland 
et al. 2011). Although physiological parameters represent 
organ mass or volume, blood flow, and tissue composition, 
drug-specific parameters represent tissue affinity, protein-
binding affinity, membrane permeability, enzymatic stabil-
ity, and transporter activities. The structural model consists 
of the anatomical arrangement of the tissues and organs 
of the body, which is drug-independent and the same for 
all mammalian species. Thus, the complexity of the PBPK 
model varies from a whole body PBPK model to a reduced 
model with lumped tissues for its intended use. Within the 
global structural model, each tissue or organ is commonly 
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represented as a single, well-stirred, or perfusion rate-limited 
compartment, especially when considering small lipophilic 
compounds. For many modern drug candidates with large 
molecular weights, however, more complex representations 
such as membrane permeability and role of transporters and 
their interplay with enzymes may need to be included (Wata-
nabe et al. 2009; Poirier et al. 2009).

The major advantage of a PBPK model is its predictive 
power. By replacing parameters, a PBPK model developed 
based on one species can be used to model and predict PK 
for another species of interest. PBPK modeling can provide 
a better prediction of human PK than empirical approaches 
(Jones et al. 2006; Luttringer et al. 2003). PBPK modeling 
could also anticipate the quantitative extent of PK-based 
drug–drug interactions (DDI) and the impact of age, genet-
ics, disease, and formulation on PK (Rowland et al. 2011). 
A PBPK model for the all-trans-retinoic acid (ATRA) pro-
vides an illustrative example of a successful application of 
this approach. The model was developed to characterize the 
PK of ATRA and its metabolites across species and routes 
of administration, and allowed assessment of the human 
teratogenic risk from ATRA based on animal data (Clewell 
et al. 1997). The PBPK model was then used to evaluate 
potential fetal exposure to ATRA from a topical skin treat-
ment containing ATRA, and facilitated its successful review 
and subsequent approval by the FDA (Rowland et al. 2004).

Pharmacodynamic models

Pharmacodynamics (PD) encompasses the relationship 
between drug concentrations and pharmacological effects. 
The combination of PK models with PD models, i.e., PK/
PD modeling, is the mathematical approach that links the 
time-course of drug concentration (PK) and concentration-
effect relationships (PD), and allows a description of the 
complete time-course of the drug effect to a given dosing 
regimen (Derendorf and Meibohm 1999; Zhang et al. 2008). 
Figure 2 illustrates a representative diagram for the relation-
ship between PK and PD (Shin et al. 2008). Most PK/PD 
models utilize plasma drug concentrations which “drive” 
the PD. This is especially true for mechanism-based PK/
PD modeling, which considers the underlying physiological 
response, can also help in the identification and evaluation of 
drug-response determinants, and facilitate predictive simu-
lations for optimizing future development steps (Meibohm 
and Derendorf 2002).

Binding of drug molecules to target biomolecules such 
as enzymes, receptors, and DNA initiates pharmacological 
responses that are generally dependent on the administered 
dose, with a higher receptor-drug binding typically produc-
ing a greater response (Clark 1926). The law of mass action 
and the relatively low quantity of targets leads to a capacity 
limitation in most pharmacological responses. Thus, as the 

Fig. 1   A conventional compartment model and physiologically-based pharmacokinetic (PBPK) model
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dose increases over a certain point, the response may be 
saturated and the relationship between drug concentration 
and response becomes nonlinear. At steady state, follow-
ing long-term intravenous infusion, drug concentrations in 
all parts of the body remain constant with time. Thus, the 
relationship between steady-state concentrations and the 
magnitude of drug effects can be obtained, which is time-
invariant or static. Several mathematical models to describe 
static drug concentration–response relationships are avail-
able, including the maximum effect (Emax) model, log-linear 
Emax model, and the sigmoid Emax model. These static mod-
els are highly useful, but they are limited to equilibrium 
or steady-state conditions and unable to describe the time-
course of pharmacological effects following acute dosing, 
which may provide better understanding of the mechanisms 
of drug action.

Kinetic models relate the time-course of drug concentra-
tion to that of drug response, and provide more complete 
characterization of PD and better insight into the under-
lying mechanisms of the effects (Shin et al. 2008). The 
simplest kinetic models, the direct effect models, assume 
a direct relationship between plasma drug concentration 
and response. Several models have also been developed to 
describe mechanisms responsible for the delay between the 
time-courses of plasma concentration and drug effects. For 
example, the biophase model assumes that a delay is associ-
ated with drug distribution into the active site, i.e., biophase. 
Indirect response models assume that the delay is related 
to the production or elimination of endogenous substances 
related to the observed drug effect. Transduction models 
attempt to describe a cascade of signaling events that act 
as intermediates between drug-receptor binding and drug 

response. Models to characterize irreversible drug responses 
and complexities such as tolerance and sensitization are also 
available.

Allometric scaling

Although PBPK modeling has a unique advantage in inter-
species scaling, extrapolation from animals to humans 
is primarily based on classical allometric relationships. 
Unlike PBPK models, which tend to be resource-demanding 
and costly, allometric scaling uses data that are routinely 
obtained during drug development and relatively simple 
calculations (Ings 1990). Thus, allometric scaling has been 
practically used for the estimation of first-in-human (FIH) 
doses in clinical trials. It is generally observed that PK and 
biological turnover parameters are predicted by using allo-
metric principles and pharmacological capacity (Emax) and 
sensitivity (EC50) parameters are mostly similar across spe-
cies (Mager and Jusko 2008).

Allometric scaling is an empirical relationship among 
size, time, and its consequences such as PK, without mech-
anistic understanding. Similarities in structural, physi-
ological, and biochemical properties among species allow 
allometric equations that characterize the dependence of 
biological variables (θ) on body weight (W) (Dedrick 1973; 
Mordenti 1986): 

where a and b are drug/process coefficients. A regression 
of the logarithm of the equation produces a linear relation-
ship and allows estimation of PK parameters in any animal 
species. The allometric exponent, b, is approximately 0.75 

θ = a ×W
b

Fig. 2   Representative diagram for relationship between pharmacokinetics (PK) and pharmacodynamics (PD). Pharmacokinetic-pharmacody-
namic (PK/PD) modeling combines PK and PD and allows characterization and prediction of the time-course of drug effects
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for clearances, 1.0 for organ sizes or volumes, and 0.25 for 
physiological times (Boxenbaum 1982). These relation-
ships seem to be reasonably uniform across animal spe-
cies (Boxenbaum 1982; Ritschel et al. 1992; Lin 1995) and 
provide a useful tool in predicting human PK parameters. 
Simple allometry is useful for drugs that generally exhibit 
low protein-binding, are eliminated via renal excretion or 
blood flow-limited hepatic metabolism, and do not involve 
transporter mechanisms (Huang and Riviere 2014). Figure 3 
illustrates an interspecies correlation between a PK param-
eter and body weights based on the data obtained from four 
animal species, and the prediction of a human parameter.

However, the simple allometric scaling for the predic-
tion of PK parameters can be misleading for some drugs. 
There is poor prediction for humans with simple allometric 
scaling for drugs that are highly protein-bound, have sig-
nificant biliary excretion, extensive active renal secretion, 
active metabolism, and other transport processes, or have 
species-specific binding or distribution (Huang and Riviere 
2014). Alternative approaches to improve the predictive per-
formance of allometry have been reported, especially for 
clearance. Despite no physiological significance, the predic-
tion of clearance can be improved by including brain weight 
or maximum life-span potential terms into the allometric 
equation for drugs undergoing extensive hepatic metabolism 
and renal elimination (Mahmood and Balian 1996). Various 
innovative approaches have also been reported by incorpo-
rating the rule of exponents, protein binding, in vitro data, 

etc. (Huang and Riviere 2014). Several species-invariant 
time methods, such as Dedrick plots, which correct species 
differences in physiological time, are also available to esti-
mate clearance (Shin et al. 2003).

In vitro and in vivo correlation

According to the FDA, in vitro and in vivo correlation 
(IVIVC) has been defined as “a predictive mathematical 
model describing the relationship between an in vitro prop-
erty of an extended-release (ER) dosage form and a relevant 
in vivo response” (FDA 1997). Once IVIVC is established 
during formulation development, the in vitro dissolution 
properties can serve as a surrogate for the in vivo PK study, 
which can accelerate the formulation development process 
(Cardot and Davit 2012).

There are four levels of IVIVC defined by the FDA (FDA 
1997). The level A IVIVC is the most preferred, correlating 
entire in vitro dissolution and in vivo input profiles, whereas 
levels B, C, and multiple-level C designations describe 
relationships based on the summary statistics derived from 
in vitro and in vivo data (Table 1) (FDA 1997; Dunne et al. 
2005).

In establishment of level A IVIVC, characterization of 
appropriate in vivo input profiles is one of the most challeng-
ing steps. Several conventional deconvolution approaches 
such as Wagner-Nelson, Loo-Riegelman, and numerical 
deconvolution have been widely employed to extract in vivo 
absorption profiles from blood drug concentration–time pro-
files. Wagner-Nelson and Loo-Riegelman methods are both 
model dependent approaches, assuming one-compartment 
and multi-compartment systemic disposition models, respec-
tively (Wagner and Nelson 1963; Loo and Riegelman 1968). 
Numerical deconvolution is a model-independent method 
not implementing pharmacokinetic model assumptions (Cut-
ler 1978). However, these approaches rely on the assumption 
that the rate-limiting step in the in vivo input is the drug 
dissolution process, and that absorption is rapid and com-
plete. Once the in vitro dissolution and in vivo input profiles 
are obtained, the relationship between in vitro and in vivo 
data needs to be further determined to develop IVIVC (FDA 
1997; Pharmacopoeia 2004). Unlike these two-stage decon-
volution approaches, single-stage convolution methods 

Fig. 3   Interspecies correlation between pharmacokinetic parameters 
and the body weights

Table 1   Four levels of IVIVC 
defined by the US FDA (FDA 
1997)

Level In vitro In vivo

A Dissolution profile Input profile
B Mean dissolution time (MDT) Mean residence time (MRT)

Mean absorption time (MAT)
C Dissolution parameter (t50%, t90%, etc.) Pharmacokinetic parameter (AUC, Tmax, or Cmax)
Multiple C Amount of drug dissolved at several time 

points (at least three dissolution time 
points)

One or more pharmacokinetic parameters of 
interest (Cmax, AUC, etc.)
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have also been proposed. Using the convolution model, the 
in vivo input data is simultaneously described with sys-
temic PK, which allows the prediction of blood concentra-
tion–time profiles from in vitro dissolution profiles (O’Hara 
et al. 2001). Although the conventional IVIVC approaches 
have limited applications to highly permeable drugs such as 
biopharmaceutical classification system (BCS) class I and II 
drugs, recent approaches have shown their potential to estab-
lish IVIVC for drugs with complex physiological absorption 
processes (Abuhelwa et al. 2016; Kim et al. 2017).

Applications of modeling and simulation 
in drug development

Modeling and simulation can be applied to all aspects of 
drug development from drug discovery to preclinical, clini-
cal, and life cycle management (Fig. 4). Various purposes 
and benefits of the modeling and simulations applied in the 
drug development process are introduced with several exam-
ples (Table 2).

Drug discovery

At the discovery stage, modeling and simulation can be used 
in identifying new targets and characterizing target mecha-
nisms (Workgroup et al. 2016). Systems approaches have 

been used in pharmacology to understand drug actions at 
the organ level (Zhao and Iyengar 2012). Quantitative sys-
tems pharmacology modeling is now more broadly intended 
to quantitatively characterize biological systems, disease 
processes, and the effects of drug actions on the system, 
leading to identification of drug targets and mechanisms of 
action. Physiologically based absorption and PK modeling 
and simulations have also provided useful tools to screen 
potential drug combinations by quantitative assessment on 
PK interactions for fixed dose combination products (Moon 
and Oh 2016). These modeling approaches could be applied 
to enable decision making not only at the stage of early dis-
covery, but also at later stages of drug development.

For example, the use of mathematical models to identify 
key factors in disease has been reported for hepatic steatosis 
(Wallstab et al. 2017). The model captures the triglyceride 
metabolism of animal cells and a multitude of molecular 
processes driving cellular lipid droplet dynamics. Model 
simulations evaluate how variations in the lipid load of 
hepatocytes, and in the abundance of enzymes and proteins, 
may affect the size distribution of lipid droplets, and finally, 
identify key molecular players in the development of hepatic 
steatosis (Wallstab et al. 2017).

Dwivedi et al. demonstrated the potential utility of 
mechanistic models of disease biology to study drug-
system interactions (Dwivedi et al. 2014). A multiscale 
systems model of interleukin (IL)-6-mediated immune 

Fig. 4   Modeling and simulation during drug development
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regulation in Crohn’s disease was developed and com-
bined with a general pharmacokinetic model for mono-
clonal antibodies. By comparing various biotherapeutic 
strategies targeting IL-6-mediated signaling in Crohn’s 
disease, the model indicated that targeting IL-6, IL-6Rα, 
or the IL-6/sIL-6Rα complex are less effective than dual 
targeting of the IL-6/sIL-6Rα complex in addition to IL-6 
or IL-6Rα (Dwivedi et al. 2014).

Similarly, a multiscale systems model of signaling net-
works in ERBB2-amplified breast cancer was developed 
to design treatment regimens. This model demonstrated 
that combined ErbB2/3 blockade is superior to the com-
bination of MEK and AKT inhibitors. Model simulations 
were used to design optimal drug combination regimens, 
and identify predictive biomarkers of drug sensitivity and 
resistance (Kirouac et al. 2013).

Preclinical development

In the preclinical development stage, drug candidates are 
characterized for physicochemical properties, absorption, 
metabolism, distribution, and excretion (ADME), and effi-
cacy and safety. Various modeling approaches including 
PK, PK/PD, and allometric scaling are widely utilized for 
candidate optimization, selection, and human dose predic-
tions. The modeling and simulation at this stage are primar-
ily designed to “learn” about the properties of the molecule 
that are then “confirmed” by the data generated in early 
clinical development (Sheiner 1997; Chien et al. 2005). 
Major aims of the modeling approaches at this stage include 
candidate optimization and selection, evaluation of in vivo 
potency, intrinsic activity, drug interactions, identification of 
surrogate markers and animal models for efficacy/toxicity, 

Table 2   Application of modeling and simulation in the drug development process

Phase Types of model Applications Examples

Discovery Systems pharmacology
PK model
PK/PD model

• Target identification and validation
• Characterizing target mechanism

Wallstab et al. (2017), Dwivedi et al. (2014), 
Kirouac et al. (2013)

Preclinical development PK model
PK/PD model
PBPK model
Allometric scaling

• Candidate optimization and selection
• Evaluation of in vivo potency and intrinsic 

ativity
• Evaluation of in vivo drug interactions
• Identification of surrogate markers and 

animal models for efficacy/toxicity
• Dosage form and dosage regimen optimi-

zation
• Integrated information supporting decision 

making
• Extrapolation of preclinical data to humans
• Dose selection for first-in-human studies

Yu et al. (2011), Wong et al. (2013), Chien 
et al. (2005), Sinha et al. (2012)

Clinical development PK model
PK/PD model
PBPK model
Population model

• Characterization of dose–effect relation-
ship

• Evaluation of dosage forms and adminis-
tration pathways

• Evaluation of food and gender effects
• Evaluation of special populations
• Characterization of therapeutic index, 

active metabolites, drug-drug interactions, 
drug-disease interactions, and tolerance 
development

• Design subsequent clinical trials
• Efficient analysis of data for label recom-

mendations
• Design and dose recommendation for 

special populations

Kretsos et al. (2014), Callies et al. (2004), 
Chien et al. (2005), Johnson et al. (2014), 
Girgis et al. (2010), Almukainzi et al. 
(2017)

Lifecycle management PK model
PK/PD model
IVIVC

• Facilitating the NDA review process and 
resolving regulatory issues

• Detection of drug-drug interactions, drug-
disease interactions or other covariates 
such as demographics or genetics

• Extended release formulation design and 
development

Guentert et al. (1995), Kovacevic et al. 
(2009), Abuhelwa et al. (2016), Kim et al. 
(2017)
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optimization of dosage forms and regimens, integration 
of information supporting decision making, extrapolation 
of preclinical data to humans, and dose selection for FIH 
studies.

For example, a mechanism-based PK/PD binding mod-
eling approach could be applied to candidate comparisons 
and human dose selection. The modeling approach was used 
to estimate the minimum acceptable biological effect level 
(MABEL) for a FIH study based on PK, receptor occupancy, 
and cell dynamics in cynomolgus monkeys for a novel mon-
oclonal antibody (Yu et al. 2011).

In the case of a new chemical entity (NCE) with a large 
amount of prior information from other drugs in its thera-
peutic class, modeling and simulation allow evaluation of 
several NCEs and identify the optimal clinical candidate. 
Then, PK/PD modeling could support the dose selection for 
phase I studies. Wong et al. described how modeling and 
simulation techniques could be implemented into the inte-
grated preclinical assessment of a drug candidate (Wong 
et al. 2013). Preclinical PK of GDC-0917, a new inhibitor 
of apoptosis protein antagonists, for the treatment of various 
cancers was characterized, and a PK/PD model informed 
by prior knowledge of the prototype molecule was devel-
oped. The model predicted human PK for GDC-0917, and 
aided clinical study design, i.e., efficacious doses in humans 
and the required number of subjects. In addition, leveraging 
comparator information to project likely clinical doses for 
an antihypertensive drug in the preclinical phase has been 
illustrated (Chien et al. 2005).

A PBPK model was developed to describe the absorp-
tion of a lipophilic BCS Class II investigational compound 
predominantly metabolized by CYP3A4 when administered 
as a nanosuspension formulation (Sinha et al. 2012). After 
optimization, the preclinical rat model was combined with 
bile micelle solubilization and colonic absorption. The sen-
sitivity analysis also identified that the absorption parameter, 
fugut as an important parameter in human PK and DDI.

Clinical development

In clinical development, modeling and simulation can be 
used to optimize dosing regimens, design subsequent clini-
cal trials, and efficiently analyze data to aid label recom-
mendations. Moreover, it can play a significant role in the 
design and dose recommendations for special populations, 
such as pediatric, elderly, and obese patients. Additional 
applications of modeling and simulation include evaluation 
of dosage forms and routes of administration, evaluation of 
food effects, sex effects, and special populations, and char-
acterization of therapeutic index, active metabolites, DDI, 
drug–disease interactions, and tolerance development.

For example, the first-in-patient study for olokizumab, 
a humanized monoclonal antibody for the treatment of 

rheumatoid arthritis, employed model-based, optimal design 
and adaptive execution (Kretsos et al. 2014). With integra-
tion of PK/PD modeling and exploratory statistics exper-
tise, precise and full PK/PD profiles of olokizumab were 
predicted in a disease-relevant population with a minimal 
number of patients. The approach resulted in a re-estimation 
of the study size to half the original number, leading to a 
faster, cheaper, and more informative clinical study.

Population PK/PD models for zosuquidar, a P-gp inhibi-
tor, suggested a shorter zosuquidar intravenous infusion 
schedule of 6 h as opposed to 24 h to be investigated in 
subsequent combination trials with daunorubicin (Callies 
et al. 2004). The shorter length of infusion produces maxi-
mal P-gp inhibition while minimizing the PK interaction 
and toxicity. A flexible infusion schedule can be designed 
to optimize the duration of maximal P-gp inhibition with 
minimal PK interaction and toxicity (Callies et al. 2004; 
Chien et al. 2005).

Furthermore, the use of modeling and simulation 
approaches may replace special population studies. The PK 
of the ER formulation of quetiapine in children and ado-
lescents were quantitatively predicted by PBPK modeling 
based on PK profiles of immediate-release (IR) formulations 
in children and adults, and the PK profile of ER formulation 
in adults (Johnson et al. 2014). These results were accepted 
by the FDA as a substitute for additional clinical studies, 
and helped to inform dosing regimens in pediatrics. The PK/
PD model of topiramate also demonstrated an efficacious 
monotherapy dosing regimen in children aged 2–10 years 
with newly diagnosed epilepsy without further trials (Girgis 
et al. 2010).

The ability of the PBPK model to characterize and elu-
cidate mechanistic changes contributing to drug absorption 
and disposition in different organs and tissues in renal dys-
function has been reported as well (Almukainzi et al. 2017).

Lifecycle management

After preclinical and clinical drug development phases, 
application of modeling and simulation may also be helpful 
during the life cycle of a drug, i.e., during the NDA sub-
mission and review, post-marketing surveillance, as well as 
during new formulation development.

Modeling approaches integrate information from pre-
clinical as well as clinical studies, including various sub-
populations. Thus, modeling allows comparisons of the 
dose–concentration–effect relationship across species and 
subpopulations during the review process. Well-defined PK/
PD models would further enable simulations for various sce-
narios, leading to deeper understanding of the compound, 
and provide justification for dose selection to the reviewer. 
Thus, modeling approaches can facilitate the New Drug 
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Application (NDA) review process and help resolve regula-
tory issues.

PK/PD analysis and modeling approaches also can be 
useful in post-marketing surveillance. Specifically, popu-
lation PK/PD modeling within a structured surveillance 
may be beneficial to detect DDI, drug-disease interactions, 
or other covariates such as demographics or genetics that 
interfere with the effect or toxicity of a drug (DeVane et al. 
1993). For example, a population PK approach showed that 
the occurrence of adverse events during moclobemide ther-
apy was associated with average plasma concentrations and 
was sex dependent (Guentert et al. 1995).

Development of new formulations such as an ER formu-
lation is generally considered a time-consuming and costly 
process. Since an IVIVC allows prediction of a formula-
tion/manufacturing change in clinical performance of the 
product, it is known to be the best option in formulation 
development (Kesisoglou et al. 2015; Eaga et al. 2014; Jad-
hav et al. 2015; Jun et al. 2017). The utility of IVIVC and 
gastrointestinal simulation for justification of biowaivers has 
been shown for carbamazepine in solid dosage forms (Kova-
cevic et al. 2009).

Conclusions

In summary, the collated examples demonstrate the value 
of modeling and simulation across various stages of drug 
discovery, development, and life cycle management. Mod-
eling approaches can increase confidence in the compound, 
mechanism, or disease rationales and provide support for 
rational decision making, dose determinations and adjust-
ments for patient subgroups, support labelling, benefit-risk 
analysis, and increasing confidence in next-stage invest-
ment. In general, the additional information offered via these 
approaches provides an “evidence base” to help decision 
making informed and efficient.
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